Skip to main content

Operators constructed by means of basic sequences and nuclear matrices

Abstract

In this work, we establish an approach to constructing compact operators between arbitrary infinite-dimensional Banach spaces without a Schauder basis. For this purpose, we use a countable number of basic sequences for the sake of verifying the result of Morrell and Retherford. We also use a nuclear operator, represented as an infinite-dimensional matrix defined over the space \(\ell _{1}\) of all absolutely summable sequences. Examples of nuclear operators over the space \(\ell _{1}\) are given and used to construct operators over general Banach spaces with specific approximation numbers.

Introduction and basic definitions

Banach spaces, which are separable and reflexive, can exist without a Schauder basis as proved by Enflo in 1973 [11]. However, in 1972, Morrell and Retherford [8] showed that in each infinite-dimensional Banach space and for any sequence of positive numbers, that is, monotonically convergent to zero \((\lambda _{i})_{i\in N}\), where \(N=\{1,2,3,\ldots \}\), one can construct a weakly square-summable basic sequence whose norms equal to \((\lambda _{i})_{i \in N}\).

In 1977, Makarov and Faried [7] showed how to construct compact operators of the form \(\sum_{i\in N} \mu _{i}f_{i}\otimes x_{i}\) between arbitrary infinite-dimensional Banach spaces such that its sequence of approximation numbers has a specific rate of convergence to zero. It was also proved that the operator ideal, whose sequence of approximation numbers are p-summable, is a small ideal; see [4, 10, 11].

In this work, we show how to construct compact operators between arbitrary infinite-dimensional Banach spaces using a countable number of basic sequences and nuclear operators, represented in the form of an infinite-dimensional matrix \((\mu _{ij})_{i,j\in N}\) defined over the space \(\ell _{1}\) of all absolutely summable sequences, which verifies

$$\begin{aligned} \lim_{j}\mu _{ij}=0 \end{aligned}$$

for every \(i\in N\). For such double-summation operators, a choice of matrix elements is more convenient than choosing sequence elements in the case of single-summation operators. Such a construction will help give counterexamples of operators between Banach spaces without a Schauder basis. An upper estimate of the sequence of approximation numbers is given for such double-summation operators. For basic notions and some related results, one can see [1, 6, 9, 13].

The following notations are used throughout this study. The normed space of bounded linear operators from a normed space X into a normed space Y is denoted by \(L(X, Y)\), while the dual space of the normed space X is denoted by \(X^{*}=L(X, R)\), where R is the set of real numbers.

Also as mentioned before, the space \(\{x=(x_{i})_{i=1}^{\infty }:\sum_{i}|x_{i}|^{p} <\infty \}\) of all sequences of real numbers that are p-absolutely summable, is denoted by \(\ell _{p}\), which is equipped with the norm \(\|x\|=(\sum_{i\in N}|x_{i}|^{p})^{\frac{1}{p}}\). The space \(\{x=(x_{i})_{i=1}^{\infty }: \lim x_{i}=0\}\) of all sequences of real numbers that are convergent to zero, is denoted by \(c_{o}\), which is equipped with the norm \(\|x\|=\sup_{i\in N}|x_{i}|\).

Definition 1.1

([12])

A map s, which assigns a unique sequence \(\{s_{r}(T)\}_{r=0}^{ \infty }\) of real numbers to every operator \(T\in {L(X,Y)}\), is called an s-number sequence if the following conditions are verified:

  1. 1.

    \(\|T\|=s_{0}(T)\geq s_{1}(T)\geq \cdots \geq 0\) for \(T\in L(X,Y)\).

  2. 2.

    \(s_{r+m}(U+V)\leq s_{r}(U)+s_{m}(V)\) for \(U,V\in L(X,Y)\).

  3. 3.

    \(s_{r}(UTV)\leq \|U\|s_{r}(T)\|V\|\) for \(V\in L(X_{0},X), T \in L(X,Y)\) and

    \(U\in L(Y,Y_{0})\).

  4. 4.

    \(s_{r}(T)=0\) if and only if \(\operatorname{rank}(T)\leq r\) for \(T\in L(X,Y)\).

  5. 5.

    \(s_{r}(I_{k})=\bigl\{ \begin{array}{l@{\quad}l} 1, & \text{for }r< k; \\ 0, & \text{for }r\geq k, \end{array} \)

where \(I_{k}\) is the identity operator on Euclidean space \(\ell _{2} ^{k}\).

