 Research
 Open Access
 Published:
New model of May cooperative system with strong and weak cooperative partners
Advances in Difference Equations volume 2020, Article number: 113 (2020)
Abstract
In this paper, based on the model of Zhao, Qin, and Chen [Adv. Differ. Equ. 2018:172, 2018], we propose a new model of the May cooperative system with strong and weak cooperative partners. The model overcomes the drawback of the corresponding model of Zhao, Qin, and Chen. By using the differential inequality theory, a set of sufficient conditions that ensure the permanence of the system are obtained. By combining the differential inequality theory and the iterative method, a set of sufficient conditions that ensure the extinction of the weak partners and the attractivity of the strong partners and the other species is obtained. Numeric simulations show that too large transform rate will lead to more complicated fluctuation; however, the system is still permanent.
Introduction
During the last decade, many scholars [1–36] investigated the dynamic behaviors of the mutualism and commensalism models. Some substantial progress has been made on the stability, permanence, and extinction of the mutualism model. For example, under some very simple assumption, Xie, Chen, and Xue [9] showed that the unique positive equilibrium of a cooperative system incorporating harvesting is globally attractive; Xie et al. [11] showed that the unique positive equilibrium of an integrodifferential model of mutualism is globally attractive. Chen, Xie, and Chen [17] proposed a stage structured cooperative system, and they showed that the stage structure plays an important role in the persistence and extinction property of the system. Lei [21] proposed a stage structured commensalism model. By constructing some suitable Lyapunov function, he obtained the conditions that ensure global asymptotic stability of the positive equilibrium.
Recently, stimulated by the idea of Mohammadi and Mahzoon [37], Zhao, Qin, and Chen [36] proposed the following May cooperative system with strong and weak cooperative partners:
where \({r_{i}},{a_{i}},{b_{i}},{c_{i}},d,i=1,2\), are positive constants. The authors considered system (1.1) together with the initial condition \(H_{i}(0)>0, i=1, 2\), \(P(0)>0\). Obviously, any solution of system (1.1) with positive initial conditions remains positive for all \(t\geq0\).
Concerned with the nonpersistence property of the species, by using the differential inequality theory, the authors of [36] obtained the following result.
Theorem A
If assumption\((B_{3})\)holds, where
then the weak partners\(H_{2}\)and the second speciesPare permanent, while the stronger partners\(H_{1}\)will be driven to extinction.
Though it seems to be correct in mathematical deduction of Theorem A, from an ecological point of view, it is unreasonable. It is hard to imagine in natural world that a species only leave the weak partners while the stronger partners die out. Generally speaking, the strong partners will have more chances to survive, let alone the fact that in system (1.1) the strong partners will obtain the help from the species P.
After carefully checking the deduction of [36], we think the reason for such an unreasonable phenomenon relies on the fact that the authors made the following assumption:
Without the strong partners, the weak partners in system ( 1.1 ) are always permanent.
Indeed, the authors assumed that the weak partners satisfy the equation
This is the famous logistic equation, and the system admits a unique positive equilibrium \(H_{2}^{*}=\frac{d}{e}\), which is globally asymptotically stable. Such an assumption seems curious since, generally speaking, weak partners are more easily driven to extinction.
This motivated us to propose the following May cooperative system with strong and weak cooperative partners:
One may argue that system (1.3) is very similar to system (1.1), maybe they have similar dynamic behaviors. However, this is impossible, there are some essential differences between system (1.1) and (1.3). In system (1.3), as far as the weak partners are concerned, without the transformation of strong partners, it satisfies the equation
Hence,
Consequently,
That is to say, without the transformation of the strong partners, the weak partners will finally be driven to extinction.
Noting that in analyzing the persistence and extinction property of the species in system (1.1), the authors of [17] deeply relied on the fact that the weak partners have positive lower bound, while this could not hold for system (1.3), as was shown in (1.6), the weak partners will be driven to extinction.
Now, an interesting issue is proposed: Is it possible for us to investigate the persistence and extinction property of system (1.3)? The aim of this paper is to give a positive answer to this issue.
The rest of the paper is arranged as follows. We introduce a lemma in the next section, and we investigate the persistence property of system (1.3) in Sect. 3. In Sect. 4, by using the iterative method, we establish a set of sufficient conditions which ensure the global attractivity of the boundary equilibrium. Some numeric simulations are carried out in Sect. 5 to show the feasibility of the main results. We end this paper with a brief discussion.
