Skip to main content

Advertisement

Existence and uniqueness of solutions for multi-term fractional q-integro-differential equations via quantum calculus

Article metrics

  • 212 Accesses

Abstract

In this investigation, by applying the definition of the fractional q-derivative of the Caputo type and the fractional q-integral of the Riemann–Liouville type, we study the existence and uniqueness of solutions for a multi-term nonlinear fractional q-integro-differential equations under some boundary conditions \({}^{c}D_{q}^{\alpha} x(t) = w ( t, x(t), (\varphi_{1} x)(t), (\varphi_{2} x)(t), {}^{c}D_{q} ^{ \beta_{1}} x(t), {}^{c}D_{q}^{\beta_{2}} x(t), \ldots, {}^{c}D _{q}^{ \beta_{n}}x(t) )\). Our results are based on some classical fixed point techniques, as Schauder’s fixed point theorem and Banach contraction mapping principle. Besides, some instances are exhibited to illustrate our results and we report all algorithms required along with the numerical result obtained.

Introduction

The subjects of fractional calculus and q-calculus are one of the significant branches in mathematical analysis. In 1910, the subject of q-difference equations was introduced by Jackson [1]. After that, at the beginning of the last century, studies on the q-difference equation appeared in much work, especially in [2,3,4,5,6]. For some earlier work on the topic, we refer to [7, 8], whereas the preliminary concepts on q-fractional calculus can be found in [9], as indicated: Perhaps Leibniz did not expect this number of applications when he sent a letter in 1695 to L’Hopital asking about the meaning of the derivative of order half. For countless applications on the q-fractional calculus, see for example [10,11,12,13,14,15,16,17].

In the recent years, there have appeared many papers about differential and integro-differential equations and inclusions which are valuable tools in the modeling of many phenomena in various fields of science [18,19,20,21,22,23,24,25]. In 2012, Ahmad et al. [26] discussed the existence and uniqueness of solutions for the fractional q-difference equations \({}^{c}D_{q}^{\alpha }u(t)= T ( t, u(t) ) \), \(\alpha _{1} u(0) - \beta _{1} D_{q} u(0) = \gamma _{1} u( \eta _{1})\) and \(\alpha _{2} u(1) - \beta _{2} D_{q} u(1) = \gamma _{2} u( \eta _{2})\), for \(t \in I\), where \(\alpha \in (1, 2]\), \(\alpha _{i}\), \(\beta _{i}\), \(\gamma _{i}\), \(\eta _{i}\) are real numbers, for \(i=1,2\) and \(T \in C(J \times \mathbb{R}, \mathbb{R})\). In 2013, Zhao el al. [27] reviewed the q-integral problem \((D_{q}^{\alpha }u)(t) + f(t, u(t) )=0\), with the conditions that \(u(1)\), \(u(0)\) are equal to \(\mu I_{q}^{\beta }u(\eta ) \), 0, respectively, for almost all \(t \in (0,1)\), where \(q \in (0,1)\) and α, β, η belong to \((1, 2]\), \((0, 2]\), \((0,1)\), respectively, μ is positive real number, \(D_{q}^{\alpha }\) is the q-derivative of Riemann–Liouville and we have a real-valued continuous map u defined on \(I \times [0, \infty )\). In 2014, Ahmad et al. [28] considered the problem

$$ \textstyle\begin{cases} {}^{c}D^{\beta }_{q} ( {}^{c}D^{\gamma }_{q} + \lambda ) u(t) = p f(t, u(t)) + k I_{q}^{\xi }g(t, u(t)), \\ \alpha _{1} u(0) - \beta _{1} (t^{(1-\gamma )} D_{q} u(0))|_{t=0}= \sigma _{1} u(\eta _{1}), \qquad \alpha _{2} u(1) + \beta _{2} D_{q} u(1)= \sigma _{2} u(\eta _{2}), \end{cases} $$

for \(t, q \in [0,1]\), where \({}^{c}D_{q}^{\beta }\) and \({}^{c}D_{q} ^{\gamma }\) denote the fractional q-derivative of the Caputo type, \(0 < \beta \), \(\gamma \leq 1\), \(I_{q}^{\xi }(.) \) denotes the Riemann–Liouville integral with \(\xi \in (0, 1)\), f, g are given continuous functions, λ and p, k are real constants and \(\alpha _{i}, \beta _{i}, \sigma _{i}\in \mathbb{R}\), \(\eta _{i} \in (0, 1)\), \(i=1,2\). Also, one may refer to some research of Ahmad et al., in the recent years in [12, 14, 29,30,31]. In 2016, Abdeljawad et al. [32] stated and proved a new discrete q-fractional version of Gronwall inequality, \({}_{q}C_{a}^{\alpha }u(t) = T ( t, u(t) )\), where \(u(a)=\gamma \), such that \(\alpha \in (0, 1]\), \(a \in \mathbb{T}_{q}= \{q^{n}: n \in \mathbb{Z} \}\), t belongs to \(\mathbb{T}_{a}= [0, \infty )_{q} = \{ q^{-i} a: i=0, 1, 2, \ldots \} \), \({}_{q}C_{a}^{\alpha }\) means the Caputo fractional difference of order α and \(T(t, x)\) fulfills a Lipschitz condition for all t and x. In 2019, Samei et al. [25] investigated the existence of solutions for equations and inclusions of multi-term fractional q-integro-differential with non-separated and initial boundary conditions

In this article, motivated by these achievements and the following results, we are working to stretch out solutions for the multi-term nonlinear fractional q-integro-differential equation with boundary conditions,

$$ {}^{c}D_{q}^{\alpha } x(t) = w \bigl( t, x(t), (\varphi _{1} x) (t), ( \varphi _{2} x) (t), {}^{c}D_{q}^{ \beta _{1}} x(t), {}^{c}D_{q}^{\beta _{2}} x(t), \ldots , {}^{c}D_{q}^{ \beta _{n}}x(t) \bigr), $$
(1)

under conditions \(x(0) + a x(1)=0\) and \(x'(0) + bx'(1)=0\), for \(t \in J: =[0,1]\) and all \(q \in (0,1)\), where \(1 < \alpha < 2\), \(\beta _{i} \in (0,1)\) with \(i=1, 2,\dots , n\), \(a, b\ne -1\), \(w : J {\times } \mathbb{R}^{n+3} \to \mathbb{R}\) is continuous for all variables and the mappings \(\gamma _{j}\) map \(J\times J\) to \(\mathbb{R}^{+}\) such that \(\sup_{t\in J} \vert \int _{0}^{t} \gamma _{j} (t,s) \,d_{q}s \vert \), where \(j=1,2\), are finite, the maps \(\varphi _{j}\), where \(j=1,2\), are defined by \((\varphi _{j} u)(t) = \int _{0}^{t} \gamma _{j}(t,s) u(s) \,d_{q}s\).