As an examples of s-numbers, we mention the approximation numbers \(\alpha _{r}(T)\), Gelfand numbers \(c_{r}(T)\), Kolmogorov numbers \(d_{r}(T)\), and Tikhomirov numbers \(d_{r}^{*}(T)\), defined by

  1. 1.

    \(\alpha _{r}(T)=\inf \{\|T-A\|: A\in L(X,Y)\) and \(\operatorname{rank}(A)\leq r\}\). Clearly, we always have \(\|T\|=\alpha _{0}(T)\geq \alpha _{1}(T)\geq \alpha _{2}(T)\geq \cdots \geq 0\).

  2. 2.

    \(c_{r}(T)=\alpha _{r}(J_{Y}T)\), where \(J_{Y}\) is a metric injection from the space Y into a higher space \(\ell ^{\infty }( \varLambda )\) of all bounded-real functions for a suitable index set Λ.

  3. 3.
    $$\begin{aligned} d_{r}(T)=\inf_{\operatorname{dim}K\leq r} \sup_{ \Vert x \Vert \leq 1} \inf_{y\in K} \Vert Tx-y \Vert , \end{aligned}$$

    where \(K\subseteq Y\).

  4. 4.

    \(d_{r}^{*}(T)=d_{r}(J_{Y}T)\).

Definition 1.2

([11])

An operator \(T\in L(X,Y)\) is nuclear if and only if it can be represented in the form

$$\begin{aligned} T(x)=\sum_{i=1}^{\infty }a_{i}(x)y_{i}, \end{aligned}$$

with \(a_{1}, a_{2},\ldots \in X^{*}\) and \(y_{1}, y_{2}, \ldots \in Y\), such that

$$\begin{aligned} \sum_{i=1}^{\infty } \Vert a_{i} \Vert \Vert y_{i} \Vert < \infty. \end{aligned}$$

On the class \(N(X,Y)\) of all nuclear operators from X into Y, a norm \(\nu (T)\) is defined by

$$\begin{aligned} \nu (T)=\inf \biggl\{ \sum_{i} \Vert a_{i} \Vert \Vert y_{i} \Vert \biggr\} , \end{aligned}$$

where the inf is taken over all possible representations of the operator T.

Basic theorems and technical lemmas

It is well known that an infinite matrix defines a linear continuous operator from the space \(\ell _{1}\) into itself if its columns are absolutely uniformly-summable; see [3, 4, 10].

Lemma 2.1

([11], 6.3.6)

An operator \(T\in L(\ell _{1},\ell _{1})\) is nuclear if and only if there is an infinite matrix \((\sigma _{ik})_{i,k\in N}\) such that

$$\begin{aligned} T(x)= \Biggl(\sum_{k=1}^{\infty }\sigma _{ik}x_{k} \Biggr)_{i=1}^{\infty } \quad\textit{for } x=(x_{k})_{k=1}^{\infty }\in \ell _{1} \end{aligned}$$

and

$$\begin{aligned} \sum_{i=1}^{\infty }\sup_{k} \vert \sigma _{ik} \vert < \infty. \end{aligned}$$

In this case

$$\begin{aligned} \nu (T)=\sum_{i=1}^{\infty }\sup _{k} \vert \sigma _{ik} \vert . \end{aligned}$$

Lemma 2.2

([3])

If \((T_{i})_{i=1}^{\infty }\)is an absolutely summable sequence of bounded linear operators then

$$\begin{aligned} \alpha _{n} \Biggl(\sum_{i=1}^{\infty }T_{i} \Biggr)\leq \inf \Biggl\{ \sum_{i=1}^{\infty } \alpha _{n_{i}}(T_{i}):\sum_{i=1}^{\infty }n_{i}=n \Biggr\} , \end{aligned}$$

where the inf is taken over all possible representations for

$$\begin{aligned} \sum_{i=1}^{\infty }n_{i}=n. \end{aligned}$$

The following is a consequence of Lemma 2 in [2].

Theorem 2.3

Let \((x_{i})_{i=1}^{\infty }\)be a sequence in a Banach spaceXsuch that

$$\begin{aligned} \sum_{i=1}^{\infty } \bigl\vert f(x_{i}) \bigr\vert < \infty\quad \textit{for every } f\in X^{*}, \end{aligned}$$

then the series \(\sum_{i=1}^{\infty }\lambda _{i}x_{i}\)converges unconditionally inXfor every sequence \((\lambda _{i})_{i=1}^{ \infty }\in c_{o}\).

