Skip to main content

Theory and Modern Applications

Convergence of solutions for functional integro-differential equations with nonlinear boundary conditions

Abstract

This paper is concerned with the convergence of solutions for a class of functional integro-differential equations with nonlinear boundary conditions. New comparison principles are obtained. By using the comparison principles and quasilinearization method, we present two monotone iterative sequences uniformly and monotonically converging to the unique solution with rate of order 2. Meanwhile, an example is given to demonstrate applications of the result reported.

1 Introduction

Integro-differential equations are widely used in many fields such as control theory, biology, and mechanics, and the qualitative theory of integro-differential equations creates an important branch of nonlinear analysis; see, for instance, the monographs [2, 6, 7] and the papers [5, 10–12, 16, 24, 26, 31, 33, 34]. For the results of existence of solutions and existence of extremal solutions for such equations under different boundary conditions, we refer the reader to the monographs by Guo et al. [13] and Lakshmikantham and Rama Mohana Rao [23], the related literature for integro-differential equations [1, 4, 8, 15, 27, 30], and for functional integro-differential equations [3, 14, 17, 20, 21, 28, 35, 36], and the references cited therein.

Recently, various classes of differential/difference equations with nonlinear boundary conditions have attracted extensive attention of researchers. For instance, Franco et al. [9] discussed the existence conditions of solutions for first-order differential equations with nonlinear boundary conditions; Jankowski [19] obtained the existence conditions of first-order advanced differential equations with nonlinear boundary conditions; Mahdavi [29] investigated the nonlinear boundary value problems involving abstract Volterra operators; Wang et al. [36] presented the existence conditions of extreme solutions for first-order functional difference equations with nonlinear boundary conditions; Wang et al. [37] proved uniform convergence approximate solutions for second-order functional differential equations with periodic boundary conditions; Wang [38] and Wang and Tian [39] established the existence conditions of extreme solutions for causal differential equations and impulsive differential equations with causal operators, respectively. However, we noticed that the previous studies mostly focused on the existence of solutions and extremal solutions as well as the uniform convergence approximate solutions via the method of upper and lower solutions coupled with the monotone iterative technique; see [22, 31]. There are few results of rapid convergence for integro-differential equations with nonlinear boundary conditions. From the perspective of application, the convergence rate of the solution is both important and meaningful. In [18], by using the quasilinearization method [25], Jankowski obtained the quadratic approximation of solutions for differential equations with nonlinear boundary conditions. In [32], Sun et al. presented quadratic approximation of solutions for boundary value problems with nonlocal boundary conditions. Inspired by [18, 25, 32], in this paper, we consider the following functional integro-differential equation with nonlinear boundary conditions:

$$ \left \{ \textstyle\begin{array}{ll} x'(t)=f(t, x(t), x(\theta(t)), (Sx)(t)), \quad t\in J, \\ 0=g(x(0), x(T)), \end{array}\displaystyle \right . $$
(1.1)

where \(f\in C(J\times R^{3}, R)\), \(g\in C(R\times R, R)\), \(J=[0, T]\), \(\theta\in C(J, R_{+})\), \(\theta(t)\leq t\), \((Sx)(t)=\int^{t}_{0}k(t, s)x(s)\,ds\), \(k\in C(D, R_{+})\), \(D=\{(t, s)\in J\times J: 0\leq s\leq t, t\in J\}\), \(k_{0}=\max_{(t, s)\in D}k(t, s)\).

The aim of this paper is to investigate the problem of the convergence of solutions for Eq. (1.1). By employing the comparison principles and the quasilinearization method, we obtain two monotone sequences of iterates converging uniformly and quadratically to the unique solution of the problem. Meanwhile, an example is given to demonstrate applications of the result established. Equation (1.1) contains many special types. In addition, the nonlinear boundary conditions of Eq. (1.1) contain a lot of special types. For instance, Eq. (1.1) can be reduced to initial value problems for \(g(x(0), x(T))=x(0)-c\), that is, \(x(0)=c\); Eq. (1.1) reduces to anti-periodic boundary value problems for \(g(x(0), x(T))=x(0)+x(T)\), that is, \(x(0)=-x(T)\).

2 Preliminaries

We introduce the following definitions and lemmas which are used throughout this paper.

Definition 2.1

We say that a function \(\alpha\in{C^{1}(J,R)}\) is a lower solution of Eq. (1.1) if

$$ \left \{ \textstyle\begin{array}{ll} \alpha'(t)\leq f(t, \alpha(t), \alpha(\theta(t)), (S\alpha)(t)), \quad t\in J, \\ g(\alpha(0), \alpha(T))\leq0. \end{array}\displaystyle \right . $$

Definition 2.2

We say that a function \(\beta\in{C^{1}(J,R)}\) is an upper solution of Eq. (1.1) if

$$ \left \{ \textstyle\begin{array}{ll} \beta'(t)\geq f(t, \beta(t), \beta(\theta(t)), (S\beta)(t)), \quad t\in J, \\ g(\beta(0), \beta(T))\geq0. \end{array}\displaystyle \right . $$

Definition 2.3

We say that the functions \(\alpha, \beta\in{C^{1}(J,R)}\) are coupled quasisolutions of Eq. (1.1) if

$$ \left \{ \textstyle\begin{array}{ll} \alpha'(t)= f(t, \alpha(t), \alpha(\theta(t)), (S\alpha)(t)), \quad t\in J, \\ g(\alpha(0), \beta(T))=0, \end{array}\displaystyle \right . $$

or

$$ \left \{ \textstyle\begin{array}{ll} \beta'(t)= f(t,\beta(t),\beta(\theta(t)),(S\beta)(t)), \quad t\in J, \\ g(\beta(0),\alpha(T))=0. \end{array}\displaystyle \right . $$

Definition 2.4

We say that the functions \(\alpha, \beta\in{C^{1}(J,R)}\) are coupled lower solution and upper solution of Eq. (1.1) if

$$ \left \{ \textstyle\begin{array}{ll} \alpha'(t)\leq f(t, \alpha(t), \alpha(\theta(t)), (S\alpha)(t)), \quad t\in J, \\ g(\alpha(0), \beta(T))\leq0, \end{array}\displaystyle \right . $$
(2.1)

and

$$ \left \{ \textstyle\begin{array}{ll} \beta'(t)\geq f(t, \beta(t), \beta(\theta(t)), (S\beta)(t)), \quad t\in J, \\ g(\beta(0), \alpha(T))\geq0, \end{array}\displaystyle \right . $$
(2.2)

respectively.

Lemma 2.1

Assume that the following condition holds.

\((H_{2.1})\):

There exist integrable functions \(h_{i}(t)<0\), \(i=1, 2, 3\)such that

$$ \int^{T}_{0} \bigl\{ h_{1}(t)+h_{2}(t)+ k_{0} T h_{3}(t) \bigr\} \,dt\geq-1. $$
(2.3)

If there exists a function \(p\in C^{1}(J, R)\)such that

$$ \textstyle\begin{cases} p'(t)\leq h_{1}(t)p(t)+h_{2}(t)p(\theta(t) )+h_{3}(t) (Sp) (t), \quad t\in J, \\ p(0) \leq0, \end{cases} $$
(2.4)

then \(p(t)\leq0\).

Proof

Suppose, to the contrary, that there exists a \(t^{*}\in(0, T]\) such that \(p(t^{*})>0\). Let \(t_{*}\in[0, t^{*}]\) be such that \(p(t_{*})=\inf p(t)=-b\), \(b\geq0\). By virtue of (2.4), we have

$$ p'(t)\leq-b \bigl[h_{1}(t)+h_{2}(t)+k_{0}Th_{3}(t) \bigr]. $$

Integrating both sides of the above inequality, we get

$$ p \bigl(t^{*} \bigr)- p(t_{*})\leq-b \int^{t^{*}}_{t_{*}} \bigl\{ h_{1}(t)+h_{2}(t)+k_{0}Th_{3}(t) \bigr\} \,dt, $$

and so

$$ 0< p \bigl(t^{*} \bigr)\leq p(t_{*})-b \int^{t^{*}}_{t_{*}} \bigl\{ h_{1}(t)+h_{2}(t)+k_{0}Th_{3}(t) \bigr\} \,dt. $$

Furthermore, we obtain

$$ b< -b \int^{T}_{0} \bigl\{ h_{1}(t)+h_{2}(t)+k_{0}Th_{3}(t) \bigr\} \,dt, $$
(2.5)

which contradicts (2.3), and thus \(p(t)\leq0\). This completes the proof. □

Lemma 2.2

Assume that condition \((H_{2.1})\)is satisfied. If there exist functions \(p\in C^{1}(J, R)\)and \(q\in C^{1}(J, R)\)such that

$$ \textstyle\begin{cases} p'(t)\leq h_{1}(t)p(t)+h_{2}(t)p (\theta(t) )+h_{3}(t) (Sp) (t), &p(0)\leq A q(T), t\in J, \\ q'(t) \leq h_{1}(t)q(t)+h_{2}(t) q ( \theta(t) )+h_{3}(t) (Sq) (t), & q(0)\leq A p(T), t\in J, \end{cases} $$
(2.6)

where \(0 < A\leq1\)is a constant, then \(p(t)\leq0\)and \(q(t)\leq0\), \(t\in J\).

Proof

Without loss of generality, we prove one case of \(p(t)\leq0\). Suppose that the conclusion is not true. We consider the following two cases where \(p(0)\leq0\) and \(p(0)>0\), respectively.

Case 1. Let \(p(0)\leq0\). As in the proof of Lemma 2.1, we arrive at (2.5), which contradicts (2.3).

Case 2. Let \(p(0)>0\). There are two cases where for all \(t\in J\), \(p(t)>0\) and there exist t̄, \(\underline{t}\) such that \(p(\underline{t})\leq0\), \(p(\bar{t})>0\), respectively.

Case 2.1. When \(p(t)>0\), \(t\in J\), if \(q(0)\leq0\), Lemma 2.1 implies that \(q(T)\leq0\), then we have \(p(0)\leq A q(T)\leq0\), which is a contradiction.