The rest of the paper is arranged as follows: in Sect. 2, we recall some preliminary concepts and fundamental results of q-calculus. Section 3 is devoted to the main results, while examples illustrating the obtained results and algorithm for the problems are presented in Sect. 4.

Preliminaries

First of all, we point out some of the materials on the fractional q-calculus and fundamental results of it which needed in the next sections (for more information, consider [1, 9,10,11, 33]). Then, some well-known theorems of fixed point theorems are presented.

Assume that \(q \in (0,1)\) and \(a \in \mathbb{R}\). Define \([a]_{q}=\frac{1-q ^{a}}{1-q}\) [1]. The power function \((x-y)_{q} ^{n}\) with \(n \in \mathbb{N}_{0} \) is \((x-y)_{q}^{(n)}= \prod_{k=0} ^{n-1} (x - yq^{k})\) and \((x-y)_{q}^{(0)}=1\) where \(x, y \in \mathbb{R}\) and \(\mathbb{N}_{0} := \{ 0\} \cup \mathbb{N}\) [10]. Also, for \(\alpha \in \mathbb{R}\) and \(a \neq 0\), we have \((x-y)_{q}^{(\alpha )}= x^{\alpha }\prod_{k=0} ^{\infty }(x-yq^{k}) / (x - yq^{\alpha + k})\). If \(y=0\), then it is clear that \(x^{(\alpha )}= x^{\alpha }\) (Algorithm 1). The q-Gamma function is given by \(\varGamma _{q}(z) = (1-q)^{(z-1)} / (1-q)^{z -1}\), where \(z \in \mathbb{R} \backslash \{0, -1, -2, \ldots \}\) [1]. Note that \(\varGamma _{q} (z+1) = [z]_{q} \varGamma _{q} (z)\). The value of the q-Gamma function, \(\varGamma _{q}(z)\), for input values q and z with counting the number of sentences n in summation is addressed by a simplifying analysis. For this design, we present a pseudo-code description of the technique for estimating q-Gamma function of order n which show in Algorithm 2. The q-derivative of the function f is defined by \((D_{q} f)(x) = \frac{f(x) - f(qx)}{(1- q)x}\) and \((D_{q} f)(0) = \lim_{x \to 0} (D _{q} f)(x)\), which is shown in Algorithm 3 [4]. Also, the higher order q-derivative of a function f is defined by \((D_{q}^{n} f)(x) = D_{q}(D_{q}^{n-1} f)(x)\) for all \(n \geq 1\), where \((D_{q}^{0} f)(x) = f(x)\) [4]. The q-integral of a function f defined on \([0,b]\) is defined by

$$ I_{q} f(x) = \int _{0}^{x} f(s) \,d_{q} s = x(1- q) \sum_{k=0}^{\infty } q^{k} f\bigl(x q^{k}\bigr), $$

for \(0 \leq x \leq b\), provided that the series absolutely converges [4]. For any positive number α and β, the q-Beta function is defined by [33]

$$ B_{q}(\alpha , \beta ) = \int _{0}^{1} (1- qs)_{q}^{(\alpha -1)} s^{ \beta -1} \,d_{q}s. $$
(2)

The q-derivative of the function f is defined by \((D_{q} f)(x) = \frac{f(x) - f(qx)}{(1- q)x}\) and \((D_{q} f)(0) = \lim_{x \to 0} (D _{q} f)(x)\), which is shown in Algorithm 3 [4, 11, 33]. If a is in \([0, b]\), then

$$ \int _{a}^{b} f(u) \,d_{q} u = I_{q} f(b) - I_{q} f(a) = (1-q) \sum _{k=0} ^{\infty } q^{k} \bigl[ b f\bigl(b q^{k}\bigr) - a f\bigl(a q^{k}\bigr) \bigr], $$

whenever the series exists, which is shown in Algorithm 4. The operator \(I_{q}^{n}\) is given by \((I_{q}^{0} h)(x) = h(x) \) and

$$ \bigl(I_{q}^{n} h\bigr) (x) = \bigl(I_{q} \bigl(I_{q}^{n-1} h\bigr)\bigr) (x), $$

for \(n \geq 1\) and \(g \in C([0,b])\) [4]. It has been proved that \((D_{q} (I_{q} f))(x) = f(x) \) and \((I_{q} (D_{q} f))(x) = f(x) - f(0)\) whenever f is continuous at \(x =0\) [4]. The fractional Riemann–Liouville type q-integral of the function f on J, of \(\alpha \geq 0\) is given by \((I_{q}^{0} f)(t) = f(t) \) and

$$ \bigl(I_{q}^{\alpha }f\bigr) (t) = \frac{1}{\varGamma _{q}(\alpha )} \int _{0}^{t} (t- qs)^{(\alpha - 1)} f(s) \,d_{q}s, $$

for \(t \in J\) and \(\alpha >0\) [31, 34]. Also, the fractional Caputo type q-derivative of the function f is given by

$$ \begin{aligned} \bigl( {}^{c}D_{q}^{\alpha }f \bigr) (t) & = \bigl( I_{q}^{[\alpha ]-\alpha }\bigl( D_{q}^{[\alpha ]} f\bigr) \bigr) (t) \\ & = \frac{1}{\varGamma _{q} ([\alpha ]-\alpha )} \int _{0} ^{t} (t- qs)^{ ([\alpha ]-\alpha -1 )} \bigl( D_{q}^{[ \alpha ]} f \bigr) (s) \,d_{q}s, \end{aligned} $$
(3)

for \(t \in J\) and \(\alpha >0\) [31, 34]. It has been proved that \(( I_{q}^{\beta } (I_{q}^{\alpha } f)) (x) = ( I_{q} ^{\alpha + \beta } f) (x)\) and \((D_{q}^{\alpha } (I_{q}^{\alpha } f) ) (x) = f(x)\), where \(\alpha , \beta \geq 0\) [34]. By using Algorithm 2, we can calculate \((I_{q}^{\alpha }f)(x)\) which is shown in Algorithm 5.