Theorem 2.4

(Morrell and Retherford [8])

LetXbe an infinite-dimensional Banach space and let \((\lambda _{i})_{i=1} ^{\infty }\in c_{o}\)with \(0<\lambda _{i}<1\), then there is a basic sequence \((x_{i})_{i=1}^{\infty }\)inXsuch that \(\|x_{i}\|=\lambda _{i}\)for all \(i=1,2,\ldots \)that verifies

$$\begin{aligned} \sum_{i=1}^{\infty } \bigl\vert f(x_{i}) \bigr\vert ^{2}\leq \Vert f \Vert ^{2} \quad\textit{for every } f\in X^{*}. \end{aligned}$$

Remark 2.5

Theorem 2.4 is valuable in the case of sequences that are slowly convergent to zero \((\lambda _{i})_{i=1}^{\infty }\). Indeed, if \((\lambda _{i})_{i=1}^{\infty }\) converges rapidly to zero then \(\sum_{i=1}^{\infty }\|x_{i}\|<\infty \) and hence, one can write

$$\begin{aligned} \sum_{i=1}^{\infty } \bigl\vert f(x_{i}) \bigr\vert ^{2}\leq \sum _{i=1}^{\infty } \Vert f \Vert ^{2} \Vert x_{i} \Vert ^{2}\leq C \Vert f \Vert ^{2} \quad\text{for every } f\in X^{*}. \end{aligned}$$

Theorem 2.6

(Dini’s theorem [5])

For a convergent series \(\sum_{i=1}^{\infty }a_{i}\)of positive real numbers, the series

$$\begin{aligned} \sum_{i=1}^{\infty }\frac{a_{i}}{R_{i}^{m}} \quad\textit{is } \textstyle\begin{cases} \textit{convergent} & \textit{for }m< 1; \\ \textit{divergent} & \textit{for }m\geq 1, \end{cases}\displaystyle \end{aligned}$$

where \(R_{i}=\sum_{j=i}^{\infty }a_{j}\)is the remainder of the series \(\sum_{i=1}^{\infty }a_{i}\).

Theorem 2.7

([7])

LetXandYbe infinite-dimensional Banach spaces and let \((\lambda _{r})_{r=1}^{\infty }\)be a monotonically decreasing sequence of positive real numbers, then there is a completely continuous operator \(A\in L(X,Y)\)verifying

$$\begin{aligned} 2^{-4}\lambda _{3r}\leq d_{r}^{*}(A) \leq \alpha _{r}(A)\leq 8\lambda _{r} \quad\textit{for every } r \in \{1,2,\ldots \}. \end{aligned}$$

Lemma 2.8

([3])

Let \(\{\xi _{i}\}_{i\in N}\)be a bounded family of real numbers and let \(K\subseteq N\)be an arbitrary subset of indices, such that cardKis the number of elements inK. Then

$$\begin{aligned} \sup_{\operatorname{card} K=r+1} \inf_{i\in K}\xi _{i} = \inf_{\operatorname{card} K=r} \sup_{i\notin K} \xi _{i}. \end{aligned}$$

Main results

Proposition 3.1

LetXandYbe infinite-dimensional Banach spaces and let \(M=(\mu _{ij})_{i,j\in N}\)be an infinite matrix verifying that:

  1. 1.

    \(\lim_{j}\mu _{ij}=0 \)for every \(i\in N\).

  2. 2

    \(\sum_{i=1}^{\infty }\sup_{j=1}^{\infty } \vert \mu _{ij} \vert <\infty\).

Let \((f_{ij})_{i,j\in N}\)be a matrix of functionals in \(X^{*}\)and \((z_{ij})_{i,j\in N}\)be a matrix of elements inYthat verifies

$$ \sup_{i=1}^{\infty }\sum _{j=1}^{\infty } \bigl\vert f_{ij}(x)F(z_{ij}) \bigr\vert < \infty $$
(1)

for everyFin \(Y^{*}\)and everyxinX. Then the expression

$$\begin{aligned} T(x)=\sum_{i=1}^{\infty }\sum _{j=1}^{\infty }\mu _{ij} f_{ij}(x) z _{ij} \end{aligned}$$

defines a linear continuous operator fromXintoY.

Proof

Let

$$\begin{aligned} \lambda _{n}=\sum_{i\geq n}\sup _{j=1}^{\infty } \vert \mu _{ij} \vert , \end{aligned}$$

then from Dini’s theorem 2.6 we get

$$\begin{aligned} \sum_{i=1}^{\infty }\frac{\sup_{j=1}^{\infty } \vert \mu _{ij} \vert }{\sqrt{ \lambda _{i}}}< \infty. \end{aligned}$$

From condition (1) and Theorem 2.3, the formula

$$\begin{aligned} T_{i}(x)=\sum_{j=1}^{\infty } \frac{\mu _{ij}}{\sqrt{\lambda _{i}}} f _{ij}(x) z_{ij} \end{aligned}$$
(2)

defines a linear continuous operator \(T_{i}\in L(X,Y)\) for every \(i=1,2,\ldots \) .