If \(q(0)>0\), by \(0< p(0)\leq A q(T)\), then \(q(T)>0\). Hence, there are two cases where for all \(t\in J\), \(q(t)>0\) and there exist t̃, t̂ such that \(q(\tilde{t})\leq0\), \(q(\hat{t})>0\), respectively.

Case 2.1.1. First, when \(q(t)>0\) for all \(t\in J\), condition (2.6) implies that \(q'(t)<0\), and so q is decreasing. The inequalities \(p(t)>0\) and (2.6) yield \(p'(t)<0\), and hence p is decreasing and \(A^{2}q(0)> A^{2}q(T)> Ap(0)> Ap(T)> q(0)\), which is a contradiction.

Case 2.1.2. Then there exist t̃, t̂ such that \(q(\tilde{t})\leq0\), \(q(\hat{t})>0\), and we obtain \(q(\tilde{t}_{*})=\inf q(t)=-b\), where \(\tilde{t}_{*}\in(0, T)\), \(b\geq0\). Condition (2.6) implies that

$$ q'(t)\leq-b \bigl[h_{1}(t)+h_{2}(t)+k_{0}Th_{3}(t) \bigr]. $$

Integrating the above inequality from \(\tilde{t}_{*}\) to T, we deduce that

$$ 0< q(T)\leq q(\tilde{t}_{*})-b \int^{T}_{\tilde{t}_{*}} \bigl\{ h_{1}(t)+h_{2}(t)+k_{0}Th_{3}(t) \bigr\} \,dt, $$

and thus

$$ b< -b \int^{T}_{0} \bigl\{ h_{1}(t)+h_{2}(t)+k_{0}Th_{3}(t) \bigr\} \,dt, $$

which is a contradiction.

Case 2.2. Next, we consider the following case, there exist t̄, \(\underline{t}\) such that \(p(\underline{t})\leq0\), \(p(\bar{t})>0\). If \(q(0)\leq0\), Lemma 2.1 yields \(q(t)\leq0\), then \(p(0)\leq A q(T)\leq0\), it is a contradiction.

If \(q(0)> 0\) and \(0< p(0)\leq A q(T)\), then \(q(T)>0\), and so \(q(\bar{t}_{*})=\inf q(t)=-b\), where \(\bar{t}_{*}\in(0, T)\), \(b\geq0\). Similarly to the proof of Case 2.1.2, we can get a contradiction. Therefore, we conclude that \(p(t)\leq0\).

Similarly, the case of \(q(t)\leq0\) can be proved. The proof is complete. □

Remark 2.1

When \(p(T)=q(T)\), Lemma 2.2 is also valid.

Lemma 2.3

Assume that condition \((H_{2.1})\)is satisfied and

$$ \begin{aligned}[b]f \bigl(t,\bar{\gamma},\bar{\gamma}(\theta),T\bar{\gamma} \bigr) -f \bigl(t,\gamma,\gamma(\theta),T\gamma \bigr)\geq{}& h_{1}(t) [\bar{ \gamma}- \gamma] +h_{2}(t) \bigl[\bar{\gamma}(\theta)-\gamma(\theta) \bigr]\\&+h_{3}(t) \bigl[(S\bar{\gamma }) (t)-(S\gamma) (t) \bigr],\end{aligned} $$
(2.7)

where \(\gamma(t)\leq\bar{\gamma}(t)\), \(\gamma(\theta)\leq\bar{\gamma}(\theta)\), \((S\gamma)(t)\leq(S\bar{\gamma})(t)\), \(t\in J\), \(h_{i}(t)<0\), \(i=1, 2, 3\).

\((H_{2.2})\):

There exist two constants \(0< N_{2}< N_{1}\)such that

$$ g(\bar{\alpha},\beta)-g(\alpha,\bar{\beta})\leq N_{1}[ \bar{\alpha }-\alpha]-N_{2}[\bar{\beta}-\beta], $$
(2.8)

where \(\alpha(0)\leq\bar{\alpha}(0)\), \(\beta(T)\leq\bar{\beta}(T)\).

Moreover, let \(u, v\in C^{1}(J, R)\)be coupled lower and upper solutions of problem (1.1). If \(y, z\in C^{1}(J, R)\)and

$$\begin{aligned}& \textstyle\begin{cases} y'(t)=f (t, u(t), u (\theta(t) ), (Su) (t) )+h_{1}(t) [y(t)-u(t) ]+h_{2}(t) [y(\theta)-u(\theta) ] \\ \phantom{y'(t)=}{} +h_{3}(t) [(Sy) (t)-(Su) (t) ], \quad t\in J, \\ 0=g (u(0),v(T) )+N_{1} [y(0)-u(0) ]+N_{2} [z(T)-v(T) ], \end{cases}\displaystyle \end{aligned}$$
(2.9)
$$\begin{aligned}& \textstyle\begin{cases} z'(t)=f (t, v(t), v (\theta(t) ), (Sv) (t) )+h_{1}(t) [z(t)-v(t) ]+h_{2}(t) [z(\theta)-v(\theta) ] \\ \phantom{z'(t)=}{} +h_{3}(t) [(Sz) (t)-(Sv) (t) ], \quad t\in J, \\ 0=g (v(0), u(T) )+N_{1} [z(0)-v(0) ]+N_{2} [y(T)-u(T) ], \end{cases}\displaystyle \end{aligned}$$
(2.10)

then \(u(t)\leq y(t)\leq z(t)\leq v(t)\), andy, zare coupled lower and upper solutions of (1.1), respectively.

Proof

First, we need to prove that the inequalities \(u(t)\leq y(t)\) and \(z(t)\leq v(t)\) hold. Set

$$ p(t)=u(t)- y(t) \quad \text{and} \quad q(t)=z(t)- v(t). $$

This yields

$$ \begin{aligned} p'(t)\leq{}& f \bigl(t, u(t), u \bigl( \theta(t) \bigr), (Su) (t) \bigr)-f \bigl(t, u(t), u \bigl(\theta(t) \bigr), (Su) (t) \bigr) \\ &-h_{1}(t) \bigl[y(t)-u(t) \bigr]-h_{2}(t) \bigl[y( \theta)-u( \theta ) \bigr]-h_{3}(t) \bigl[(Sy) (t)-(Su) (t) \bigr] \\ ={}&h_{1}(t)p(t)+h_{2}(t)p(\theta)+h_{3}(t) (Sp) (t). \end{aligned} $$

Condition (2.9) implies that \(0=g(u(0), v(T))-N_{1}p(0)+N_{2}q(T)\). By virtue of (2.1), we obtain \(p(0)\leq({N_{2}}/{N_{1}})q(T)\).

Similarly, we can conclude that

$$ \textstyle\begin{cases} q'(t) \leq h_{1}(t)q(t)+h_{2}(t)q( \theta)+h_{3}(t) (Sq) (t), \quad t\in J, \\ q(0)\leq\frac{N_{2}}{N_{1}}p(T). \end{cases} $$

It follows from Lemma 2.2 that \(p(t)\leq0\), \(q(t)\leq0\), that is, \(u(t)\leq y(t)\), \(z(t)\leq v(t)\).

Now, we prove that \(y(t)\leq z(t)\). Letting \(m(t)=y(t)- z(t)\), we have

$$\begin{aligned} m'(t)\leq{}&f \bigl(t, u(t), u \bigl(\theta(t) \bigr), (Su) (t) \bigr)-f \bigl(t, v(t), v \bigl(\theta(t) \bigr), (Sv) (t) \bigr) \\ &+h_{1}(t) \bigl[y(t)-u(t) \bigr]+h_{2}(t) \bigl[y( \theta)-u( \theta ) \bigr]+h_{3}(t) \bigl[(Sy) (t)-(Su) (t) \bigr] \\ &-h_{1}(t) \bigl[z(t)-v(t) \bigr]-h_{2}(t) \bigl[z( \theta)-v( \theta ) \bigr]-h_{3}(t) \bigl[(Sz) (t)-(Sv) (t) \bigr] \\ \leq{}& {-}h_{1}(t) \bigl[v(t)-u(t) \bigr]-h_{2}(t) \bigl[v( \theta)-u(\theta ) \bigr]-h_{3}(t) \bigl[(Sv) (t)-(Su) (t) \bigr] \\ &+h_{1}(t) \bigl[v(t)-u(t)+m(t) \bigr]+h_{2}(t) \bigl[v( \theta)-u(\theta)+m(\theta) \bigr] \\ &+h_{3}(t) \bigl[(Sv) (t)-(Su) (t)+(Sm) (t) \bigr] \\ ={}&h_{1}(t)m(t)+h_{2}(t)m(\theta)+h_{3}(t) (Sm) (t). \end{aligned}$$

In view of (2.9) and (2.10), we arrive at

$$\begin{aligned} 0={}&g \bigl(u(0), v(T) \bigr)-g \bigl(v(0),u(T) \bigr)+N_{1} \bigl[y(0)-u(0) \bigr]+N_{2} \bigl[z(T)-v(T) \bigr] \\ &-N_{1} \bigl[z(0)-v(0) \bigr]-N_{2} \bigl[y(T)-u(T) \bigr] \\ \geq{}&{-}N_{1} \bigl[v(0)-u(0) \bigr]+N_{2} \bigl[v(T)-u(T) \bigr]+N_{1} \bigl[v(0)-u(0)+m(0) \bigr] \\ &+N_{2} \bigl[m(T)-v(T)+u(T) \bigr] \\ ={}& N_{1}m(0)-N_{2}m(T), \end{aligned}$$

which finally gives \(m(0)\leq({N_{2}}/{N_{1}}) m(T)\). It follows now from Lemma 2.2 that \(m(t)\leq0\).