Algorithm 1
figurea

The proposed method for calculation of \((a-b)_{q}^{(\alpha)}\)

Algorithm 2
figureb

The proposed method for calculation of \(\varGamma_{q}(x)\)

Algorithm 3
figurec

The proposed method for calculation of \((D_{q} f)(x)\)

Algorithm 4
figured

The proposed method for calculation of \(\int_{a}^{b} f(r) \,d_{q} r\)

Algorithm 5
figuree

The proposed method for calculation of \((I_{q}^{\alpha}f)(x)\)

Theorem 1

(Schauder’s fixed point theorem [35])

LetEbe a closed, convex and bounded subset of a Banach spaceXand self-mapTdefined onEbe continuous. ThenThas a fixed point inEwhenever \(T(E)\)is a relatively compact subset ofX.

Main results

Here, we investigate the inclusion of fractional q-derivative (1). First, we recall the following key result.

Lemma 2

([17])

Let \(\alpha >0\)and \(n=[\alpha ]+1\). Then \({I_{q}^{\alpha }}^{c}D_{q} ^{\alpha } x(t) = x(t) + c_{0} + c_{1} t + c_{2} t + \cdots + c_{n-1} t^{n-1}\), where \(c_{0}, c_{1}, \ldots , c_{n-1}\)belong to \(\mathbb{R}\).

Let us define the set X of all \(f \in C(I)\), such that \({}^{c}D_{q} ^{{\beta }_{i}} x \) belongs to \(C(I)\) (\(i=1, 2, \dots , n\)) and \(q\in (0,1)\), where \(0<\beta _{i}<1\). It is known that \((X,\| \cdot \|)\) with the norm \(\Vert x \Vert = \max_{t\in J} \vert x(t) \vert + \sum_{i=1}^{n} \max_{t\in J} \vert {}^{c}D_{q}^{ \beta _{i}} x(t) \vert \), is a Banach space.

Lemma 3

Suppose thatfin \(C(J)\)and \(\alpha \in (1,2)\). Then the boundary value problem

$$ \textstyle\begin{cases} {}^{c}D_{q}^{\alpha } x(t)=f(t), \quad t\in J, \\ x(0) + a x(1) = 0, \qquad x'(0) + bx'(1) =0, \end{cases} $$

is equivalent to the followingq-integral equation:

$$ x(t) = I_{q}^{\alpha }f(t) - I_{q}^{\alpha }f(1) + \frac{ab - b(1+a) t}{(1+a)(1+b) } I_{q}^{\alpha -1} f(1). $$
(4)

Proof

First of all, we see that Lemma 2 implies that

$$ x(t)= \int _{0}^{t}\frac{(t-qs)^{(\alpha -1)}}{\varGamma _{q}(\alpha )}f(s) \,d_{q}s+c_{1}t+c_{2}, $$
(5)

where \(c_{1}\), \(c_{2}\) are arbitrary constants. By applying the boundary conditions we find

$$\begin{aligned}& c_{1} =- \frac{b}{1+b} I_{q}^{\alpha -1} f(1), \\& c_{2} = -\frac{a}{1+a} I_{q}^{\alpha }f(1) +\frac{ab}{(1+a)(1+b)} I _{q}^{\alpha -1} f(1). \end{aligned}$$

Substituting \(c_{1}\) and \(c_{2}\) in (5) we get (4). The converse follows by direct computation. The proof is completed. □

Theorem 4

Let \(\ell \in L^{\frac{1}{\kappa }}(J,\mathbb{R}^{+})\), \(0<\kappa < \alpha -1\)such that

$$ \vert F_{t,x_{i},u_{i}} - F_{t,x'_{i},v_{i}} \vert \leq \ell (t) \Biggl( \sum_{i=1}^{3} \bigl\vert x_{i} - x'_{i} \bigr\vert + \sum _{i=1}^{n} \vert u_{i} - v _{i} \vert \Biggr), $$

for each \(t\in J\), \(x_{i}\), \(x'_{i}\), with \(i=1,2,3\)and \(u_{1}, u_{2}, \dots , u_{n}\), \(v_{1}, v_{2}, \dots , v_{n} \in \mathbb{R}\), where \(F_{t,x_{i},u_{i}} = w(t, x_{1}, x_{2}, x_{3}, u_{1}, u_{2}, \dots , u _{n})\)and \(F_{t,x'_{i},v_{i}} =w (t, x'_{1}, x'_{2}, x'_{3}, v_{1}, v _{2}, \dots , v_{n})\). Then the problem (1) has a unique solution provided

$$\begin{aligned} \Delta =& (1 + {}_{0} \lambda _{1} + {}_{0}\lambda _{2}) \Biggl[ \frac{( 1 + 2a) \ell ^{\ast } k_{1}}{ (1+a) \varGamma _{q}(\alpha )} + \frac{b \ell ^{\ast } k_{2}}{(1 + a)(1+b) \varGamma _{q}(\alpha -1)} \\ &{} + \sum_{i=1}^{n} \biggl( \frac{ \varGamma _{q}(\alpha - \kappa ) \ell ^{\ast } k_{2}}{ \varGamma _{q}( \alpha -1) \varGamma _{q}( \alpha -\beta _{i} - \kappa +1)} + \frac{b \ell ^{\ast } k_{2} }{(1+b) \varGamma _{q}(2- \beta _{i}) \varGamma _{q}(\alpha -1)} \biggr) \Biggr] \\ < &1, \end{aligned}$$
(6)

where

$$ {}_{0}\lambda _{i} = \sup_{t\in J} \biggl\vert \int _{0}^{t} \gamma _{i} (t,s) \,d_{q}s \biggr\vert ,\quad i=1,2, \qquad \ell ^{ \ast } = \biggl( \int _{0}^{1} \bigl(\ell (s) \bigr)^{\frac{1}{ \kappa }} \,d_{q}s \biggr)^{\kappa }, $$

\(k_{1} = ( \frac{1-\kappa }{ \alpha - \kappa } )^{1- \kappa }\)and \(k_{2}= ( \frac{1- \kappa }{ \alpha -\kappa -1} ) ^{ 1-\kappa }\).