Lemma
We need the following lemma to prove the main results.
Lemma 2.1
([38])
Let\(a>0,b>0\).
 (I)
If\(\frac{dx}{dt}\geq x(bax)\), then\(\liminf_{t\rightarrow+\infty}{x(t)}\geq\frac{b}{a}\)for\(t\geq0\)and\(x(0)>0\);
 (II)
If\(\frac{dx}{dt}\leq x(bax)\), then\(\limsup_{t\rightarrow+\infty}{x(t)}\leq\frac{b}{a}\)for\(t\geq0\)and\(x(0)>0\).
Permanence
The aim of this section is to obtain a set of sufficient conditions to ensure the permanence of system (1.3).
Definition
If there exist positive constants \(m_{i}, M_{i}, i=1,2,3\), which are independent of the positive solution of system (1.3) such that
Obviously, by means of permanence means that the species could survive for a long time.
Concerned with the persistence property of system (1.3), we have the following result.
Theorem 3.1
Assume that
 (\(A_{1}\)):

$$ \frac{\alpha}{c_{1}}>d; $$(3.4)
 (\(A_{2}\)):

$$ r_{1}>\alpha M_{2} $$(3.5)
and
 (\(A_{3}\)):

$$ \alpha m_{1}>d $$(3.6)
hold, where\(M_{2}\)is defined by (3.13) and\(m_{1}\)is defined by (3.20). Then system (1.3) is permanent.
Proof
Noting that \(m_{1}, M_{2}\) are fixed positive constants, it follows from conditions (\(A_{2}\)), (\(A_{3}\)) that, for small enough positive constant \(\varepsilon>0\), the inequalities
hold. Indeed, we could choose ε that satisfies the inequality \(\varepsilon<\min \{\frac{r_{1}}{\alpha}M_{2}, m_{1} \frac{d}{\alpha} \}\).
From the first equation of system (1.3) we have
Applying Lemma 2.1 to the above inequality leads to
For above \(\varepsilon>0\), from (3.10), there exists \(T_{1}>0\) such that, for all \(t>T_{1}\),
For \(t>T_{1}\), it follows from (3.11) and the second equation of system (1.3) that
Applying Lemma 2.1 to the above inequality leads to
Setting \(\varepsilon\rightarrow0\) in (3.12) leads to
From (3.13), for any \(\varepsilon>0\) that satisfies (3.7) and (3.8), there exists \(T_{2}>T_{1}\) such that
From the third equation of system (1.3), one has
Applying Lemma 2.1 to the above inequality leads to
For any small enough positive constant \(\varepsilon>0\), it follows from (3.16) that there exists \(T_{3}>0\),
For \(t\geq T_{3}\), from (3.14) and the first equation of system (1.3), we have
Applying Lemma 2.1 to (3.18) leads to
Setting \(\varepsilon\rightarrow0\) in (3.19), we have
For \(\varepsilon>0\) that satisfies (3.7) and (3.8), it follows from (3.20) that there exists \(T_{4}>T_{3}\) such that
For \(t>T_{4}\), from (3.21) and the second equation of system (1.3), we have
Applying Lemma 2.1 to the above inequality leads to
Setting \(\varepsilon\rightarrow0\) in the above inequality, we have
From the third equation of system (1.3), one has
Applying Lemma 2.1 to the above inequality leads to
(3.10), (3.13), (3.16), (3.20), (3.23), and (3.25) show that under the assumption of Theorem 3.1, system (1.3) is permanent. This ends the proof of Theorem 3.1. □
Remark 3.1
Condition (\(A_{1}\)) shows that the transform rate of strong partners to weak partners should be large enough, while condition (\(A_{2}\)) requires the transform rate of strong partners to weak partners to be restricted to some area. Combining these two inequalities ensures the permanence of system (1.3), the transform rate (represent by α) should be restricted to some interval.
Remark 3.2
Conditions (\(A_{1}\))–(\(A_{3}\)) could be combined with the following inequality:
which is equivalent to
Stability of the boundary equilibrium
As was shown in the Introduction section, without the transformation of the strong partners to the weak partners, the weak partners will be driven to extinction. Also, we have shown in Sect. 3 that to ensure the permanence of the system, the transform rate should be restricted to a certain range. A natural issue is proposed: What would happen if the transform rate is small? This section will give the answer to this question.