Now we need to prove the unconditional convergence of the series

$$\begin{aligned} T(x)=\sum_{i=1}^{\infty }\sqrt{\lambda _{i}} T_{i}(x). \end{aligned}$$

In order to do so, it is enough to apply again Theorem 2.3, noting that \(\lambda _{n}\rightarrow 0\) and we only have to verify that

$$\begin{aligned} \sum_{i=1}^{\infty } \bigl\vert g T_{i}(x) \bigr\vert < \infty, \quad\text{for every } g\in Y^{*}. \end{aligned}$$

In fact,

$$\begin{aligned} \sum_{i=1}^{\infty }\sum _{j=1}^{\infty } \biggl\vert \frac{\mu _{ij}}{\sqrt{ \lambda _{i}}} f_{ij}(x) g(z_{ij}) \biggr\vert &\leq \sum _{i=1}^{\infty }\sup_{j=1}^{\infty } \frac{ \vert \mu _{ij} \vert }{\sqrt{\lambda _{i}}}\sum_{j=1}^{ \infty } \bigl\vert f_{ij}(x) g(z_{ij}) \bigr\vert \\ &\leq \sum_{i=1}^{\infty }\sup _{j=1}^{\infty }\frac{ \vert \mu _{ij} \vert }{\sqrt{ \lambda _{i}}} \Biggl[ \sup _{i=1}^{\infty } \sum_{j=1}^{\infty } \bigl\vert f_{ij}(x) g(z_{ij}) \bigr\vert \Biggr]< \infty. \end{aligned}$$

Then the expression

$$\begin{aligned} T(x)=\sum_{i=1}^{\infty }\sum _{j=1}^{\infty }\mu _{ij} f_{ij}(x) z _{ij} \end{aligned}$$

defines a linear continuous operator from X into Y. □

Remark 3.2

From Theorem 2.4 and for every \(i=1,2,\ldots \) , there exist a basic sequence of functionals \(\{f_{ij}\}_{j=1}^{\infty }\) in \(X^{*}\) and a basic sequence of elements \(\{z_{ij}\}_{j=1}^{\infty }\) in Y such that

$$\begin{aligned} \sum_{j=1}^{\infty } \bigl\vert f_{ij}(x) \bigr\vert ^{2}\leq \Vert x \Vert ^{2} \quad\text{for every } x\in X \end{aligned}$$

and

$$\begin{aligned} \sum_{j=1}^{\infty } \bigl\vert F(z_{ij}) \bigr\vert ^{2}\leq \Vert F \Vert ^{2} \quad\text{for every } F\in Y^{*}. \end{aligned}$$

Basic sequences can be found by choosing different convergent to zero sequences \((\lambda _{i})_{i=1}^{\infty }\in c_{o}\), as mentioned in Theorem 2.4, according to their rate of convergence.

As a consequence of Proposition 3.1 and Remark 3.2 we get the following result.

Theorem 3.3

LetXandYbe Banach spaces and let \(\{f_{ij}\}_{j=1}^{\infty }\)and \(\{z_{ij}\}_{j=1}^{\infty }\), where \(i\in N\), be basic sequences in \(X^{*}\)andY, respectively. Verifying the following,

  1. 1.

    \(\sum_{j=1}^{\infty } \vert f_{ij}(x) \vert ^{2}< \Vert x \Vert ^{2}\)for every \(x\in X\), and \(i\in N\).

  2. 2.

    \(\sum_{j=1}^{\infty } \vert F(z_{ij}) \vert ^{2}< \Vert F \Vert ^{2}\)for every \(F\in Y^{*}\)and \(i\in N\), then every nuclear operator

    $$\begin{aligned} M=\{\mu _{ij}\}:\ell _{1}\rightarrow \ell _{1}, \quad\textit{with } \lim_{j}\mu _{ij}=0, \end{aligned}$$

    defines an operator \(T:X\rightarrow Y\)of the form

    $$\begin{aligned} T(x)=\sum_{i=1}^{\infty }\sum _{j=1}^{\infty }\mu _{ij} f_{ij}(x) z _{ij}. \end{aligned}$$