Proof

Briefly, we put

$$ F_{u(s)}= w \bigl( s, u(s),(\varphi _{1} u) (s), ( \varphi _{2} u) (s), {}^{c}D_{q}^{\beta _{1}} u(s), {}^{c}D_{q}^{\beta _{2}} u(s), \dots , {}^{c}D_{q}^{\beta _{n}} u(s) \bigr), $$

and using Lemma 3, we define a self-map T on X by

$$ (Tu) (t) = I_{q}{\alpha } F_{u(t)} - I_{q}^{\alpha } F_{u(1)} + g(t)I _{q}^{\alpha -1} F_{u(1)}, $$

where \(a_{0} = \frac{a}{1+a}\) and \(g(t) = \frac{ab-b(1+a)t }{(1+a)(1+b) }\) is a real-valued function on J. At present, by using the Hölder inequality, for each \(u, v\in X\) and \(t\in J\), we get

$$\begin{aligned} \bigl\vert (Tu) (t) - (Tv) (t) \bigr\vert ={}& \bigl\vert I_{q}^{\alpha } ( F _{u(t)}- F_{v(t)} ) - a_{0} I_{q}^{\alpha } ( F_{u(1)} - F _{v(1)} ) \\ & {} + g(t) I_{q}^{\alpha -1} ( F_{u(1)} - F_{v(1)} ) \bigr\vert \\ \leq{}& I_{q}^{\alpha } \vert F_{u(t)} - F_{v(t)} \vert + a_{1} I _{q}^{\alpha } \vert F_{u(1)} - F_{v(1)} \vert \\ & {} + \bigl\vert g(t) \bigr\vert I_{q}^{\alpha -1} \vert F_{u(1)} - F_{v(1)} \vert \\ \leq{}& I_{q}^{\alpha } \Biggl(\ell (t) \Biggl( \bigl\vert u(t)-v(t) \bigr\vert + \sum_{i=1} ^{2} \bigl\vert (\varphi _{i} u) (t) - (\varphi _{i} v) (t) \bigr\vert \\ & {} + \sum_{i=1}^{n} \bigl\vert {}^{c}D_{q}^{\beta _{i}} u(t) - {} ^{c}D_{q}^{\beta _{i}} v(t) \bigr\vert \Biggr) \Biggr) \\ & {} + a_{1} I_{q}^{\alpha } \Biggl( \ell (1) \Biggl( \bigl\vert u(1) - v(1) \bigr\vert \\ & {} + \sum_{i=1}^{2} \bigl\vert ( \varphi _{i} u) (1) - (\varphi _{i} v) (1) \bigr\vert \\ & {} + \sum_{i=1}^{n} \bigl\vert {}^{c}D_{q}^{\beta _{i}} u(1) - {} ^{c}D_{q}^{\beta _{i}} v(1) \bigr\vert \Biggr) \Biggr) \\ & {} + a_{2} \bigl(1+ 2 \vert a \vert \bigr) I_{q}^{\alpha -1} \Biggl( \ell (1) \Biggl( \bigl\vert u(1)-v(1) \bigr\vert \\ & {} + \sum_{i=1}^{2} \bigl\vert ( \varphi _{i} u) (1) - (\varphi _{i} v) (1) \bigr\vert \\ & {} + \sum_{i=1}^{n} \bigl\vert {}^{c}D_{q}^{ \beta _{i}} u(1) - {}^{c}D_{q}^{ \beta _{i}} v(1) \bigr\vert \Biggr) \Biggr) \\ \leq{}& b_{1} d \int _{0}^{t} (t-qs)^{ (\alpha -1)} \ell (s) \,d_{q}s \\ & {} + a_{1} b_{1} d \int _{0}^{1} (1-qs)^{(\alpha -1)} \ell (s) \,d_{q}s \\ &{} + a_{2} b_{2} \bigl(1 +2 \vert a \vert \bigr) d \int _{0}^{1} (1-qs)^{(\alpha - 2)} \ell (s) \,d_{q}s \\ \leq{}& b_{1} d \biggl( \int _{0}^{t} \bigl( (t-qs)^{(\alpha -1)} \bigr) ^{\frac{1}{1- \kappa }} \,d_{q}s \biggr)^{1-\kappa } \biggl( \int _{0} ^{t} \bigl( \ell (s) \bigr)^{\frac{1}{ \kappa }} \,d_{q}s \biggr) ^{\kappa } \\ & {} + a_{1} b_{1} d \biggl( \int _{0}^{1} \bigl( (1-qs)^{ ( \alpha -1)} \bigr)^{ \frac{1}{1 - \kappa }} \,d_{q}s \biggr)^{1 - \kappa } \\ & {} \times \biggl( \int _{0}^{1} \bigl( \ell (s) \bigr)^{\frac{1}{ \kappa }} \,d_{q}s \biggr)^{\kappa } \\ & {} + a_{2} b_{2} \bigl(1 +2 \vert a \vert \bigr) d \biggl( \int _{0}^{1} \bigl((1-qs)^{( \alpha - 2)} \bigr)^{\frac{1}{ 1 - \kappa }} \,d_{q}s \biggr)^{1- \kappa } \\ & {} \times \biggl( \int _{0}^{1} \bigl( \ell (s) \bigr)^{ \frac{1}{ \kappa }} \,d_{q}s \biggr)^{ \kappa } \\ \leq{}& b_{1} \ell ^{\ast } d k_{1} + a_{1} b_{1} \ell ^{\ast }d k_{1} + a_{2} b_{2} \bigl( 1 + 2 \vert a \vert \bigr) \ell ^{ \ast } d k_{2} \\ \leq{}& \biggl[ \frac{(1 +2 \vert a \vert )b_{1} \ell ^{ \ast }}{ \vert 1+a \vert } k_{1} + a _{2} \bigl(1+2 \vert a \vert \bigr)b_{2} \ell ^{\ast } k_{2} \biggr] d, \end{aligned}$$