Now, we need to prove that y and z are coupled lower and upper solutions of Eq. (1.1). In fact, by (2.7) and (2.8), we get

$$\begin{aligned} y'(t)={}&f \bigl(t, u(t), u \bigl(\theta(t) \bigr), (Su) (t) \bigr)-f \bigl(t, y(t), y \bigl(\theta(t) \bigr), (Sy) (t) \bigr) \\ &+f \bigl(t, y(t),y \bigl(\theta(t) \bigr), (Sy) (t) \bigr)+h_{1}(t) \bigl[y(t)-u(t) \bigr] \\ &+h_{2}(t) \bigl[y(\theta)-u(\theta) \bigr]+h_{3}(t) \bigl[(Sy) (t)-(Su) (t) \bigr] \\ \leq{}&f \bigl(t, y(t), y \bigl(\theta(t) \bigr), (Sy) (t) \bigr) \end{aligned}$$

and

$$\begin{aligned} g \bigl(y(0), z(T) \bigr)-g \bigl(u(0), v(T) \bigr) \leq{}& N_{1} \bigl[y(0)-u(0) \bigr]-N_{2} \bigl[v(T)-z(T) \bigr] \\ \leq{}& g \bigl(u(0), v(T) \bigr)+ N_{1} \bigl[y(0)-u(0) \bigr]-N_{2} \bigl[v(T)-z(T) \bigr] \\ ={}&0. \end{aligned}$$

Similarly, we deduce that \(z'(t)\geq f(t, z(t), z(\theta(t)), (Sz)(t))\) and \(g(z(0), y(T))\geq0\). This proves that y and z are coupled lower and upper solutions of Eq. (1.1). □

3 Main result

In this section, the quadratic convergence of successive approximation sequences is proved by the quasilinearization method.

Theorem 3.1

Set \(\varOmega=\{(t, u)\in J\times R: y_{0}(t)\leq u(t)\leq z_{0}(t)\}\), \(\varOmega_{1}=[y_{0}(0),z_{0}(0)]\), and \(\varOmega _{2}=[y_{0}(T),z_{0}(T)]\). Assume that the following conditions hold.

\((A_{3.1})\):

\(y_{0}\), \(z_{0}\)are coupled lower and upper solutions of Eq. (1.1), and \(y_{0}(t)\leq z_{0}(t)\)onJ;

\((A_{3.2})\):

\(f_{x}\in C(\varOmega, R)\), \(g_{x}, g_{y}\in C(\varOmega_{1}\times\varOmega_{2}, R)\), \(f_{x}<0\), \(f_{y}<0\), \(f_{z}<0\), \(0<{g_{y}}<{g_{x}}<1\);

\((A_{3.3})\):

\(f_{xx}, f_{xy}, f_{yy}\in C(\varOmega, R)\), \(g_{xx}, g_{xy}, g_{yy}\in C(\varOmega_{1}\times\varOmega_{2}, R)\), \(f_{xx}\geq0\), \(f_{xy}\geq0\), \(f_{xz}\geq0\), \(f_{yy}\geq0\), \(f_{zz}\geq 0\), \(f_{yz}\geq0\), \(g_{xx}\leq0\), \(g_{xy}\leq0\), \(g_{yy}\leq0\).

If

$$\begin{aligned}[b] &\int^{T}_{0} \bigl\{ f_{x} \bigl(t, y_{0}, y_{0}(\theta), (Sy_{0}) (t) \bigr) +f_{y} \bigl(t, y_{0}, y_{0}(\theta), (Sy_{0}) (t) \bigr)+k_{0}Tf_{z} \bigl(t, y_{0}, y_{0}(\theta), (Sy_{0}) (t) \bigr) \bigr\} \,dt\hspace{-24pt}\\&\quad\geq-1,\end{aligned} $$
(3.1)

then there exist the monotone sequences \(\{y_{n}(t)\}\)and \(\{z_{n}(t)\}\)converging uniformly to the unique solutionxof Eq. (1.1) and the convergence is quadratic, that is,

$$ \begin{gathered} \max_{t\in J} \bigl\vert x(t)-y_{n+1}(t) \bigr\vert \leq d_{1} \max _{t\in J} \bigl\vert x(t)-y_{n}(t) \bigr\vert ^{2}+d_{2} \max_{t\in J} \bigl\vert x(t)-z_{n}(t) \bigr\vert ^{2}, \\ \max_{t\in J} \bigl\vert x(t)-z_{n+1}(t) \bigr\vert \leq d_{3} \max_{t\in J} \bigl\vert x(t)-y_{n}(t) \bigr\vert ^{2}+d_{4} \max _{t\in J} \bigl\vert x(t)-z_{n}(t) \bigr\vert ^{2}, \end{gathered} $$

where the coefficients \(d_{1}\), \(d_{2}\), \(d_{3}\), and \(d_{4}\)are nonnegative constants.

Proof

Consider the following problems:

$$\begin{aligned}& \textstyle\begin{cases} y_{n+1}'(t)=f (t, y_{n}(t), y_{n} (\theta(t) ), (Sy_{n}) (t) ) +f_{x} (t, y_{n}(t), y_{n} (\theta(t) ), (Sy_{n}) (t) ) [y_{n+1}(t) \\ \phantom{y_{n+1}'(t)=}{}-y_{n}(t) ]+f_{y} (t, y_{n}(t), y_{n} (\theta(t) ), (Sy_{n}) (t) ) [y_{n+1}(\theta)-y_{n}(\theta) ] \\ \phantom{y_{n+1}'(t)=}{}+f_{z} (t, y_{n}(t), y_{n} (\theta(t) ), (Sy_{n}) (t) ) [(Sy_{n+1}) (t)-(Sy_{n}) (t) ], \quad t\in J, \\ 0=g (y_{n}(0), z_{n}(T) )+g_{x} (y_{n}(0), y_{n}(T) ) [y_{n+1}(0)-y_{n}(0) ] \\ \phantom{0=}{}+g_{y} (y_{n}(0), z_{n}(T) ) [z_{n+1}(T)-z_{n}(T) ], \end{cases}\displaystyle \end{aligned}$$
(3.2)
$$\begin{aligned}& \textstyle\begin{cases} z_{n+1}'(t)=f (t, z_{n}(t), z_{n} (\theta(t) ), (Sz_{n}) (t) )+f_{x} (t, y_{n}(t), y_{n} (\theta(t) ), (Sy_{n}) (t) ) [z_{n+1}(t) \\ \phantom{z_{n+1}'(t)=}{}-z_{n}(t) ]+f_{y} (t, y_{n}(t), y_{n} (\theta(t) ), (Sy_{n}) (t) ) [z_{n+1}(\theta)-z_{n}(\theta) ] \\ \phantom{z_{n+1}'(t)=}{}+f_{z} (t, y_{n}(t), y_{n} (\theta(t) ), (Sy_{n}) (t) ) [(Sz_{n+1}) (t)-(Sz_{n}) (t) ], \quad t\in J, \\ 0=g (z_{n}(0), y_{n}(T) )+g_{x} (y_{n}(0), y_{n}(T) ) [z_{n+1}(0)-z_{n}(0) ] \\ \phantom{0=}{}+g_{y} (y_{n}(0), z_{n}(T) ) [y_{n+1}(T)-y_{n}(T) ], \end{cases}\displaystyle \end{aligned}$$
(3.3)

in which \(n=0, 1, \dots\). By the mean value theorem, we conclude that

$$ \begin{aligned} g(\bar{\alpha}, \beta)-g(\alpha, \bar{\beta})&=g(\bar{ \alpha}, \beta) -g(\alpha, \beta)+g(\alpha, \beta)-g(\alpha, \bar{\beta}) \\ &\leq g_{x}(\delta_{1}, \beta)[\bar{\alpha}- \alpha]-g_{y}(\alpha, \delta_{2})[\bar{\beta}-\beta], \end{aligned} $$

where \(\alpha(0)\leq\delta_{1}\leq\bar{\alpha}(0)\), \(\beta(T)\leq\delta _{2}\leq\bar{\beta}(T)\). Note that

$$\begin{aligned} &f \bigl(t,\bar{\gamma}(t), \bar{\gamma}(\theta), (S\bar{\gamma}) (t) \bigr)-f \bigl(t, \gamma(t), \gamma(\theta), (S\gamma) (t) \bigr) \\ &\quad=f_{x} \bigl(t, \delta_{3}, \bar{\gamma}(\theta), (S\bar{ \gamma}) (t) \bigr) \bigl[\bar {\gamma}(t)-\gamma(t) \bigr] +f_{y} \bigl(t, \gamma(t), \delta_{4}, (S\bar{\gamma}) (t) \bigr) \bigl[\bar{ \gamma }( \theta)-\gamma(\theta) \bigr] \\ &\quad\quad+f_{z} \bigl(t, \gamma(t), \gamma(\theta), \delta_{5} \bigr) \bigl[(S\bar{\gamma }) (t)-(S\gamma) (t) \bigr] \\ &\quad\geq f_{x} \bigl(t, \gamma(t), \gamma(\theta), (S\gamma) (t) \bigr) \bigl[\bar{\gamma }(t)-\gamma(t) \bigr] +f_{y} \bigl(t, \gamma(t), \gamma(\theta), (S\gamma) (t) \bigr) \bigl[\bar{\gamma}(\theta )-\gamma(\theta) \bigr] \\ &\quad\quad{}+f_{z} \bigl(t, \gamma(t), \gamma(\theta), (S\gamma) (t) \bigr) \bigl[(S\bar{\gamma }) (t)-(S\gamma) (t) \bigr], \end{aligned}$$

where \(\gamma(t) \leq\delta_{3}\leq\bar{\gamma}(t)\), \(\gamma(\theta)\leq\delta_{4}\leq\bar{\gamma}(\theta)\), \((S\gamma)(t)\leq\delta_{5}\leq(S\bar{\gamma})(t)\), and

$$\begin{aligned} & \int^{T}_{0}\bigl\{ f_{x} \bigl(t, z_{n}, z_{n}(\theta), (Sz_{n}) (t) \bigr) +f_{y} \bigl(t, z_{n}, z_{n}(\theta), (Sz_{n}) (t) \bigr)+k_{0}Tf_{z} \bigl(t, z_{n}, z_{n}(\theta), (Sz_{n}) (t) \bigr) \bigr\} \,dt \\ &\quad\geq \int^{T}_{0} \bigl\{ f_{x} \bigl(t, y_{n}, y_{n}(\theta), (Sy_{n}) (t) \bigr) +f_{y} \bigl(t, y_{n}, y_{n}(\theta), (Sy_{n}) (t) \bigr) \\ &\quad\quad+k_{0}Tf_{z} \bigl(t, y_{n}, y_{n}(\theta), (Sy_{n}) (t) \bigr) \bigr\} \,dt \\ &\quad \geq \int^{T}_{0} \bigl\{ f_{x} \bigl(t, y_{0}, y_{0}(\theta), (Sy_{0}) (t) \bigr) +f_{y} \bigl(t, y_{0}, y_{0}(\theta), (Sy_{0}) (t) \bigr) \\ &\quad\quad+k_{0}Tf_{z} \bigl(t, y_{0}, y_{0}(\theta), (Sy_{0}) (t) \bigr) \bigr\} \,dt \\ &\quad\geq-1. \end{aligned}$$