Proof

The proof follows directly from Proposition 3.1 and Remark 3.2. □

Theorem 3.4

LetXandYbe infinite-dimensional Banach spaces and let \(\{\mu _{i}\}_{i=1}^{\infty }\)be a sequence of real numbers that is convergent to zero and \(\{f_{i}\}_{i=1}^{\infty }\), \(\{z_{i}\}_{i=1} ^{\infty }\)be sequences in \(X^{*}\)andY, respectively. Verifying that

$$\begin{aligned} \sum_{i=1}^{\infty } \bigl\vert f_{i}(x) \bigr\vert ^{2}\leq \Vert x \Vert ^{2} \quad\textit{for every } x\in X, \end{aligned}$$

and

$$\begin{aligned} \sum_{i=1}^{\infty } \bigl\vert F(z_{i}) \bigr\vert ^{2}\leq \Vert F \Vert ^{2}\quad \textit{for every } F\in Y^{*}. \end{aligned}$$

Then for the operator

$$\begin{aligned} T=\sum_{i=1}^{\infty }\mu _{i} f_{i} \otimes z_{i} \end{aligned}$$

we have

$$\begin{aligned} \alpha _{n}(T)\leq \inf_{\operatorname{card} K\leq n} \sup _{i\notin K} \vert \mu _{i} \vert , \end{aligned}$$

whereKis any subset of the index setNwith \(\operatorname{card} K \leq n\).

Proof

For every operator \(T\in L(X,Y)\) and every subset of indices \(K\subset N\) with \(\operatorname{card} K\leq n\), we define a finite rank operator

$$\begin{aligned} A_{K}=\sum_{i\in K}\mu _{i} f_{i} \otimes z_{i} \end{aligned}$$

with \(\operatorname{rank}(A_{K})\leq n\). From the definition of approximation numbers we get

$$\begin{aligned} \alpha _{n}(T) &\leq \Vert T-A_{K} \Vert = \biggl\Vert \sum_{i\notin K}\mu _{i} f_{i} \otimes z_{i} \biggr\Vert \\ &= \sup_{ \Vert x \Vert =1} \sup_{ \Vert F \Vert =1} \biggl\vert \sum_{i\notin K}\mu _{i} f_{i}(x) F(z_{i}) \biggr\vert \\ &\leq \sup_{ \Vert x \Vert =1} \sup_{ \Vert F \Vert =1} \sum _{i\notin K} \bigl\vert \mu _{i} f _{i}(x) F(z_{i}) \bigr\vert \\ &\leq \sup_{i\notin K} \vert \mu _{i} \vert \sup_{ \Vert x \Vert =1} \sup_{ \Vert F \Vert =1} \sum _{i\notin K} \bigl\vert f_{i}(x) F(z_{i}) \bigr\vert \\ &\leq \sup_{i\notin K} \vert \mu _{i} \vert . \end{aligned}$$

Since this relation is true for every index subset K with \(\operatorname{card} K\leq n\),

$$\begin{aligned} \alpha _{n}(T)\leq \inf_{\operatorname{card} K\leq n} \sup _{i\notin K} \vert \mu _{i} \vert . \end{aligned}$$

 □

Remark 3.5

As a consequence of Theorem 3.4 and by using Lemma 2.8, we can get the following similar result:

$$\begin{aligned} \alpha _{n}(T)\leq \sup_{\operatorname{card} K=n+1} \inf _{i\in K} \vert \mu _{i} \vert . \end{aligned}$$

Theorem 3.6

LetXandYbe infinite-dimensional Banach spaces and let \((\mu _{ij})_{i,j\in N}\)be an infinite matrix with linearly independent rows such that conditions of Proposition 3.1are verified, and let \(\{f_{ij}\}_{j=1}^{\infty }\), \(\{z_{ij}\}_{j=1}^{\infty }\)for \(i=1,2,\ldots \) , be sequences in \(X^{*}\)andY, respectively, such that conditions of Theorem 3.4are fulfilled for all \(i=1,2,\ldots \) . Then for the operator

$$\begin{aligned} T=\sum_{i=1}^{\infty }\sum _{j=1}^{\infty }\mu _{ij} f_{ij} \otimes z _{ij} \end{aligned}$$

we have

$$\begin{aligned} \alpha _{n}(T)\leq \inf_{\varSigma n_{i}=n} \sum_{i=1}^{\infty } \Bigl\{ \inf _{\operatorname{card} K\leq n_{i}} \sup_{j\notin K} \vert \mu _{ij} \vert \Bigr\} , \end{aligned}$$
(3)

whereKis a subset of the index setNwith \(\operatorname{card} K \leq n_{i}\).