where \(d=\|u-v\|\), \(a_{1} =\frac{|a|}{|1+a|}\), \(a_{2} = \frac{|b|}{|1 + a||1+b|}\), \(b_{1} =\frac{1+ {}_{0}\lambda _{1} + {}_{0}\lambda _{2}}{ \varGamma _{q}( \alpha )}\) and \(b_{2} =\frac{ 1+ {}_{0}\lambda _{1} + {}_{0}\lambda _{2}}{ \varGamma _{q}( \alpha -1)}\). Also, we have

$$\begin{aligned} \bigl\vert {}^{c}D_{q}^{\beta _{i}}(Tu) (t) - {}^{c}D_{q}^{ \beta _{i}}(Tv) (t) \bigr\vert ={}& \bigl\vert I_{q}^{1-\beta _{i}} (Tu)'(t) - I_{q}^{1-\beta _{i}}(Tv)'(t) \bigr\vert \\ ={}& \biggl\vert I_{q}^{1-\beta _{i}} \biggl( I_{q}^{\alpha -1} F_{u(s)} - \frac{b}{1+b} I_{q}^{\alpha -1} F_{u(1)} \biggr) \\ & {}- I_{q}^{1 - \beta _{i}} \biggl( I_{q}^{\alpha -1} F _{ v(s)} - \frac{b}{1+b} I_{q}^{\alpha -1} F_{v(1)} \biggr) \biggr\vert \\ \leq{}& I_{q}^{1 - \beta _{i}} \bigl(I_{q}^{\alpha -1} \vert F_{u(s)} - F_{v(s)} \vert \bigr) \\ & {} + a_{3} I_{q}^{1 -\beta _{i}} \bigl( I_{q}^{\alpha -1} \vert F_{u(s)} - F_{v(s)} \vert \bigr) \\ \leq{}& b_{1} d I_{q}^{1-\beta _{i}} \biggl( \int _{0}^{s} (s-q\tau )^{( \alpha -2)} \ell (\tau ) \,d_{q}\tau \biggr) \,d_{q}s \\ &{} + a_{3} b_{2} d I_{q}^{1-\beta _{i}} \biggl( \int _{0}^{1} (1-q \tau )^{(\alpha -2)} \ell (\tau ) \,d_{q}\tau \biggr) \,d_{q}s \\ \leq{}& \frac{b_{2} \ell ^{\ast } d }{ \varGamma _{q}(1-\beta _{i})} k_{2} \int _{0}^{t} (t-qs)^{(-\beta _{i})} s^{\alpha -\kappa -1} \,d_{q}s \\ &{} + \frac{a_{3} b_{2} \ell ^{\ast } d }{ \varGamma _{q}(1-\beta _{i})} k_{2} \int _{0}^{t} (t-qs)^{(-\beta _{i})} \,d_{q} s \\ \leq{}& \frac{b_{2} \ell ^{\ast }d }{ \varGamma _{q}(1-\beta _{i}) } k_{2} \int _{0}^{1} (1-qs )^{(-\beta _{i})} s^{\alpha -\kappa -1} \,d_{q} s \\ & {} + \frac{a_{3} b_{2} \ell ^{\ast }d}{ \vert 1+b \vert ) \varGamma _{q}(2- \beta _{i}) } k_{2}, \end{aligned}$$

where \(a_{3} =\frac{|b|}{|b+1|}\). Since

$$ B_{q}(\alpha -\kappa , 1-\beta _{i}) = \int _{0}^{1} (1-qs)^{(-\beta _{i})} s^{ \alpha - \kappa -1} \,d_{q}s = \frac{ \varGamma _{q} (\alpha - \kappa ) \varGamma _{q} (1-\beta _{i})}{ \varGamma _{q}( \alpha -\beta _{i} - \kappa + 1)}, $$

we obtain

$$\begin{aligned} \bigl\vert {}^{c}D_{q}^{\beta _{i}} (Tu) (t) - {}^{c}D_{q}^{\beta _{i}} (T v) (t) \bigr\vert & \leq \biggl[\frac{b_{2} \varGamma (\alpha -\kappa ) \ell ^{\ast }}{ \varGamma _{q}( \alpha - \beta _{i}-\kappa +1)} k_{2} + \frac{a _{3} b_{2} \ell ^{\ast }}{ \varGamma _{q}( 2 -\beta _{i}) } k_{2} \biggr]d, \end{aligned}$$

for all \(i=1,2,\dots ,n\). Hence, we get

$$\begin{aligned} \Vert Tu - Tv \Vert \leq{}& \Biggl[ \frac{b_{1}(1+2 \vert a \vert ) \ell ^{\ast }}{ \vert 1+a \vert } k_{1} + a_{2} b_{2} \ell ^{\ast } k_{2} \\ & {} + \sum_{i=1}^{n} \biggl( \frac{ b_{2} \ell ^{\ast } \varGamma _{q}( \alpha - \kappa )}{ \varGamma _{q}( \alpha - \beta _{i} - \kappa + 1)} k _{2} + \frac{a_{3} b_{2} \ell ^{\ast }}{\varGamma _{q}( 2-\beta _{i})} k _{2} \biggr) \Biggr] d \\ = {}&\Delta d. \end{aligned}$$

By assumption, \(\Delta < 1\), thus the mapping F is a contraction and so by using the Banach contraction mapping principle, F has a unique fixed point which is the unique solution of the problem (1). This completes the proof. □