Using Lemma 2.3 and mathematical induction, we can deduce that

$$ y_{0}(t)\leq y_{1}(t)\leq\cdots\leq y_{n}(t) \leq z_{n}(t)\leq\cdots\leq z_{1}(t)\leq z_{0}(t), \quad n=0, 1, \ldots , t\in J. $$

Thus, the sequences \(\{y_{n}\}\) and \(\{z_{n}\}\) are uniformly bounded and equicontinuous on J.

$$\begin{aligned} \bigl\vert y_{n}(t)-y_{n}(s) \bigr\vert ={}& \biggl\vert y_{n}(0)+ \int_{0}^{t} \bigl\{ f \bigl(\varphi, y_{n}(\varphi), y_{n} \bigl(\theta(\varphi) \bigr), (Sy_{n}) (\varphi) \bigr) \\ &+f_{x} \bigl(\varphi, y_{n}(\varphi), y_{n} \bigl(\theta(\varphi) \bigr), (Sy_{n}) (\varphi) \bigr) \bigl[y_{n+1}(\varphi) \\ &-y_{n}(\varphi) \bigr]+f_{y} \bigl(\varphi, y_{n}(\varphi), y_{n} \bigl(\theta(\varphi ) \bigr), (Sy_{n}) (\varphi) \bigr) \bigl[y_{n+1}(\theta)-y_{n}( \theta) \bigr] \\ &+f_{z} \bigl(\varphi, y_{n}(\varphi), y_{n} \bigl(\theta(\varphi) \bigr), (Sy_{n}) (\varphi) \bigr) \bigl[(Sy_{n+1}) (\varphi)-(Sy_{n}) (\varphi) \bigr] \bigr\} \,d\varphi \\ &- \biggl\{ y_{n}(0)+ \int_{0}^{s} \bigl\{ f \bigl(\varphi, y_{n}(\varphi), y_{n} \bigl(\theta(\varphi) \bigr), (Sy_{n}) (\varphi) \bigr) \\ &+f_{x} \bigl(\varphi, y_{n}(\varphi), y_{n} \bigl(\theta(\varphi) \bigr), (Sy_{n}) (\varphi) \bigr) \bigl[y_{n+1}(\varphi) \\ &-y_{n}(\varphi) \bigr]+f_{y} \bigl(\varphi, y_{n}(\varphi), y_{n} \bigl(\theta(\varphi ) \bigr), (Sy_{n}) (\varphi) \bigr) \bigl[y_{n+1}(\theta)-y_{n}( \theta) \bigr] \\ &+f_{z} \bigl(\varphi, y_{n}(\varphi), y_{n} \bigl(\theta(\varphi) \bigr), (Sy_{n}) (\varphi) \bigr) \bigl[(Sy_{n+1}) (\varphi)-(Sy_{n}) (\varphi) \bigr] \bigr\} \,d\varphi \biggr\} \biggr\vert \\ ={}& \biggl\vert \int_{s}^{t} \bigl\{ f \bigl(\varphi, y_{n}(\varphi), y_{n} \bigl(\theta(\varphi ) \bigr), (Sy_{n}) (\varphi) \bigr) \\ &+f_{x} \bigl(\varphi, y_{n}(\varphi), y_{n} \bigl(\theta(\varphi) \bigr), (Sy_{n}) (\varphi) \bigr) \bigl[y_{n+1}(\varphi) \\ &-y_{n}(\varphi) \bigr]+f_{y} \bigl(\varphi, y_{n}(\varphi), y_{n} \bigl(\theta(\varphi ) \bigr), (Sy_{n}) (\varphi) \bigr) \bigl[y_{n+1}(\theta)-y_{n}( \theta) \bigr] \\ &+f_{z} \bigl(\varphi, y_{n}(\varphi), y_{n} \bigl(\theta(\varphi) \bigr), (Sy_{n}) (\varphi) \bigr) \bigl[(Sy_{n+1}) (\varphi)-(Sy_{n}) (\varphi) \bigr] \bigr\} \,d\varphi \biggr\vert \\ \leq{}& \int^{t}_{s} \bigl\vert f \bigl(\varphi, y_{n}(\varphi), y_{n} \bigl(\theta(\varphi) \bigr), (Sy_{n}) (\varphi) \bigr) \\ &+f_{x} \bigl(\varphi, y_{n}(\varphi), y_{n} \bigl(\theta(\varphi) \bigr), (Sy_{n}) (\varphi) \bigr) \bigl[y_{n+1}(\varphi) \\ &-y_{n}(\varphi) \bigr]+f_{y} \bigl(\varphi, y_{n}(\varphi), y_{n} \bigl(\theta(\varphi ) \bigr), (Sy_{n}) (\varphi) \bigr) \bigl[y_{n+1}(\theta)-y_{n}( \theta) \bigr] \\ &+f_{z} \bigl(\varphi, y_{n}(\varphi), y_{n} \bigl(\theta(\varphi) \bigr), (Sy_{n}) (\varphi) \bigr) \bigl[(Sy_{n+1}) (\varphi)-(Sy_{n}) (\varphi) \bigr] \bigr\vert \,d\varphi \\ \leq{}&M \vert t-s \vert . \end{aligned}$$

By virtue of Arzelà–Ascoli theorem, there exist the subsequences \(\{y_{n_{k}}\}\) and \(\{z_{n_{k}}\}\) converging uniformly on J to some continuous functions y and z, respectively, and

$$\begin{aligned}& \textstyle\begin{cases} y_{n_{k+1}}'(t)=f (t, y_{n_{k}}(t), y_{n_{k}} (\theta(t) ), (Sy_{n_{k}}) (t) ) +f_{x} (t, y_{n_{k}}(t), y_{n_{k}} ( \theta(t) ), (Sy_{n_{k}}) (t) ) [y_{n_{k+1}}(t) \\ \phantom{y_{n_{k+1}}'(t)=}{}-y_{n_{k}}(t) ]+f_{y} (t, y_{n_{k}}(t), y_{n_{k}} (\theta(t) ), (Sy_{n_{k}}) (t) ) [y_{n_{k+1}}(\theta)-y_{n_{k}}(\theta) ] \\ \phantom{y_{n_{k+1}}'(t)=}{}+f_{z} (t, y_{n_{k}}(t), y_{n_{k}} (\theta(t) ), (Sy_{n_{k}}) (t) ) [(Sy_{n_{k+1}}) (t)-(Sy_{n_{k}}) (t) ], \quad t\in J, \\ 0=g (y_{n_{k}}(0), z_{n_{k}}(T) )+g_{x} (y_{n_{k}}(0), y_{n_{k}}(T) ) [y_{n_{k+1}}(0)-y_{n_{k}}(0) ] \\ \phantom{0=}{}+g_{y} (y_{n_{k}}(0), z_{n_{k}}(T) ) [z_{n_{k+1}}(T)-z_{n_{k}}(T) ], \end{cases}\displaystyle \\& \textstyle\begin{cases} z_{n_{k+1}}'(t)=f (t, z_{n_{k}}(t), z_{n_{k}} (\theta(t) ), (Sz_{n_{k}}) (t) )+f_{x} (t, y_{n_{k}}(t), y_{n_{k}} ( \theta(t) ), (Sy_{n_{k}}) (t) ) [z_{n_{k+1}}(t) \\ \phantom{z_{n_{k+1}}'(t)=}{}-z_{n_{k}}(t) ]+f_{y} (t, y_{n_{k}}(t), y_{n_{k}} (\theta(t) ), (Sy_{n_{k}}) (t) ) [z_{n_{k+1}}(\theta)-z_{n_{k}}(\theta) ] \\ \phantom{z_{n_{k+1}}'(t)=}{}+f_{z} (t, y_{n_{k}}(t), y_{n_{k}} (\theta(t) ), (Sy_{n_{k}}) (t) ) [(Sz_{n_{k+1}}) (t)-(Sz_{n_{k}}) (t) ], \quad t\in J, \\ 0=g (z_{n_{k}}(0), y_{n_{k}}(T) )+g_{x} (y_{n_{k}}(0), y_{n_{k}}(T) ) [z_{n_{k+1}}(0)-z_{n_{k}}(0) ] \\ \phantom{0=}{}+g_{y} (y_{n_{k}}(0), z_{n_{k}}(T) ) [y_{n_{k+1}}(T)-y_{n_{k}}(T) ], \end{cases}\displaystyle \end{aligned}$$

when \(n_{k}\rightarrow\infty\), y and z satisfy the equations

$$ \textstyle\begin{cases} y'(t)=f (t, y(t), y (\theta(t) ), (Sy) (t) ), \quad t\in J, \\ 0=g (y(0), z(T) ), \end{cases} $$

and

$$ \textstyle\begin{cases} z'(t) =f (t, z(t), z ( \theta(t) ), (Sz) (t) ), \quad t\in J, \\ 0=g (z(0), y(T) ). \end{cases} $$

Thus, \(y, z\in C^{1}(J, R)\) are coupled solutions of Eq. (1.1).