Theorem 4.1
Assume that
 (\(A_{4}\)):

$$ \frac{\alpha}{c_{1}}< d $$(4.1)
holds, then the weak partners\(H_{2}\)in system (1.3) will be driven to extinction, while the strong partners and the speciesPwill be finally attracted to the unique positive equilibrium of the following system:
$$\begin{aligned} \begin{aligned} &\frac{dH_{1}}{dt}=r_{1}H_{1} \biggl(1 \frac{H_{1}}{a_{1}+b_{1}P}c_{1}H_{1} \biggr), \\ &\frac{dP}{dt}=r_{2}P \biggl(1\frac{P}{a_{2}+b_{2}H_{1}}c_{2}P \biggr). \end{aligned} \end{aligned}$$(4.2)
Noting that the expression of the positive equilibrium of (4.2) is not easy to be expressed, here we give the following lemma.
Lemma 4.1
System (4.2) admits a unique positive equilibrium\((H_{1}^{*}, P^{*})\).
Proof
The positive equilibrium of system (4.2) satisfies the equations
From the second equation of system (4.3), we have
Substituting it into the first equation of system (4.3) and simplifying it, we have
here
Obviously, system (4.5) has the unique positive solution
Thus, system (4.3) has a unique positive solution \((H_{1}^{*}, P^{*})\), where \(H_{1}^{*}\) is defined by (4.6) and
This ends the proof of Lemma 4.1. □
Proof of Theorem 4.1
For any small enough positive constant \(\varepsilon>0\), without loss of generality, we may assume that \(\varepsilon<\min \{ \frac{1}{\frac{\alpha}{r_{1}}+c_{1}+\frac{1}{a_{1}}},\frac{1}{2} \frac{1}{c_{2}+\frac{1}{a_{2}}} \}\), it follows from (4.1) that the inequality
holds. For above \(\varepsilon>0\), similar to the analysis of (3.9)–(3.11), we have
For above \(\varepsilon>0\), it follows from (4.9) that there exists \(T_{11}>0\) such that
For \(t>T_{11}\), from (4.10) and the second equation of system (1.3), we have
Hence
Therefore,
It follows from (4.12) that the weak parters will be driven to extinction. Also, for any small enough positive constant \(\varepsilon>0\), it follows from (4.12) that there exists \(T_{12}>T_{11}>0\) such that
From the third equation of system (1.3), similar to the analysis of (3.15)–(3.16), we have
For any small enough positive constant \(\varepsilon>0\), it follows from (4.14) that there exists \(T_{13}>0\) such that, for all \(t>T_{13}\),
For \(t>T_{13}\), from (4.15) and the first equation of system (1.3) we have
Applying Lemma 2.1 to (4.16) leads to
Hence, for \(\varepsilon>0\) that satisfies (4.8), there exists \(T_{21}>T_{13}\) such that, for all \(t>T_{21}\), one has
For \(t>T_{21}\), from (4.18) and the third equation of system (1.3), we have
Applying Lemma 2.1 to (4.19) leads to
For \(\varepsilon>0\) that satisfies (4.8), it follows from (4.20) that there exists \(T_{22}>T_{21}\) such that, for all \(t>T_{22}\), one has
From (4.21) and the first equation of system (1.3), we have
Applying Lemma 2.1 to (4.22) leads to
For \(\varepsilon>0\) that satisfies (4.8), it follows from (4.23) that there exists \(T_{11}^{\prime}>T_{22}\) such that, for all \(t>T_{11}^{\prime}\), one has
From the third equation of system (1.3), we have
Applying Lemma 2.1 to (4.25) leads to
For \(\varepsilon>0\) that satisfies (4.8), it follows from (4.26) that there exists \(T_{12}^{\prime}>T_{11}^{\prime}\) such that, for all \(t>T_{12}^{\prime}\), one has
From (4.27) and the first equation of system (1.3), for \(t>T_{12}^{\prime}\), one has
Applying Lemma 2.1 to (4.28) leads to
For \(\varepsilon>0\) that satisfies (4.8), it follows from (4.29) that there exists \(T_{21}^{\prime}>T_{12}^{\prime}\) such that, for all \(t>T_{21}^{\prime}\), one has
From (4.30) and the third equation of system (1.3), we have
Applying Lemma 2.1 to (4.31) leads to
For \(\varepsilon>0\) that satisfies (4.8), it follows from (4.32) that there exists \(T_{22}^{\prime}>T_{21}^{\prime}\) such that, for all \(t>T_{22}^{\prime}\), one has
Noting that \(\frac{1}{a_{2}+b_{2}M_{1}^{(1)}}>0, \frac{1}{a_{1}+b_{1}M_{2}^{(1)}}>0\), from (4.10), (4.15), (4.18), and (4.21), one has