Corollary 1

Assume that there exists \(M>0\)such that

$$ \vert F_{t,x_{i},u_{i}} - F_{t, x'_{i}, v_{i}} \vert \leq M \Biggl[ \sum _{i=1}^{3} \bigl\vert x_{i} -x'_{i} \bigr\vert + \sum _{i=1}^{n} \vert u_{i}-v_{i} \vert \Biggr], $$

for each \(t\in J\)and real numbers \(x_{i}\), \(x'_{i}\)for \(i=1, 2, 3\), \(u_{i}\), \(v_{i}\)for \(i=1,2,\dots , n\), where \(F_{t,x_{i}, u_{i}} = f(t, x_{1}, x_{2}, x_{3}, u_{1}, u_{2}, \dots ,u_{n})\), and \(F_{t, x'_{i}, v_{i}} =f (t, x'_{1}, x'_{2}, x'_{3}, v_{1}, v_{2}, \dots , v_{n})\). Then the problem (1) has a unique solution whenever

$$\begin{aligned} &(1+ {}_{0}\lambda _{1} + {}_{0}\lambda _{2}) \Biggl[ \frac{ [(1+2a)(1+b)+ b \alpha ] M }{(1+a)(1+b)\varGamma _{q} ( \alpha +1)} \\ &\quad {} + \sum_{i=1}^{n} \biggl( \frac{M}{\varGamma _{q}(\alpha -\beta _{i}+1)}+ \frac{b M}{(1+b) \varGamma _{q}( 2-\beta _{i}) \varGamma _{q}(\alpha )} \biggr) \Biggr] < 1, \end{aligned}$$

where \({}_{0}\lambda _{i} = \sup_{t\in J} \vert \int _{0}^{t} \gamma _{i}(t,s) \,d_{q}s \vert \), \(i=1,2\).

Theorem 5

Let \(f : J {\times }\mathbb{R}^{n+3}\to \mathbb{R} \)be a continuous function. In addition, we assume that there exist a positive constant \(\kappa < \alpha - 1\)and a function \(\ell \in L^{\frac{1}{\kappa }}( J, \mathbb{R}^{+})\). Then problem (1) has a solution whenever

$$ \vert F_{t, x_{j}, u_{i}} \vert \leq \ell (t) + \sum _{j=1}^{3} c _{j} \vert x_{j} \vert ^{\nu _{j}} + \sum _{i=1}^{n} d_{i} \vert u_{i} \vert ^{\eta _{i}}, $$
(7)

where \(c_{j}\), \(\nu _{j}\)belong to \([0, \infty )\), \((0,1)\), respectively, for \(j=1,2,3\)and \(d_{i}\), \(\eta _{i}\)belong to \([0, \infty )\), \((0,1)\), respectively, for \(i=1,2, \dots , n\), or whenever

$$ \vert F_{t, x_{j}, u_{i}} \vert \leq \sum _{i=1}^{3} c_{j} \vert x_{j} \vert ^{ \nu _{j}} + \sum _{i=1}^{n} d_{i} \vert u_{i} \vert ^{\eta _{i}}, $$
(8)

where \(c_{j}\), \(\nu _{j}\)belong to \((0, \infty )\), \((1,\infty )\), respectively, for \(j=1,2,3\)and \(d_{i}\), \(\eta _{i}\)belong to \((0, \infty )\), \((1,\infty )\), respectively, for \(i=1,2, \dots , n\).

Proof

First, we assume that the condition (7) is satisfied. Recall that \(k_{1}= ( \frac{1-\kappa }{\alpha - \kappa } )^{1- \kappa }\) and \(k_{2}= ( \frac{1-\kappa }{\alpha - \kappa - 1} )^{1- \kappa }\). Let \(B_{r}\) is the set of all \(u \in X\) such that \(\|u\| \) less than or equal to r; here

$$\begin{aligned}& r \geq \max \Bigl\{ \bigl( ( n + 4) A_{0} c_{1} \bigr)^{ \frac{1}{1 - \nu _{1}}}, \bigl( (n + 4 ) A_{0} c_{2} {}_{0}\lambda _{1}^{\nu _{2}} \bigr)^{ \frac{1}{ 1 - {\nu _{2}}}}, \\& \hphantom{r \geq}{} \bigl( (n+4) A_{0} c_{3} {}_{0}\lambda _{2}^{\nu _{3}} \bigr) ^{ \frac{1}{ 1 - \nu _{3}}}, \max_{i} \bigl( (n + 4) A_{0}d_{i} \bigr) ^{ \frac{1}{ 1 - \eta _{i}}}, (n+4)K_{0} \Bigr\} , \\& A_{0} = \frac{(1 + 2 \vert a \vert )[1+(1+a) \vert b \vert ] }{ (1+a)(1+b) \varGamma _{q}( \alpha +1)} \\& \hphantom{A_{0} =}{} + \sum_{i=1}^{n} \biggl(\frac{1}{ \varGamma _{q}( \alpha -\beta _{i}+1)} + \frac{ \vert b \vert }{ \vert 1+b \vert \varGamma _{q}(\alpha ) \varGamma _{q}( 2-\beta _{i})} \biggr), \\& K_{0} = \frac{( 1+ 2 \vert a \vert )\ell ^{*}}{ \vert 1+a \vert \varGamma _{q}( \alpha )} k _{1} + \frac{ \vert b \vert (1+2 \vert a \vert )\ell ^{*}}{ \vert 1+a \vert \vert 1+b \vert \varGamma _{q}( \alpha -1)} k_{2} \\& \hphantom{K_{0} =}{} + \frac{1}{\varGamma _{q}(\alpha -1)} \sum_{i=1}^{n} \biggl(\frac{ \varGamma _{q}( \alpha -l) \ell ^{*}}{ \varGamma _{q}(\alpha -\beta _{i}-\kappa +1)} k_{2} + \frac{ \vert b \vert \ell ^{*}}{ \vert 1+b \vert \varGamma _{q} (2-\beta _{i}) } k _{2} \biggr), \end{aligned}$$

and \(\ell ^{*} = ( \int _{0}^{1} (\ell (t) )^{ \frac{1}{ \kappa }} \,d_{q}s )^{\kappa }\). Note that \(B_{r}\) is a closed, bounded and convex subset of the Banach space X. For each \(u \in B_{r}\), we obtain