Now, we prove that \(y=z\) is a unique solution of Eq. (1.1). Clearly, \(y(t)\leq z(t)\). Let \(p(t)=z(t)-y(t)\). Then

$$\begin{aligned} p'(t)={}& f \bigl(t, z(t), z \bigl(\theta(t) \bigr), (Sz) (t) \bigr)-f \bigl(t, y(t), y \bigl(\theta(t) \bigr), (Sy) (t) \bigr) \\ ={}& f_{x} \bigl(t, \xi_{1}, z \bigl(\theta(t) \bigr), (Sz) (t) \bigr)p(t)+f_{y} \bigl(t, y(t), \xi _{2}, (Sz) (t) \bigr)p( \theta) \\ &+f_{z} \bigl(t, y(t), y \bigl(\theta(t) \bigr), \xi_{3} \bigr) (Sp) (t), \end{aligned}$$

where \(y(t)\leq\xi_{1}\leq z(t)\), \(y(\theta(t))\leq\xi_{2}\leq z(\theta (t))\), \((Sy)(t)\leq\xi_{3}\leq(Sz)(t)\), and

$$\begin{aligned} g \bigl(z(0), y(T) \bigr)-g \bigl(y(0), z(T) \bigr) &\leq N_{1} \bigl[z(0)-y(0) \bigr]-N_{2} \bigl[z(T)-y(T) \bigr] \\ &= N_{1} p(0)-N_{2} p(T). \end{aligned}$$

In view of (2.1), we get \(p(0)\leq({N_{2}}/{N_{1}})p(T)\). An application of Lemma 2.2 yields \(p(t)\leq0\), that is, \(z(t)\leq y(t)\). Hence, we have \(y(t)= z(t)\).

Let \(x\in[y_{0}, z_{0}]\) be any solution of Eq. (1.1). It is not difficult to prove that \(y_{n}(t)\leq x(t)\leq z_{n}(t)\). Letting \(n\rightarrow\infty\), then \(y(t)= z(t)=x(t)\), it means that \(\{y_{n_{k}}\}\) and \(\{z_{n_{k}}\}\) converge to the unique solution x of Eq. (1.1).

Finally, we prove the quadratic convergence of \(\{y_{n}\}\) and \(\{ z_{n}\}\) to x. Let \(p_{n+1}(t)= x(t)-y_{n+1}(t)\geq0\) and \(q_{n+1}(t)= z_{n+1}(t)-x(t)\geq0\). Then

$$\begin{aligned} p_{n+1}'(t) ={}&f_{x} \bigl(t, \rho_{1}, x \bigl(\theta(t) \bigr), (Sx) (t) \bigr)p_{n}(t)+f_{y} \bigl(t, y_{n}(t), \rho_{2}, (Sx) (t) \bigr) p_{n}( \theta) \\ &+f_{z} \bigl(t, y_{n}(t), y_{n} \bigl( \theta(t) \bigr), \rho_{3} \bigr) (Sp_{n}) (t) \\ &-f_{x} \bigl(t, y_{n}(t), y_{n} \bigl( \theta(t) \bigr), (Sy_{n}) (t) \bigr)p_{n}(t) \\ &-f_{y} \bigl(t, y_{n}(t), y_{n} \bigl( \theta(t) \bigr), (Sy_{n}) (t) \bigr)p_{n}(\theta) \\ &-f_{z} \bigl(t, y_{n}(t), y_{n} \bigl( \theta(t) \bigr), (Sy_{n}) (t) \bigr) (Sp_{n}) (t) \\ &+f_{x} \bigl(t, y_{n}(t), y_{n} \bigl( \theta(t) \bigr), (Sy_{n}) (t) \bigr)p_{n+1}(t) \\ &+f_{y} \bigl(t, y_{n}(t), y_{n} \bigl( \theta(t) \bigr), (Sy_{n}) (t) \bigr) p_{n+1}(\theta) \\ &+f_{z} \bigl(t, y_{n}(t), y_{n} \bigl( \theta(t) \bigr), (Sy_{n}) (t) \bigr) (Sp_{n+1}) (t) \\ \leq{}& f_{xx} \bigl(t, \rho_{4}, x \bigl(\theta(t) \bigr), (Sx) (t) \bigr)p_{n}^{2}(t) \\ &+f_{xy} \bigl(t, y_{n}(t), \rho_{5}, (Sx) (t) \bigr)p_{n}(t)p_{n}(\theta) \\ &+f_{xz} \bigl(t, y_{n}(t), y_{n} \bigl( \theta(t) \bigr), \rho_{6} \bigr)p_{n}(t) (Sp_{n}) (t) \\ &+f_{yy} \bigl(t, y_{n}(t), \rho_{7}, (Sx) (t) \bigr)p_{n}^{2}(\theta) \\ &+f_{yz} \bigl(t, y_{n}(t), y_{n} \bigl( \theta(t) \bigr), \rho_{8} \bigr) p_{n}(\theta ) (Sp_{n}) (t) \\ &+f_{zz} \bigl(t, y_{n}(t), y_{n} \bigl( \theta(t) \bigr), (Sy_{n}) (t) \bigr) (Sp_{n})^{2}(t) \\ &+f_{x} \bigl(t, y_{n}(t), y_{n} \bigl( \theta(t) \bigr), (Sy_{n}) (t) \bigr)p_{n+1}(t) \\ &+f_{y} \bigl(t, y_{n}(t), y_{n} \bigl( \theta(t) \bigr), (Sy_{n}) (t) \bigr) p_{n+1}(\theta) \\ &+f_{z} \bigl(t, y_{n}(t), y_{n} \bigl( \theta(t) \bigr), (Sy_{n}) (t) \bigr) (Sp_{n+1}) (t) \\ \leq{}& f_{xx} \bigl(t, \rho_{4}, x \bigl(\theta(t) \bigr), (Sx) (t) \bigr)p_{n}^{2}(t) + \frac{1}{2}f_{xy} \bigl(t, y_{n}(t), \rho_{5}, (Sx) (t) \bigr) \bigl[ p_{n}^{2}(t) \\ &+ p_{n}^{2}(\theta) \bigr]+ \frac{1}{2}f_{xz} \bigl(t, y_{n}(t), y_{n} \bigl(\theta(t) \bigr), \rho_{6} \bigr) \bigl[p_{n}^{2}(t)+(Sp_{n})^{2}(t) \bigr] \\ &+f_{yy} \bigl(t, y_{n}(t), \rho_{7}, (Sx) (t) \bigr)p_{n}^{2}(\theta)+\frac {1}{2}f_{yz} \bigl(t, y_{n}(t), y_{n} \bigl(\theta(t) \bigr), \rho_{8} \bigr) \bigl[p_{n}^{2}(\theta ) \\ &+(Sp_{n})^{2}(t) \bigr]+f_{zz} \bigl(t, y_{n}(t), y_{n} \bigl(\theta(t) \bigr), (Sy_{n}) (t) \bigr) (Sp_{n})^{2}(t) \\ \leq{}& \biggl\{ f_{xx} \bigl(t, \rho_{4}, x \bigl(\theta(t) \bigr), (Sx) (t) \bigr)+ \frac {1}{2}f_{xy} \bigl(t,y_{n}(t), \rho_{5},(Sx) (t) \bigr) \\ &+ \frac{1}{2}f_{xz} \bigl(t,y_{n}(t),y_{n} \bigl(\theta(t) \bigr),\rho_{6} \bigr) \biggr\} p_{n}^{2}(t)+ \biggl\{ f_{yy} \bigl(t, y_{n}(t), \rho_{7}, (Sx) (t) \bigr) \\ &+\frac{1}{2}f_{xy} \bigl(t, y_{n}(t), \rho_{5}, (Sx) (t) \bigr)+\frac {1}{2}f_{yz} \bigl(t, y_{n}(t), y_{n} \bigl(\theta(t) \bigr), \rho_{8} \bigr) \biggr\} p_{n}^{2}(\theta) \\ &+ \biggl\{ f_{zz} \bigl(t, y_{n}(t), y_{n} \bigl( \theta(t) \bigr), (Sy_{n}) (t) \bigr) +\frac {1}{2}f_{xz} \bigl(t, y_{n}(t), y_{n} \bigl(\theta(t) \bigr), \rho_{6} \bigr) \\ &+\frac{1}{2}f_{yz} \bigl(t, y_{n}(t), y_{n} \bigl(\theta(t) \bigr), \rho_{8} \bigr) \biggr\} (Sp_{n})^{2}(t) \\ \leq{}& D_{0}p_{n}^{2}(t)+D_{1}p_{n}^{2}( \theta)+D_{2}(Sp_{n})^{2}(t), \end{aligned}$$

where \(y_{n}(t)\leq\rho_{4}\leq\rho_{1}\leq x(t)\), \(y_{n}(\theta)\leq \rho_{5}\leq x(\theta)\), \((Sy_{n})(t)\leq\rho_{3}, \rho_{6}, \rho_{8}\leq(Sx)(t)\), \(y_{n}(\theta)\leq\rho_{7}\leq\rho_{2}\leq x(\theta)\). Hence, we conclude that

$$ \begin{aligned}[b] p_{n+1}(t)&\leq p_{n+1}(0)+ \int^{t}_{0} \bigl\{ D_{0}p_{n}^{2}(s)+D_{1}p_{n}^{2}( \theta)+D_{2}(Sp_{n})^{2}(s) \bigr\} \,ds \\ &\leq p_{n+1}(0)+ \int^{T}_{0} \bigl\{ D_{0}p_{n}^{2}(s)+D_{1}p_{n}^{2}( \theta)+D_{2}(Sp_{n})^{2}(s) \bigr\} \,ds \\ &\leq p_{n+1}(0)+C_{0}\max_{t\in J} p_{n}^{2}(t), \end{aligned} $$
(3.4)

where \(C_{0}=T[D_{0}+D_{1}+D_{2}T^{2}k_{0}^{2}]\). Moreover, we obtain

$$\begin{aligned} 0={}&g \bigl(x(0), x(T) \bigr)-g \bigl(y_{n}(0), z_{n}(T) \bigr)-g_{x} \bigl(y_{n}(0), y_{n}(T) \bigr) \bigl[-p_{n+1}(0)+p_{n}(0) \bigr] \\ &-g_{y} \bigl(y_{n}(0), z_{n}(T) \bigr) \bigl[q_{n+1}(T)-q_{n}(T) \bigr] \\ ={}&g_{x} \bigl(\delta_{1}, x(T) \bigr)p_{n}(0)-g_{y} \bigl(y_{n}(0), \delta _{2} \bigr)q_{n}(T)-g_{x} \bigl(y_{n}(0), y_{n}(T) \bigr) \bigl[-p_{n+1}(0) \\ &+p_{n}(0) \bigr]-g_{y} \bigl(y_{n}(0), z_{n}(T) \bigr) \bigl[q_{n+1}(T)-q_{n}(T) \bigr] \end{aligned}$$