Proof

From Lemma 2.2, Theorem 3.4 and by using the same operator \(T_{i}\) defined by Eq. (2) throughout the proof of Proposition 3.1, we get

$$\begin{aligned} \alpha _{n}(T)=\alpha _{n}\Biggl(\sum _{i=1}^{\infty }T_{i}\Biggr)\leq \sum _{i=1} ^{\infty }\alpha _{n_{i}}(T_{i}) \leq \sum_{i=1}^{\infty } \inf _{\operatorname{card} K\leq n_{i}} \sup_{j\notin K} \vert \mu _{ij} \vert . \end{aligned}$$

This relation is true for every \(\varSigma n_{i}=n\), then we get the proof.

In the following, we are going to give two examples of nuclear operators over \(\ell _{1}\) and use them to construct operators over general Banach spaces with specific approximation numbers. □

Example 3.7

Consider the operator \(A\in L(c_{0},\ell _{1})\) such that \(A=(a_{ij})_{i,j=1} ^{\infty }\), where

$$\begin{aligned} &a_{ij} =0 \quad\text{for } i\neq j, \\ &a_{ii} =\frac{1}{2^{k}(k+1)^{2}} \quad\text{for } 2^{k} \leq i< 2^{k+1}. \end{aligned}$$

Also, consider \(B\in L(\ell _{1},c_{0})\), such that

$$\begin{aligned} B= \begin{pmatrix} B_{0}&0&0&\cdots \\ 0&B_{1}&0&\cdots \\ 0&0&B_{2}&\cdots \\ \cdot &\cdot &\cdot \\ \cdot &\cdot &\cdot \\ \cdot &\cdot &\cdot \end{pmatrix}, \end{aligned}$$

where

$$\begin{aligned} &B_{0} =(1), \\ &B_{k} = \begin{pmatrix} B_{k-1}&B_{k-1} \\ B_{k-1}&-B_{k-1} \end{pmatrix} \quad\text{is a } 2^{k}\times 2^{k} \text{ matrix for } k=1,2,3,\ldots. \end{aligned}$$

Thus we have \(D=AB\in L(\ell _{1},\ell _{1})\), such that

$$\begin{aligned} D= \begin{pmatrix} D_{0}&0&0&\cdots \\ 0&D_{1}&0&\cdots \\ 0&0&D_{2}&\cdots \\ \cdot &\cdot &\cdot \\ \cdot &\cdot &\cdot \\ \cdot &\cdot &\cdot \end{pmatrix}, \end{aligned}$$

where

$$\begin{aligned} &D_{0} =(1), \\ &D_{k} =\frac{k^{2}}{2(1+k)^{2}} \begin{pmatrix} D_{k-1}&D_{k-1} \\ D_{k-1}&-D_{k-1} \end{pmatrix} \quad\text{is a } 2^{k}\times 2^{k} \text{ matrix for } k=1,2,3,\ldots. \end{aligned}$$

Let \(D=(\mu _{ij})_{i,j=1}^{\infty }\), then this operator has the following properties:

  1. 1.
    $$\begin{aligned} \sum_{i=1}^{\infty } \vert \mu _{ii} \vert &=1+\biggl(\frac{1}{8}+\frac{1}{8} \biggr)+\biggl( \frac{1}{36}+\frac{1}{36}+\frac{1}{36}+ \frac{1}{36}\biggr)+\biggl(\frac{1}{128}+ \frac{1}{128}+ \cdots \biggr)+\cdots \\ &=\sum_{i=1}^{\infty }\frac{1}{i^{2}}= \frac{\pi ^{2}}{6}. \end{aligned}$$
  2. 2.
    $$\begin{aligned} \nu (D)=\sum_{i=1}^{\infty }\sup _{j} \vert \mu _{ij} \vert = \frac{\pi ^{2}}{6}< \infty, \end{aligned}$$

    then by using Lemma 2.1D is a nuclear operator.

  3. 3.

    \(\operatorname{Trac}(D)=1+(\frac{1}{8}-\frac{1}{8})+( \frac{1}{36}-\frac{1}{36}+\frac{1}{36}-\frac{1}{36})+(\frac{1}{128}- \frac{1}{128}+\cdots )+\cdots =1\).

  4. 4.

    \(D=(\mu _{ij})_{i,j=1}^{\infty }\) is having linearly independent rows.