Also, from \(m_{1}^{(1)}>0, m_{2}^{(1)}>0\) we have
Hence, from (4.24), (4.27), (4.30), and (4.33), we have
Repeating the above procedure, we get four sequences \(m_{i}^{(n)}\), \(M_{i}^{(n)}\), \(i=1,2, n=1, 2, \ldots\) . such that
From the deduction process, for \(t>\max\{T_{2n}, T_{2n}^{\prime}\}\), we have
We claim that sequences \(M_{i}^{(n)}, i=1,2\), are strictly decreasing, and sequences \(m_{i}^{(n)}, i=1,2\), are strictly increasing. To prove this claim, we carry on by induction. (4.34) and (4.35) show that the conclusion holds for \(n=2\). Let us assume now that our claim is true for \(n=k\), that is,
Then
And so
The above analysis shows that \(M_{i}^{(n)}\) is a strictly decreasing sequence, \(m_{i}^{n}\) is a strictly increasing sequence. Set
Setting \(n\rightarrow+\infty\) in (4.40) leads to
(4.42) shows that \(( \overline{H}_{1}, \overline{P}), (\underline{H}_{1}, \underline{P})\) are all the solutions of (4.3). By Lemma 4.1, (4.3) has a unique positive solution \((H_{1}^{*}, P^{*})\). Hence, we conclude that \(\overline{H}_{1}=\underline{H}_{1}=H_{1}^{*}, \overline{P}= \underline{P}=P^{*}\), that is,
Thus, the unique interior equilibrium \((H_{1}^{*}, P^{*})\) is globally attractive. This completes the proof of Theorem 4.1. □
Numeric simulations
Now let us consider the following three examples.
Example 5.1
Here, corresponding to system (1.3), we take \(r_{1}=3, a_{1}=2, b_{1}=2, c_{1}=1, \alpha=2, r_{2}=2, d=0.5, e=2, a_{2}=2, b_{2}=0.8, c_{2}=1.5\). By simple computation, we have
That is, inequality (3.27) holds, it follows from Remark 3.2 and Theorem 3.1 that system (1.3) is permanent. Figures 1–3 support this assertion.
Example 5.2
Here, corresponding to system (1.3), we take \(r_{1}=3, a_{1}=2, b_{1}=2, c_{1}=1, \alpha=0.5, r_{2}=2, d=2, e=2, a_{2}=2, b_{2}=0.8, c_{2}=1.5\). By simple computation, we have
That is, inequality (4.1) holds. It follows from Theorem 4.1 that the weak partners \(H_{2}\) in system (5.3) will be driven to extinction, while the strong partners and the species P will be finally attracted to the unique positive equilibrium of the following system:
Figures 4–6 support this assertion.
In Theorems 3.1 and 4.1, we made the assumption that the transform rate of the strong partners to the weak partners is limited to an interval, one may argue what would happen if the transform rate is large enough. Now let us consider the following example.
Example 5.3
Here, corresponding to system (1.3), we take \(r_{1}=3, a_{1}=2, b_{1}=2, c_{1}=1, \alpha=10, r_{2}=2, d=2, e=2, a_{2}=2, b_{2}=0.8, c_{2}=1.5\). By simple computation, we have
and
Thus, neither (3.27) nor (4.1) holds. We could not give any persistence or nonpersistence property from Theorem 3.1 and 4.1. However, numeric simulations (Figs. 7–9) show that in this case the system is still permanent.
Discussion
Based on the traditional May cooperative system, Zhao, Qin, and Chen [36] proposed a May cooperative system with strong and weak cooperative partners (system (1.1)). The authors investigated the persistence and nonpersistence property of system (1.1). By constructing a suitable Lyapunov function, they also obtained the conditions that ensure the global asymptotic stability of the positive equilibrium and boundary equilibrium. As was shown in the Introduction section, their result (Theorem A) from the mathematic point of view is correct; however, from the biological background, it is unreasonable. This motivated us to propose system (1.3), which overcomes the drawback of model (1.1).
By applying the differential inequality theory, we first obtain a set of conditions that ensure the permanence of system (1.3). Then, by using the iterative method and the differential inequality theory, we also obtain a set of conditions that ensure the extinction of the weak partners and the attractivity of the strong partners and the other species.