and

$$\begin{aligned} &g_{x} \bigl(y_{n}(0), y_{n}(T) \bigr)p_{n+1}(0)\\ &\quad= \bigl[g_{y} \bigl(y_{n}(0), \delta _{2} \bigr)-g_{y} \bigl(y_{n}(0), z_{n}(T) \bigr) \bigr]q_{n}(T) \\ &\quad\quad+ \bigl[g_{x} \bigl(y_{n}(0), y_{n}(T) \bigr)-g_{x} \bigl(\delta_{1}, x(T) \bigr) \bigr]p_{n}(0)+g_{y} \bigl(y_{n}(0), z_{n}(T) \bigr)q_{n+1}(T) \\ &\quad=-g_{yy} \bigl(y_{n}(0), \delta_{3} \bigr)q_{n}^{2}(T)-g_{xx} \bigl( \delta_{4}, x(T) \bigr)p_{n}^{2}(0)-g_{xy} \bigl(y_{n}(0), \delta_{5} \bigr)p_{n}(T)p_{n}(0) \\ &\qquad+g_{y} \bigl(y_{n}(0), z_{n}(T) \bigr)q_{n+1}(T), \end{aligned}$$

where \(y_{n}(0)\leq\delta_{4}\leq\delta_{1}\leq x(0)\), \(x(T)\leq\delta _{2}\leq\delta_{3}\leq z_{n}(T)\). Therefore, we deduce that

$$ \begin{aligned}[b] p_{n+1}(0)&\leq B_{0}q_{n}^{2}(T)+B_{1}p_{n}^{2}(0)+B_{2}p_{n}^{2}(T)+g_{y} \bigl(y_{n}(0), z_{n}(T) \bigr)q_{n+1}(T) \\ &\leq B_{0}\max_{t\in J} q_{n}^{2}(t)+B_{1} \max_{t\in J} p_{n}^{2}(t)+B_{2} \max_{t\in J} p_{n}^{2}(t)+ \frac{g_{y}(y_{n}(0), z_{n}(T))}{g_{x}(y_{n}(0), y_{n}(T))}q_{n+1}(T) \\ &\leq C_{1}\max_{t\in J} p_{n}^{2}(t)+C_{2} \max_{t\in J} q_{n}^{2}(t)+C_{1}^{0}q_{n+1}(T), \end{aligned} $$
(3.5)

where

$$\begin{gathered} B_{0}=-\frac{g_{yy}(y_{n}(0),\delta_{3})}{g_{x}(y_{n}(0), y_{n}(T))}, \qquad B_{1}=-\frac{g_{xx}(\delta_{4}, x(T))}{g_{x}(y_{n}(0), y_{n}(T))}, \\ B_{2}=-\frac{1}{2}\frac{g_{xy}(y_{n}(0), \delta_{5})}{g_{x}(y_{n}(0), y_{n}(T))}, \qquad C_{1}=B_{1}+B_{2}, \qquad C_{2}=B_{0}, \qquad C_{1}^{0}= \frac{g_{y}(y_{n}(0), z_{n}(T))}{g_{x}(y_{n}(0), y_{n}(T))}.\end{gathered} $$

In a similar way, we can arrive at

$$\begin{aligned} q_{n+1}'(t) \leq{}& f_{xx} \bigl(t, \xi_{4}, z_{n} \bigl(\theta(t) \bigr), (Sz_{n}) (t) \bigr)q_{n}(t) \bigl(q_{n}(t)+p_{n}(t) \bigr) \\ &+f_{xy} \bigl(t, y_{n}(t), \xi_{5}, (Sz_{n}) (t) \bigr)q_{n}(t) \bigl(q_{n}(\theta )+p_{n}(\theta) \bigr) \\ &+f_{xz} \bigl(t, y_{n}(t), y_{n} \bigl( \theta(t) \bigr), \xi _{6} \bigr)q_{n}(t) \bigl[(Sq_{n}) (t)+(Sp_{n}) (t) \bigr] \\ &+f_{yx} \bigl(t, \xi_{7}, \xi_{2}, (Sz_{n}) (t) \bigr)q_{n}(\theta)p_{n}(t) \\ &+f_{yy} \bigl(t, y_{n}(t), \xi_{8}, (Sz_{n}) (t) \bigr)q_{n}(\theta) \bigl[p_{n}( \theta )+q_{n}(\theta) \bigr] \\ &+f_{yz} \bigl(t, y_{n}(t), y_{n} \bigl( \theta(t) \bigr), \xi_{9} \bigr)q_{n}(\theta ) \bigl[(Sp_{n}) (t)+(Sq_{n}) (t) \bigr] \\ &+f_{zx} \bigl(t, \xi_{10}, x \bigl(\theta(t) \bigr), \xi_{3} \bigr)p_{n}(t) (Sq_{n}) (t) \\ &+f_{zy} \bigl(t, y_{n}(t), \xi_{11}, \xi_{3} \bigr)p_{n}(\theta) (Sq_{n}) (t) \\ &+f_{zz} \bigl(t, y_{n}(t), y_{n} \bigl( \theta(t) \bigr), \xi _{12} \bigr) \bigl[(Sp_{n}) (t)+(Sq_{n}) (t) \bigr](Sq_{n}) (t) \\ \leq{}& \biggl\{ \frac{3}{2}f_{xx} \bigl(t, \xi_{4}, z_{n} \bigl(\theta(t) \bigr), (Sz_{n}) (t) \bigr)+f_{xy} \bigl(t, y_{n}(t), \xi_{5}, (Sz_{n}) (t) \bigr) \\ &+f_{xz} \bigl(t, y_{n}(t), y_{n} \bigl( \theta(t) \bigr), \xi_{6} \bigr) \biggr\} q_{n}^{2}(t)+ \frac {1}{2} \bigl\{ f_{xx} \bigl(t, \xi_{4}, z_{n} \bigl(\theta(t) \bigr), (Sz_{n}) (t) \bigr) \\ &+f_{yx} \bigl(t, \xi_{7}, \xi_{2}, (Sz_{n}) (t) \bigr)+f_{zx} \bigl(t, \xi_{10}, x \bigl(\theta (t) \bigr), \xi_{3} \bigr) \bigr\} p_{n}^{2}(t) \\ &+ \biggl\{ \frac{1}{2}f_{xy} \bigl(t, y_{n}(t), \xi_{5}, (Sz_{n}) (t) \bigr)+\frac {1}{2}f_{yx} \bigl(t, \xi_{7}, \xi_{2}, (Sz_{n}) (t) \bigr) \\ &+\frac{3}{2}f_{yy} \bigl(t,y_{n}(t), \xi_{8}, (Sz_{n}) (t) \bigr)+f_{yx} \bigl(t, \xi _{7}, \xi_{2}, (Sz_{n}) (t) \bigr) \biggr\} q_{n}^{2}(\theta) \\ &+\frac{1}{2} \bigl\{ f_{xy} \bigl(t, y_{n}(t), \xi_{5}, (Sz_{n}) (t) \bigr)+f_{yy} \bigl(t, y_{n}(t), \xi_{8}, (Sz_{n}) (t) \bigr) \\ &+f_{zy} \bigl(t, y_{n}(t), \xi_{11}, \xi_{3} \bigr) \bigr\} p_{n}^{2}(\theta) + \frac{1}{2} \bigl\{ f_{xz} \bigl(t, y_{n}(t), y_{n} \bigl(\theta(t) \bigr), \xi_{6} \bigr) \\ &+f_{yz} \bigl(t, y_{n}(t), y_{n} \bigl( \theta(t) \bigr), \xi_{9} \bigr)+f_{zx} \bigl(t, \xi_{10}, x \bigl(\theta(t) \bigr), \xi_{3} \bigr) \\ &+f_{zy} \bigl(t, y_{n}(t), \xi_{11}, \xi_{3} \bigr)+3f_{zz} \bigl(t, y_{n}(t), y_{n} \bigl(\theta(t) \bigr), \xi_{12} \bigr) \bigr\} (Sq_{n})^{2}(t) \\ &+\frac{1}{2} \bigl\{ f_{xz} \bigl(t, y_{n}(t), y_{n} \bigl(\theta(t) \bigr), \xi_{6} \bigr) +f_{yz} \bigl(t, y_{n}(t), y_{n} \bigl(\theta(t) \bigr), \xi_{9} \bigr) \\ & +f_{zz} \bigl(t, y_{n}(t), y_{n} \bigl( \theta(t) \bigr), \xi_{12} \bigr) \bigr\} (Sp_{n})^{2}(t) \\ \leq{}& D_{3}q_{n}^{2}(t)+D_{4}p_{n}^{2}(t)+D_{5}q_{n}^{2}( \theta )+D_{6}p_{n}^{2}(\theta)+D_{7}(Sq_{n})^{2}(t) +D_{8}(Sp_{n})^{2}(t) \end{aligned}$$

and

$$ \begin{aligned} [b]q_{n+1}(t)\leq{}& q_{n+1}(0)+ \int^{T}_{0} \bigl\{ D_{3}q_{n}^{2}(s)+D_{4}p_{n}^{2}(s)+D_{5}q_{n}^{2}( \theta )+D_{6}p_{n}^{2}(\theta) \\ &+D_{7}(Sq_{n})^{2}(s)+D_{8}(Sp_{n})^{2}(s) \bigr\} \,ds \\ \leq{}& q_{n+1}(0)+\max_{t\in J} p_{n}^{2}(t)T \bigl[D_{4}+D_{6}+D_{8}T^{2}k_{0}^{2} \bigr]+\max_{t\in J} q_{n}^{2}(t)T \bigl[D_{3} \\ &+D_{5}+D_{7}T^{2}k_{0}^{2} \bigr] \\ ={}&q_{n+1}(0)+C_{3}\max_{t\in J} p_{n}^{2}(t)+C_{4}\max_{t\in J} q_{n}^{2}(t), \end{aligned} $$
(3.6)