Now, for \(D=(\mu _{ij})_{i,j=1}^{\infty }\) and by using Proposition 3.1 and Theorem 3.6 one can construct an operator \(T\in L(X,Y)\) for any Banach spaces \(X,Y\) of the form

$$\begin{aligned} T=\sum_{i=1}^{\infty }\sum _{j=1}^{\infty }\mu _{ij} f_{ij} \otimes z _{ij}, \end{aligned}$$

where \(\{f_{ij}\}_{i,j=1}^{\infty }\), \(\{z_{ij}\}_{i,j=1}^{\infty }\), are basic sequences in \(X^{*}\) and Y, respectively, such that conditions of Theorem 3.4 are fulfilled for all \(i=1,2,\ldots \) .

Now by applying Eq. (3), one can get

$$\begin{aligned} \alpha _{n}(T)\leq \frac{\pi ^{2}}{6}-\sum _{i=1}^{k+1}\frac{1}{i^{2}} \quad\text{for } n=1,2,3,\ldots \text{ where } 2^{k}\leq n< 2^{k+1}. \end{aligned}$$

Hence, we have

$$\begin{aligned} \lim_{n\rightarrow \infty }\alpha _{n}(T)\leq \frac{\pi ^{2}}{6}-\sum_{i=1}^{\infty } \frac{1}{i^{2}}=0, \end{aligned}$$

which is consistent with the properties of the approximation numbers.

By applying Eq. (3) in the case of \(n=0\), we get

$$\begin{aligned} \alpha _{0}(T)&= \Vert T \Vert \leq 1+\biggl( \frac{1}{8}+\frac{1}{8}\biggr)+\biggl(\frac{1}{36}+ \frac{1}{36}+\frac{1}{36}+\frac{1}{36}\biggr)+\biggl( \frac{1}{128}+\frac{1}{128}+ \cdots \biggr)+\cdots \\ &=\sum_{i=1}^{\infty }\frac{1}{i^{2}}= \frac{\pi ^{2}}{6}. \end{aligned}$$

Example 3.8

Consider the operator \(J\in L(\ell _{1},\ell _{1})\) such that \(J=(\lambda _{ij})_{i,j=1}^{\infty }\) where \(\lambda _{ij}= \frac{ij}{2^{i+j}}\), then this operator has the following properties:

  1. 1.

    \(\nu (J)=\sum_{i=1}^{\infty }\sup _{j} \vert \lambda _{ij} \vert =\sum _{i=1}^{\infty }\frac{i}{2^{i}}\sup _{j}(\frac{j}{2^{j}})=1<\infty,\) then by using Lemma 2.1J is a nuclear operator.

  2. 2.

    \(J=(\lambda _{ij})_{i,j=1}^{\infty }\) has linearly independent rows.

Now for \(J=(\lambda _{ij})_{i,j=1}^{\infty }\) and by using Proposition 3.1 and Theorem 3.6, one can construct an operator \(T\in L(X,Y)\) for any Banach spaces \(X,Y\) on the form,

$$\begin{aligned} T=\sum_{i=1}^{\infty }\sum _{j=1}^{\infty }\lambda _{ij} f_{ij} \otimes z_{ij}, \end{aligned}$$

where \(\{f_{ij}\}_{i,j=1}^{\infty }\) and \(\{z_{ij}\}_{i,j=1}^{\infty }\) are basic sequences in \(X^{*}\) and Y, respectively, such that conditions of Theorem 3.4 are fulfilled for all \(i=1,2,\ldots \) .

Applying Eq. (3) yields

$$\begin{aligned} \alpha _{n}(T)\leq \frac{n+1}{2^{n}}\quad \text{for } n=1,2,3, \ldots. \end{aligned}$$

Thus, we have \((\alpha _{n}(T))_{n=1}^{\infty }\in \ell _{1}\) because

$$\begin{aligned} \sum_{n=1}^{\infty }\alpha _{n}(T)\leq \sum_{n=1}^{\infty } \frac{n+1}{2^{n}}=3< \infty. \end{aligned}$$

Applying Eq. (3) in the case of \(n=0\) yields

$$\begin{aligned} \alpha _{0}(T)= \Vert T \Vert \leq \frac{1}{2}\sum _{i=1}^{\infty } \frac{i}{2^{i}}= \frac{1}{2}\times 2=1, \end{aligned}$$

noting that this is independent of the selection of \(\{f_{ij}\}_{i,j=1} ^{\infty }\) and \(\{z_{ij}\}_{i,j=1}^{\infty }\).