$$\begin{aligned} \bigl\vert (Tu) (t) \bigr\vert = {}& \bigl\vert I_{q}^{\alpha } F_{u(t)} - a_{0} I_{q}^{\alpha }F_{u(1)} + g(t)I_{q}^{\alpha -1} F_{u(1)} \bigr\vert \\ \leq{}& I_{q}^{\alpha } \vert F_{u(t)} \vert + \frac{ \vert a \vert }{ \vert 1+a \vert } I _{q}^{\alpha } \vert F_{u(1)} \vert + \frac{ \vert b \vert (1+2 \vert a \vert )}{ \vert 1+a \vert \vert 1+b \vert } I_{q}^{\alpha - 1} \vert F_{u(1)} \vert \\ \leq{}& I_{q}^{\alpha }\ell (t) + A_{r} I_{q}^{\alpha }(1) + \frac{ \vert a \vert }{ \vert 1+a \vert } I_{q}^{\alpha }\ell (1)+ \frac{ \vert a \vert }{ \vert 1+a \vert } A_{r} I _{q}^{\alpha }(1) \\ & {} + \frac{ \vert b \vert (1+2 \vert a \vert )}{ \vert 1+a \vert \vert 1+b \vert } I_{q}^{\alpha -1} \ell (1) + \frac{ \vert b \vert (1+2 \vert a \vert )}{ \vert 1+a \vert \vert 1+b \vert } A_{r} I_{q}^{\alpha -1} (1) \\ \leq{}& \frac{1}{\varGamma _{q}( \alpha )} \biggl( \int _{0}^{t} \bigl((t-qs)^{( \alpha -1)} \bigr)^{\frac{1}{1-l}} \,d_{q}s \biggr)^{1-l} \\ &{} \times \biggl( \int _{0}^{t} \bigl(\ell (s) \bigr)^{ \frac{1}{l}} \,d_{q}s \biggr)^{l} \\ &{} + \frac{ \vert a \vert }{ \vert 1+a \vert \varGamma _{q} (\alpha )} \biggl( \int _{0} ^{1} \bigl((1-qs)^{ (\alpha -1)} \bigr)^{ \frac{1}{1-l}} \,d_{q}s \biggr) ^{1-l} \\ & {} \times \biggl( \int _{0}^{1} \bigl( m(s) \bigr)^{ \frac{1}{l}} \,d_{q}s \biggr)^{l} \\ & {} + \frac{ \vert b \vert (1+2 \vert a \vert )}{ \vert 1+a \vert \vert 1+b \vert \varGamma _{q}(\alpha -1)} \biggl( \int _{0}^{1} \bigl((1-qs)^{(\alpha -2)} \bigr)^{ \frac{1}{1-l}} \,d_{q}s \biggr)^{1-l} \\ & {} \times \biggl( \int _{0}^{1} \bigl(m(s) \bigr)^{\frac{1}{l}} \,d_{q} s \biggr)^{l} \\ & {} + \frac{(1+2 \vert a \vert )(1+(1+\alpha ) \vert b \vert )}{ \vert 1+a \vert \vert 1+b \vert \varGamma _{q}( \alpha + 1)} A_{r} \\ \leq{}& \frac{(1+2 \vert a \vert ) \ell ^{*}}{ \vert 1+a \vert \varGamma _{q}(\alpha )} k_{1} + \frac{ \vert b \vert (1+2 \vert a \vert ) \ell ^{*}}{ \vert 1+a \vert \vert 1+b \vert \varGamma _{q}( \alpha -1)} k_{2} \\ & {} + \frac{(1+2 \vert a \vert )(1+(1+\alpha ) \vert b \vert )}{ \vert 1+a \vert \vert 1+b \vert \varGamma _{q}( \alpha +1)} A_{r}, \end{aligned}$$

where \(a_{0}\) and \(g(t)\) as defined in Theorem 4 (i.e. \(a_{0} = \frac{a}{1+a}\) and \(g(t) = \frac{ab-b(1+a)t }{(1+a)(1+b) }\), \(t\in J\)),

$$\begin{aligned} F_{u(s)} &= f \bigl(s, u(s),(\varphi _{1} u) (s),( \varphi _{2} u) (s), {}^{c}D^{\beta _{1}} u(s), {}^{c}D^{\beta _{2}} u(s), \dots , {}^{c}D ^{\beta _{n}} u(s) \bigr) \end{aligned}$$

and \(A_{r} = c_{1}r^{\nu }_{1} + c_{2} {}_{0}\lambda _{1}^{\nu _{2}} r ^{\nu _{2}} + c_{3} {}_{0}\lambda _{2}^{\nu _{3}} r^{\nu _{3}} + \sum_{i=1}^{n} d_{i} r^{\eta _{i}}\). Also, we have