where \(C_{3}=T[D_{4}+D_{6}+D_{8}T^{2}k_{0}^{2}]\), \(C_{4}=T[D_{3}+D_{5}+D_{7}T^{2}k_{0}^{2}]\), \(y_{n}(t)\leq\xi_{4}\leq\xi_{1}\), \(y_{n}(\theta)\leq\xi_{5}\leq z_{n}(\theta)\), \(x(t)\leq\xi_{1}\leq z_{n}(t)\), \((Sy_{n})(t)\leq\xi_{6},\xi_{9}\leq (Sz_{n})(t)\), \(x(\theta)\leq\xi_{2}\leq z_{n}(\theta)\), \(y_{n}(t)\leq\xi_{7},\xi _{10}\leq x(t)\), \((Sx)(t)\leq\xi_{3}\leq(Sz_{n})(t)\), \(y_{n}(\theta)\leq\xi_{8}\leq\xi_{2}\), \(y_{n}(\theta)\leq\xi_{11}\leq x(\theta)\), \((Sy_{n})(t)\leq\xi _{12}\leq\xi_{3}\). Meanwhile, we have

$$\begin{aligned} 0={}&{-}g \bigl(x(0), x(T) \bigr)+g \bigl(z_{n}(0), y_{n}(T) \bigr)+g_{x} \bigl(y_{n}(0), y_{n}(T) \bigr) \bigl[q_{n+1}(0)-q_{n}(0) \bigr] \\ &+g_{y} \bigl(y_{n}(0), z_{n}(T) \bigr) \bigl[-p_{n+1}(T)+p_{n}(T) \bigr] \\ ={}&g_{x}\bigl(\alpha_{1}, y_{n}(T) \bigr)q_{n}(0)-g_{y} \bigl(x(0), \alpha_{2} \bigr)p_{n}(T) \\ &+g_{x} \bigl(y_{n}(0), y_{n}(T) \bigr) \bigl[q_{n+1}(0)-q_{n}(0) \bigr]+g_{y} \bigl(y_{n}(0), z_{n}(T) \bigr) \bigl[-p_{n+1}(T)+p_{n}(T) \bigr] \end{aligned}$$

and

$$\begin{aligned} &g_{x} \bigl(y_{n}(0), y_{n}(T) \bigr)q_{n+1}(0)\\ &\quad\leq-g_{xx} \bigl(\alpha_{3}, y_{n}(T) \bigr)q_{n}(0) \bigl[q_{n}(0)+p_{n}(0) \bigr] \\ &\qquad-g_{yy} \bigl(y(0), \alpha_{5} \bigr)p_{n}(T) \bigl[q_{n}(T)+p_{n}(T) \bigr]+g_{yx} \bigl(\alpha _{4}, \alpha_{2}(T) \bigr)p_{n}(T)p_{n}(0) \\ &\qquad+g_{y} \bigl(y_{n}(0), z_{n}(T) \bigr)p_{n+1}(T) \\ &\quad\leq-g_{xx} \bigl(\alpha_{3}, y_{n}(T) \bigr)q_{n}(0) \bigl[q_{n}(0)+p_{n}(0) \bigr]-g_{yy} \bigl(y(0), \alpha_{5} \bigr) p_{n}(T) \bigl[q_{n}(T)+p_{n}(T) \bigr] \\ &\qquad+g_{y} \bigl(y_{n}(0), z_{n}(T) \bigr)p_{n+1}(T). \end{aligned}$$

Hence, we conclude that

$$ \begin{aligned}[b] q_{n+1}(0) \leq{}& B_{3}q_{n}^{2}(T)+B_{4}q_{n}^{2}(0)+B_{5}p_{n}^{2}(0)+B_{6}p_{n}^{2}(T)+g_{y} \bigl(y_{n}(0), z_{n}(T) \bigr)p_{n+1}(T) \\ \leq{}& B_{3}\max_{t\in J} q_{n}^{2}(t)+B_{4} \max_{t\in J} q_{n}^{2}(t)+B_{5} \max_{t\in J} p_{n}^{2}(t) +B_{6} \max_{t\in J} p_{n}^{2}(t) \\ &+\frac{g_{y}(y_{n}(0), z_{n}(T))}{g_{x}(y_{n}(0), y_{n}(T))}p_{n+1}(T) \\ \leq{}& C_{5}\max_{t\in J} p_{n}^{2}(t)+C_{6} \max_{t\in J} q_{n}^{2}(t)+C_{2}^{0}p_{n+1}(T), \end{aligned} $$
(3.7)

where

$$\begin{gathered} B_{3}=-\frac{1}{2}\frac{g_{yy}(y(0), \alpha_{5})}{g_{x}(y_{n}(0), y_{n}(T))}, \qquad B_{4}=- \frac{3}{2}\frac{g_{xx}(\alpha_{3}, y_{n}(T))}{g_{x}(y_{n}(0), y_{n}(T))}, \\ B_{5}=-\frac{1}{2} \frac{g_{xx}(\alpha_{3}, y_{n}(T))}{g_{x}(y_{n}(0), y_{n}(T))}, \qquad B_{6}=-\frac{3}{2}\frac{g_{yy}(y(0), \alpha_{5})}{g_{x}(y_{n}(0), y_{n}(T))}, \\ C_{5}=B_{5}+B_{6}, \qquad C_{6}=B_{3}+B_{4}, \qquad C_{2}^{0}=\frac {g_{y}(y_{n}(0), z_{n}(T))}{g_{x}(y_{n}(0), y_{n}(T))}.\end{gathered} $$

It follows from (3.4)–(3.7) that

$$ \begin{gathered} p_{n+1}(0)\leq C^{1}_{1}p_{n}^{2}(t)+C^{1}_{2}q_{n}^{2}(t), \\ q_{n+1}(0)\leq C^{1}_{3}p_{n}^{2}(t)+C^{1}_{4}q_{n}^{2}(t), \end{gathered} $$
(3.8)

where

$$\begin{gathered} C^{1}_{1}=\frac {1}{(1-C^{0}_{2})(1-C^{0}_{1})} \bigl[C^{0}_{1}C^{0}_{2}C_{0}+C^{0}_{1}C_{5}+C^{0}_{1}C_{3}+C_{1} \bigr], \\ C^{1}_{2}=\frac {1}{(1-C^{0}_{2})(1-C^{0}_{1})} \bigl[C^{0}_{1}C_{2}+C^{0}_{1}C_{4}+C_{6} \bigr], \\ C^{1}_{3}=C_{5}+C^{1}_{2}C^{0}_{2}+C_{0}C^{0}_{2}, \qquad C^{1}_{4}=C_{6}+C^{1}_{2}C^{0}_{2}.\end{gathered} $$

By virtue of (3.4), (3.6), and (3.8), we see that

$$ \begin{gathered} \max_{t\in J} \bigl\vert x(t)-y_{n+1}(t) \bigr\vert \leq d_{1} \max _{t\in J} \bigl\vert x(t)-y_{n}(t) \bigr\vert ^{2}+d_{2} \max_{t\in J} \bigl\vert x(t)-z_{n}(t) \bigr\vert ^{2}, \\ \max_{t\in J} \bigl\vert x(t)-z_{n+1}(t) \bigr\vert \leq d_{3} \max_{t\in J} \bigl\vert x(t)-y_{n}(t) \bigr\vert ^{2}+d_{4} \max _{t\in J} \bigl\vert x(t)-z_{n}(t) \bigr\vert ^{2}, \end{gathered} $$

where \(d_{1}=C^{1}_{1}+C_{0}\), \(d_{2}=C^{1}_{2}\), \(d_{3}=C^{1}_{3}+C_{3}\), \(d_{4}=C^{1}_{4}+C_{4}\). This completes the proof. □

4 Example

To illustrate the validity of the theoretical result obtained in the previous section, we give the following example.

Example 4.1

Consider the boundary value problem

$$ \textstyle\begin{cases} x'(t)= \frac{1}{10}x^{2}(t)-\frac{1}{4}x (\frac{t}{2} )-\frac {1}{80} \int_{0}^{t}x(s)\,ds-\frac{1}{10}x(t), \quad t \in[0, 1], \\ \frac{1}{2}x(0)-\frac{1}{12}x^{2}(1)+ \frac{1}{12}x(1)+\frac{1}{4}=0, \end{cases} $$
(4.1)

where

$$ \begin{gathered} f \bigl(t, x(t), x \bigl(\theta(t) \bigr), (Sx) (t) \bigr)=\frac{1}{10}x^{2}(t)-\frac{1}{4}x \biggl( \frac{t}{2} \biggr) -\frac{1}{80} \int_{0}^{t}x(s)\,ds-\frac{1}{10}x(t), \quad t \in[0, 1], \\ g \bigl(x(0), x(1) \bigr)=\frac{1}{2}x(0)-\frac{1}{12}x^{2}(1)+ \frac {1}{12}x(1)+\frac{1}{4}. \end{gathered} $$

Letting \(y_{0}(t)=-1\), \(z_{0}(t)=0\), \(t\in[0, 1]\), then \(y_{0}(t)< z_{0}(t)\) and

$$ \begin{gathered} f \bigl(t, y_{0}(t), y_{0} \bigl( \theta(t) \bigr), (Sy_{0}) (t) \bigr)\ge y_{0}'(t), \quad t\in [0, 1], \qquad g \bigl(y_{0}(0), z_{0}(1) \bigr)=- \frac{1}{4}, \\ f \bigl(t, z_{0}(t), z_{0} \bigl(\theta(t) \bigr), (Sz_{0}) (t) \bigr)=0=z_{0}'(t), \quad t\in [0, 1], \qquad g \bigl(z_{0}(0), y_{0}(1) \bigr)= \frac{1}{12}. \end{gathered} $$

Thus, \(y_{0}\) and \(z_{0}\) are coupled lower and upper solutions of Eq. (4.1), and \(y_{0}(t)\leq x(t)\leq z_{0}(t)\), that is, \(-1\leq x(t)\leq0\). Moreover, by Eq. (4.1), we have

$$\begin{aligned} &\int^{1}_{0} \bigl\{ f_{x} \bigl(t, y_{0}, y_{0}(\theta), (Sy_{0}) (t) \bigr) +f_{y} \bigl(t, y_{0}, y_{0}(\theta), (Sy_{0}) (t) \bigr)+f_{z} \bigl(t, y_{0}, y_{0}(\theta), (Sy_{0}) (t) \bigr)k_{0}T \bigr\} \,dt \\ &\quad=-\frac {9}{16} \geq-1. \end{aligned}$$

It is not difficult to verify that all conditions of Theorem 3.1 are satisfied. Therefore, there exist the monotone sequences \(\{y_{n}(t)\}\) and \(\{z_{n}(t)\}\) converging uniformly to the unique solution x of equation (4.1) and the convergence is quadratic.