If we choose \(\{f_{ij}\}_{i,j=1}^{\infty }\) and \(\{z_{ij}\}_{i,j=1} ^{\infty }\) such that

$$\begin{aligned} \Vert f_{ij} \Vert = \Vert z_{ij} \Vert = \frac{1}{\sqrt{ij}}, \end{aligned}$$

then we get

$$\begin{aligned} \nu (T)\leq \sum_{i,j=1}^{\infty }\lambda _{ij} \Vert f_{ij} \Vert \Vert z_{ij} \Vert = \sum_{i,j=1}^{\infty }\biggl( \frac{ij}{2^{i+j}}\biggr) \biggl(\frac{1}{ij}\biggr)=1< \infty, \end{aligned}$$

which means that T, in this case, is a nuclear operator.

Conclusion

By using nuclear operators defined over \(\ell _{1}\) with particular representation, one can construct compact operators over general Banach spaces with specific approximation numbers. Such compact operators are been constructed using a countable number of basic sequences and nuclear operators. For such nuclear operators, its construction in a matrix form will yield to double-summation operators. This double-summation gives more freedom rather than choosing sequence elements in the case of single-summation operators. Such a construction will help give counterexamples of operators between Banach spaces without a Schauder basis.

References

  1. Albiac, F., Kalton, N.J.: Topics in Banach Space Theory. Graduate Texts in Mathematics. Springer, Berlin (2006)

    MATH  Google Scholar 

  2. Bessaga, C., Pełczyński, A.: On basis and unconditional convergence of series in Banach spaces. Stud. Math. 17, 151–164 (1958) http://eudml.org/doc/216910

    Article  Google Scholar 

  3. Faried, N., Abd El Kader, Z., Mehanna, A.A.: s-numbers of polynomials of shift operators on \(\ell ^{p}\) spaces \(1\leq p \leq \infty \). J. Egypt. Math. Soc. 1, 31–37 (1993)

    MATH  Google Scholar 

  4. Faried, N., Harisa, S.A.: Wide class of Banach spaces in which Grothendieck conjecture holds. Glob. J. Pure Appl. Math. 12(6), 5059–5077 (2016) http://www.ripublication.com/gjpam.htm

    Google Scholar 

  5. Knopp, K.: Theory and Application of Infinite Series. Blackie and Son Limited, London (1951)

    MATH  Google Scholar 

  6. Lindenstrauss, J., Lior, T.: Classical Banach Spaces I Sequence Spaces. Springer, Berlin (1977)

    MATH  Google Scholar 

  7. Makarov, B.M., Faried, N.: Some properties of operator ideals constructed by S-numbers, operator theory in functional spaces. In: Theory of Operators in Functional Spaces, pp. 206–211. The Academy of Science Novosibirsk, Russia (1977)

    Google Scholar 

  8. Morrell, J.S., Retherford, J.R.: p-trivial Banach spaces. Studia Math. XLIII 47, 2321 (1972). https://doi.org/10.4064/sm-43-1-1-25

    Article  MATH  Google Scholar 

  9. Munoz, F., Oja, E., Pineiro, C.: On α-nuclear operators with applications to vector-valued function spaces. J. Funct. Anal. 269, 2871–2889 (2015). https://doi.org/10.1016/j.jfa.2015.06.002

    MathSciNet  Article  MATH  Google Scholar 

  10. Pietsch, A.: Nuclear Locally Convex Spaces. Springer, Berlin (1972)

    Book  Google Scholar 

  11. Pietsch, A.: Operator Ideals. North-Holland, Amsterdam (1980)

    MATH  Google Scholar 

  12. Pietsch, A.: Eigenvalues and s-Numbers. Akademische-Verlag, Germany (1987)

    MATH  Google Scholar 

  13. Reinov, O.I.: On linear operators with s-nuclear adjoints, \(0 < s \leq 1\). J. Math. Anal. Appl. 415, 816–824 (2014). https://doi.org/10.1016/j.jmaa.2014.02.007

    MathSciNet  Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the reviewers for valuable comments and suggestions which helped improving this work.

Availability of data and materials

Not applicable.

Funding

This project was supported by the Deanship of scientific research at Prince Sattam Bin Abdulaziz University under the research project 2017/01/7606.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally and significantly in writing this paper. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Kottakkaran Sooppy Nisar.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Morsy, A., Faried, N., Harisa, S.A. et al. Operators constructed by means of basic sequences and nuclear matrices. Adv Differ Equ 2019, 504 (2019). https://doi.org/10.1186/s13662-019-2445-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13662-019-2445-1

MSC

  • 47B06
  • 47B38
  • 47B99
  • 39B42
  • 47A56

Keywords

  • Nuclear operators
  • s-numbers
  • Schauder basis
  • Basic sequence