Since our results require the restriction of the transform rate, it is natural to ask what would happen if the transform rate is large enough. Zhao, Qin, and Chen [36] showed that in system (1.1), if the transform rate is too large, the strong partners will be driven to extinction; however, for model (1.3), numeric simulations (Figs. 7–9) show that in this case the model is still permanent. From numeric simulations one could also see that the species need more time to attract to their final density. It is in this sense that the large transform rate makes the system unstable, since from Figs. 7–9 we could see that sometimes the density of the species may be very near to zero, which means the lack of the species, and could increase the chance of extinction of the species.
References
 1.
Li, Y.K., Zhang, T.W.: Permanence of a discrete nspecies cooperation system with timevarying delays and feedback controls. Math. Comput. Model. 53, 1320–1330 (2011)
 2.
Chen, L.J., Xie, X.D.: Permanence of an Nspecies cooperation system with continuous time delays and feedback controls. Nonlinear Anal., Real World Appl. 12, 34–38 (2011)
 3.
Yang, W., Li, X.: Permanence of a discrete nonlinear Nspecies cooperation system with time delays and feedback controls. Appl. Math. Comput. 218(7), 3581–3586 (2011)
 4.
Li, X., Yang, W.: Permanence of a discrete model of mutualism with infinite deviating arguments. Discrete Dyn. Nat. Soc. 2010, 1038–1045 (2010)
 5.
Yang, L.Y., Xie, X.D., et al.: Permanence of the periodic predator prey mutualist system. Adv. Differ. Equ. 2015, 331 (2015)
 6.
Yang, K., Xie, X., et al.: Global stability of a discrete mutualism model. Abstr. Appl. Anal. 2014, Article ID 709124 (2014)
 7.
Chen, F., Wu, H., Xie, X.: Global attractivity of a discrete cooperative system incorporating harvesting. Adv. Differ. Equ. 2016, 268 (2016)
 8.
Chen, F., Yang, J., et al.: On a mutualism model with feedback controls. Appl. Math. Comput. 214(2), 581–587 (2019)
 9.
Xie, X.D., Chen, F.D., Xue, Y.L.: Note on the stability property of a cooperative system incorporating harvesting. Discrete Dyn. Nat. Soc. 2014, 327823 (2014)
 10.
Xie, X.D., Xue, Y.L., et al.: Global attractivity in a discrete mutualism model with infinite deviating arguments. Discrete Dyn. Nat. Soc. 2017, Article ID 2912147 (2017)
 11.
Xie, X.D., Chen, F.D., et al.: Global attractivity of an integrodifferential model of mutualism. Abstr. Appl. Anal. 2014, 928726 (2014)
 12.
Han, R., Xie, X., et al.: Permanence and global attractivity of a discrete pollination mutualism in plant pollinator system with feedback controls. Adv. Differ. Equ. 2016(1), 199 (2016)
 13.
Han, R., Chen, F.: Global stability of a commensal symbiosis model with feedback controls. Commun. Math. Biol. Neurosci. 2015, Article ID 15 (2015)
 14.
Han, R., Chen, F., et al.: Global stability of May cooperative system with feedback controls. Adv. Differ. Equ. 2015(1), 360 (2015)
 15.
Liu, Z.J., Wu, J.H., et al.: Modeling and analysis of a periodic delayed two species model of facultative mutualism. Appl. Math. Comput. 217, 893–903 (2010)
 16.
Yang, L.Y., Xie, X.D., et al.: Dynamic behaviors of a discrete periodic predator prey mutualist system. Discrete Dyn. Nat. Soc. 2015, Article ID 247269 (2015)
 17.
Chen, F.D., Xie, X.D., et al.: Dynamic behaviors of a stage structured cooperation model. Commun. Math. Biol. Neurosci. 2015, Article ID 4 (2015)
 18.
Yang, K., Miao, Z., et al.: Influence of single feedback control variable on an autonomous Holling II type cooperative system. J. Math. Anal. Appl. 435(1), 874–888 (2016)
 19.
Chen, F., Xue, Y., et al.: Dynamic behaviors of a Lotka Volterra commensal symbiosis model with density dependent birth rate. Adv. Differ. Equ. 2018, 296 (2018)
 20.
Li, T.T., Chen, F.D., et al.: Stability of a mutualism model in plantpollinator system with stagestructure and the Beddington–DeAngelis functional response. J. Nonlinear Funct. Anal. 2017, Article ID 50 (2017)
 21.