References

  1. Aftabizadeh, A.R., Leela, S.: Existence results for boundary value problems of integro-differential equations. In: Proc. Colloquia on Qualitative Theory of Differential Equations at Bolyai Institute, pp. 23–35 (1984)

    Google Scholar 

  2. Burton, T.A.: Volterra Integral and Differential Equations. Academic Press, New York (1983)

    MATH  Google Scholar 

  3. Cabada, A., Pouso, R.L., Liz, E.: A generalization of the method of upper and lower solutions for discontinuous first order problems with nonlinear boundary conditions. Appl. Math. Comput. 114, 135–148 (2000)

    MathSciNet  MATH  Google Scholar 

  4. Chen, L.J., Sun, J.T.: Nonlinear boundary value problem for first order impulsive integro-differential equations of mixed type. J. Math. Anal. Appl. 325, 830–842 (2007)

    Article  MathSciNet  Google Scholar 

  5. Corduneanu, C.: Some control problems for abstract Volterra functional-differential equations. In: Proc. Int. Symp. MTNS-89, vol. III, pp. 331–338. Birkhäuser, Basel (1990)

    Google Scholar 

  6. Corduneanu, C.: Equations with Abstract Volterra Operators as Modelling Tools in Science and Engineering. Pitman Research Notes in Mathematics Series. Longman, London (1994)

    MATH  Google Scholar 

  7. Cushing, J.M.: Integrodifferential Equations and Delay Models in Population Dynamics. Springer, New York (1977)

    Book  Google Scholar 

  8. Dhakne, M.B., Kendre, S.D.: On a nonlinear Volterra integrodifferential equation in Banach spaces. Math. Inequal. Appl. 9, 725–738 (2006)

    MathSciNet  MATH  Google Scholar 

  9. Franco, D., Nieto, J.J., O’Regan, D.: Existence of solutions for first order ordinary differential equations with nonlinear boundary conditions. Appl. Math. Comput. 153, 793–802 (2004)

    MathSciNet  MATH  Google Scholar 

  10. Grace, S.R., Graef, J.R., Tunç, E.: On the asymptotic behavior of solutions of certain integro-differential equations. J. Appl. Anal. Comput. 9, 1305–1318 (2019)

    MathSciNet  Google Scholar 

  11. Graef, J.R., Grace, S.R., Tunç, E.: On the oscillation of certain integral equations. Publ. Math. (Debr.) 90, 195–204 (2017)

    Article  MathSciNet  Google Scholar 

  12. Graef, J.R., Grace, S.R., Tunç, E.: Asymptotic behavior of solutions of certain integro-differential equations. Panam. Math. J. 29, 45–60 (2019)

    MathSciNet  Google Scholar 

  13. Guo, D.J., Lakshmikantham, V., Liu, X.Z.: Nonlinear Integral Equations in Abstract Spaces. Kluwer Academic, Dordrecht (1996)

    Book  Google Scholar 

  14. Han, J.F., Liu, Y.L., Zhao, J.: Integral boundary value problems for first order nonlinear impulsive functional integro-differential equations. Appl. Math. Comput. 218, 5002–5009 (2012)

    MathSciNet  MATH  Google Scholar 

  15. He, Z.M., He, X.M.: Monotone iterative technique for impulsive integro-differential equations with periodic boundary conditions. Comput. Math. Appl. 48, 73–84 (2004)

    Article  MathSciNet  Google Scholar 

  16. Hristova, S., Tunç, C.: Stability of nonlinear Volterra integro-differential equations with Caputo fractional derivative and bounded delays. Electron. J. Differ. Equ. 2019, Article ID 30 (2019)

    Article  MathSciNet  Google Scholar 

  17. Jankowski, T.: Existence of solutions of boundary value problems for differential equations with delayed argument. J. Comput. Appl. Math. 156, 239–252 (2003)

    Article  MathSciNet  Google Scholar 

  18. Jankowski, T.: Quadratic approximation of solutions for differential equations with nonlinear boundary conditions. Comput. Math. Appl. 47, 1619–1626 (2004)

    Article  MathSciNet  Google Scholar 

  19. Jankowski, T.: Advanced differential equations with nonlinear boundary conditions. J. Math. Anal. Appl. 304, 490–503 (2005)

    Article  MathSciNet  Google Scholar 

  20. Jankowski, T.: First-order impulsive functional differential equations. Commun. Appl. Anal. 11, 359–378 (2007)

    MathSciNet  MATH  Google Scholar 

  21. Kwapisz, M.: Remarks on the existence and uniqueness of solutions of Volterra functional equations in \(L^{p}\)-spaces. J. Integral Equ. Appl. 3, 383–397 (1991)

    Article  Google Scholar 

  22. Ladde, G.S., Lakshmikantham, V., Vatsala, A.S.: Monotone Iterative Techniques for Nonlinear Differential Equations. Pitman, London (1985)

    MATH  Google Scholar 

  23. Lakshmikantham, V., Rama Mohana Rao, M.: Theory of Integro-Differential Equations. Gordon & Breach, New York (1995)

    MATH  Google Scholar 

  24. Lakshmikantham, V., Shahzad, N., Nieto, J.J.: Methods of generalized quasilinearization for periodic boundary value problems. Nonlinear Anal. 27, 143–151 (1996)

    Article  MathSciNet  Google Scholar 

  25. Lakshmikantham, V., Vatsala, A.S.: Generalized Quasilinearization for Nonlinear Problems. Kluwer Academic, Dordrecht (1998)

    Book  Google Scholar 

  26. Li, T., Pintus, N., Viglialoro, G.: Properties of solutions to porous medium problems with different sources and boundary conditions. Z. Angew. Math. Phys. 70, Article ID 86 (2019)

    Article  MathSciNet  Google Scholar 

  27. Liu, X.Z., Guo, D.J.: Method of upper and lower solutions for second-order impulsive integro-differential equations in a Banach space. Comput. Math. Appl. 38, 213–223 (1999)

    Article  MathSciNet  Google Scholar 

  28. Liu, Z.H., Liang, J.T.: A class of boundary value problems for first-order impulsive integro-differential equations with deviating arguments. J. Comput. Appl. Math. 237, 477–486 (2013)

    Article  MathSciNet  Google Scholar 

  29. Mahdavi, M.: Nonlinear boundary value problems involving abstract Volterra operators. Libertas Math. 13, 17–26 (1993)

    MathSciNet  MATH  Google Scholar 

  30. Meehan, M., O’Regan, D.: Existence theory for nonlinear Volterra integrodifferential and integral equations. Nonlinear Anal. 31, 317–341 (1998)

    Article  MathSciNet  Google Scholar 

  31. Nieto, J.J.: An abstract monotone iterative technique. Nonlinear Anal. 28, 1923–1933 (1997)

    Article  MathSciNet  Google Scholar 

  32. Sun, L., Zhou, M.R., Wang, G.W.: Quadratic approximation of solutions for boundary value problems with nonlocal boundary conditions. Comput. Math. Appl. 61, 1547–1558 (2011)

    Article  MathSciNet  Google Scholar 

  33. Tunç, C., Tunç, O.: New qualitative criteria for solutions of Volterra integro-differential equations. Arab J. Basic Appl. Sci. 25, 158–165 (2018)

    Article  Google Scholar 

  34. Tunç, C., Tunç, O.: A note on the qualitative analysis of Volterra integro-differential equations. J. Taibah Univ. Sci. 13, 490–496 (2019)

    Article  Google Scholar 

  35. Wang, G.T.: Boundary value problems for systems of nonlinear integro-differential equations with deviating arguments. J. Comput. Appl. Math. 234, 1356–1363 (2010)

    Article  MathSciNet  Google Scholar 

  36. Wang, P.G., Tian, S.H., Wu, Y.H.: Monotone iterative method for first-order functional difference equations with nonlinear boundary value conditions. Appl. Math. Comput. 203, 266–272 (2008)

    Article  MathSciNet  Google Scholar 

  37. Wang, W.B., Shen, J.H., Nieto, J.J.: Periodic boundary value problems for second order functional differential equations. J. Appl. Math. Comput. 36, 173–186 (2011)

    Article  MathSciNet  Google Scholar 

  38. Wang, W.L.: Monotone iterative technique for causal differential equations with upper and lower solutions in the reversed order. Bound. Value Probl. 2016, Article ID 140 (2016)

    Article  MathSciNet  Google Scholar 

  39. Wang, W.L., Tian, J.F.: Nonlinear boundary value problems for impulsive differential equations with causal operators. Differ. Equ. Appl. 9, 161–170 (2017)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors express their sincere gratitude to the editors and two anonymous referees for the careful reading of the original manuscript and useful comments that helped to improve the presentation of the results and accentuate important details.

Availability of data and materials

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Funding

This research is supported by the National Natural Science Foundation of P.R. China (Grant Nos. 11771115 and 11271106) and Natural Science Foundation of Shandong Province (Grant No. ZR2016JL021).

Author information

Authors and Affiliations

Authors

Contributions

All four authors contributed equally to this work. They all read and approved the final version of the manuscript.

Corresponding author

Correspondence to Tongxing Li.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Wang, Y., Jiang, C. et al. Convergence of solutions for functional integro-differential equations with nonlinear boundary conditions. Adv Differ Equ 2019, 521 (2019). https://doi.org/10.1186/s13662-019-2456-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13662-019-2456-y

MSC

Keywords