Lei, C.: Dynamic behaviors of a stage structured commensalism system. Adv. Differ. Equ. 2018, 301 (2018)
 22.
Xue, Y.L., Xie, X.D., et al.: Almost periodic solution of a discrete commensalism system. Discrete Dyn. Nat. Soc. 2015, Article ID 295483 (2015)
 23.
Lei, C.Q.: Dynamic behaviors of a nonselective harvesting May cooperative system incorporating partial closure for the populations. Commun. Math. Biol. Neurosci. 2018, Article ID 12 (2018)
 24.
Xu, J., Chen, F.: Permanence of a Lotka–Volterra cooperative system with time delays and feedback controls. Commun. Math. Biol. Neurosci. 2015, Article ID 18 (2015)
 25.
Chen, B.: The influence of commensalism on a Lotka–Volterra commensal symbiosis model with Michaelis–Menten type harvesting. Adv. Differ. Equ. 2019, Article ID 43 (2019)
 26.
Chen, B.G.: The influence of density dependent birth rate to a commensal symbiosis model with Holling type functional response. Eng. Lett. 27(2), 295–302 (2019)
 27.
Liu, Y., Xie, X., et al.: Permanence, partial survival, extinction, and global attractivity of a nonautonomous harvesting Lotka Volterra commensalism model incorporating partial closure for the populations. Adv. Differ. Equ. 2018, Article ID 211 (2018)
 28.
Wu, R., Li, L.: Note on the stability property of the boundary equilibrium of a May cooperative system with strong and weak cooperative partners. J. Math. Comput. Sci. 20, 58–63 (2020)
 29.
Lin, Q.: Allee effect increasing the final density of the species subject to the Allee effect in a Lotka Volterra commensal symbiosis model. Adv. Differ. Equ. 2018, Article ID 196 (2018)
 30.
Lin, Q., Xie, X., et al.: Dynamical analysis of a logistic model with impulsive Holling typeII harvesting. Adv. Differ. Equ. 2018(1), 112 (2018)
 31.
Wu, R.X., Lin, L., Zhou, X.Y.: A commensal symbiosis model with Holling type functional response. J. Math. Comput. Sci. 16(3), 364–371 (2016)
 32.
Xue, Y., Xie, X., Lin, Q.: Almost periodic solutions of a commensalism system with Michaelis–Menten type harvesting on time scales. Open Math. 17(1), 1503–1514 (2019)
 33.
Yang, K., Xie, X., et al.: Global stability of a discrete mutualism model. Abstr. Appl. Anal. 2014, Article ID 709124 (2014)
 34.
He, M., Chen, F.: Extinction and stability of an impulsive system with pure delays. Appl. Math. Lett. 91, 128–136 (2019)
 35.
He, M., Li, Z., et al.: Dynamics of an impulsive model of plankton allelopathy with delays. J. Appl. Math. Comput. 55(1–2), 749–762 (2017)
 36.
Zhao, L., Qin, B., et al.: Permanence and global stability of a May cooperative system with strong and weak cooperative partners. Adv. Differ. Equ. 2018, 172 (2018)
 37.
Mohammadi, H., Mahzoon, M.: Effect of weak prey in Leslie–Gower predatorprey model. Appl. Math. Comput. 224(4), 196–204 (2013)
 38.
Chen, F.D.: On a nonlinear nonautonomous predatorprey model with diffusion and distributed delay. Comput. Appl. Math. 180(1), 33–49 (2005)
Acknowledgements
The authors would like to thank Dr. Yu Liu for useful discussion about the mathematical modeling.
Availability of data and materials
Data sharing not applicable to this article as no datasets were generated or analysed during the current study.
Funding
The research was supported by the Natural Science Foundation of Fujian Province (2019J01841).
Author information
Affiliations
Contributions
All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.
Corresponding author
Correspondence to Qifa Lin.
Ethics declarations
Ethics approval and consent to participate
Not applicable.
Competing interests
The authors declare that there is no conflict of interests.
Consent for publication
Not applicable.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Lin, Q., Lei, C., Luo, S. et al. New model of May cooperative system with strong and weak cooperative partners. Adv Differ Equ 2020, 113 (2020). https://doi.org/10.1186/s13662020025646
Received:
Accepted:
Published:
Keywords
 Mutualism
 Iterative method
 Weak partners
 Strong partners
 Global stability