$$\begin{aligned} \bigl\vert {}^{c}D_{q}^{\beta _{i}}(Tu) (t) \bigr\vert ={}& \bigl\vert I_{q}^{1- \beta _{i}} (Tu)'(t) \bigr\vert \\ ={}& \biggl\vert I_{q}^{1-\beta _{i}} \biggl( I_{q}^{\alpha -1} F_{u(s)} - \frac{b}{1+b} I_{q}^{\alpha -1} F_{u(1)} \biggr) \biggr\vert \\ \leq{}& \int _{0}^{t} \frac{(t-qs)^{(-\beta _{i})}}{ \varGamma _{q}(1-\beta _{i})} \biggl( \int _{0}^{s} \frac{(s-q\tau )^{(\alpha -2)}}{\varGamma _{q}( \alpha -1)} \vert F_{u(\tau )} \vert \,d_{q}\tau \biggr) \,d_{q}s \\ & {} + \frac{ \vert b \vert }{ \vert 1+b \vert } \int _{0}^{t} \frac{(t-qs)^{(-\beta _{i})}}{ \varGamma _{q}(1-\beta _{i})} \biggl( \int _{0}^{1} \frac{(1-q\tau )^{(\alpha -2)}}{ \varGamma _{q}( \alpha -1)} \vert F_{u(\tau )} \vert \,d_{q}\tau \biggr) \,d_{q}s \\ \leq{}& \int _{0}^{t} \frac{(t-qs)^{(-\beta _{i})}}{ \varGamma _{q}(1-\beta _{i})} \biggl( \int _{0}^{s} \frac{(s-q\tau )^{(\alpha -2)}}{ \varGamma _{q}(\alpha -1)} \ell (\tau ) \,d_{q}\tau \biggr) \,d_{q}s \\ &{} + A_{r} \int _{0}^{t} \frac{(t-qs)^{(-\beta _{i})}}{ \varGamma _{q}(1-\beta _{i})} \biggl( \int _{0}^{s} \frac{(s-q\tau )^{(\alpha -2)}}{ \varGamma _{q}(\alpha -1)} \,d_{q}\tau \biggr) \,d_{q}s \\ & {} + \frac{ \vert b \vert }{ \vert 1+b \vert } \int _{0}^{t} \frac{(t-qs)^{(-\beta _{i})}}{ \varGamma _{q}(1-\beta _{i})} \biggl( \int _{0}^{1} \frac{(1-q\tau )^{(\alpha -2)}}{ \varGamma _{q}( \alpha -1)} \ell (\tau ) \,d_{q} \tau \biggr) \,d_{q}s \\ &{} +\frac{ \vert b \vert }{ \vert 1+b \vert } A_{r} \int _{0}^{t} \frac{(t-qs)^{(-\beta _{i})}}{ \varGamma _{q}(1-\beta _{i})} \biggl( \int _{0}^{1} \frac{(1-q\tau )^{(\alpha -2)}}{ \varGamma _{q}(\alpha -1)} \,d_{q}\tau \biggr) \,d_{q}s \\ \leq {}&\frac{1}{\varGamma _{q}(\alpha -1) \varGamma _{q}(1-\beta _{i})} \int _{0}^{t} (t-qs)^{(-\beta _{i})} \\ & {} \times \biggl[ \biggl( \int _{0}^{s} \bigl( (s-q\tau )^{(\alpha -2)} \bigr)^{\frac{1}{1-l}} \,d_{q}\tau \biggr)^{1-l} \biggl( \int _{0}^{s} \bigl( \ell (\tau ) \bigr)^{\frac{1}{l}} \,d_{q}\tau \biggr) ^{l} \biggr] \,d_{q} s \\ & {} + \frac{ A_{r}}{\varGamma _{q}(\alpha ) \varGamma _{q}(1-\beta _{i})} \int _{0}^{t} (t-qs)^{(-\beta _{i})} s^{\alpha -1} \,d_{q}s \\ & {} + \frac{ \vert b \vert }{ \vert 1+b \vert \varGamma _{q}(\alpha -1) \varGamma _{q}(1-\beta _{i})} \int _{0}^{t} (t-qs)^{(-\beta _{i})} \\ & {} \times \biggl[ \biggl( \int _{0}^{1} \bigl( (1-q\tau )^{(\alpha -2)} \bigr)^{\frac{1}{1-l}} \,d_{q}\tau \biggr)^{1-l} \biggl( \int _{0}^{1} \bigl( \ell (\tau ) \bigr)^{\frac{1}{l}} \,d_{q}\tau \biggr) ^{l} \biggr] \,d_{q}s \\ & {} + \frac{ \vert b \vert }{ \vert 1+b \vert \varGamma _{q}(\alpha ) \varGamma _{q}(2-\beta _{i})} A_{r} \\ \leq{}& \frac{\ell ^{*}}{ \varGamma _{q}(\alpha -1) \varGamma _{q}(1-\beta _{i})} k_{2} \int _{0}^{t} (t-qs)^{(-\beta _{i})} s^{\alpha -l-1} \,d_{q}s \\ & {} + \frac{1}{\varGamma _{q}(\alpha ) \varGamma _{q}(1-\beta _{i})} A _{r} \int _{0}^{t} (t-qs)^{(-\beta _{i})} s^{\alpha -1} \,d_{q}s \\ & {} +\frac{ \vert b \vert \ell ^{*}}{ \vert 1+b \vert \varGamma _{q}(\alpha -1) \varGamma _{q}(1- \beta _{i})} k_{2} \int _{0}^{t} (t-qs)^{(-\beta _{i})} \,d_{q}s \\ & {} + \frac{ \vert b \vert }{ \vert 1+b \vert \varGamma _{q}( \alpha ) \varGamma _{q}( 2-\beta _{i})} A_{r} \\ \leq{}& \frac{\ell ^{*}}{\varGamma _{q}(\alpha -1) \varGamma _{q}(1-\beta _{i})} k_{2} \int _{0}^{1} (1-qs)^{(-\beta _{i})} s^{\alpha -l-1} \,d_{q}s \\ & {} + \frac{1}{\varGamma _{q}(\alpha ) \varGamma _{q}(1-\beta _{i})} A_{r} \int _{0}^{1} (1-qs)^{(-\beta _{i})} s^{\alpha -1} \,d_{q}s \\ & {} + \frac{ \vert b \vert \ell ^{*}}{ \vert 1+b \vert \varGamma _{q}(\alpha -1) \varGamma _{q}( 2-\beta _{i})} k_{2} + \frac{ \vert b \vert }{ \vert 1+b \vert \varGamma _{q} (\alpha ) \varGamma _{q}(2-\beta _{i})} A_{r}. \end{aligned}$$

Since, by considering Eq. (2),

$$ B_{q} (\alpha -l, 1-\beta _{i}) = \int _{0}^{1} (1-qs)^{(-\beta _{i})} s^{\alpha -\kappa -1} \,d_{q}s = \frac{ \varGamma _{q}(\alpha -l) \varGamma _{q}(1-\beta _{i})}{ \varGamma _{q}(\alpha - \beta _{i}-\kappa +1)} $$

and on the other hand

$$ B_{q} (\alpha ,1-\beta _{i}) = \int _{0}^{1} (1-q \xi )^{(-\beta _{i})} \xi ^{\alpha -1} \,d_{q}\xi = \frac{ \varGamma _{q}(\alpha ) \varGamma _{q}( 1-\beta _{i})}{ \varGamma _{q}( \alpha - \beta _{i}+1)}, $$

we conclude that

$$\begin{aligned} \bigl\vert {}^{c}D_{q}^{\beta _{i}} (Tu) (t) \bigr\vert \leq{}& \frac{ \varGamma _{q}( \alpha - l) \ell ^{*} }{\varGamma _{q}( \alpha -1) \varGamma _{q}(\alpha -\beta _{i}-\kappa +1)} k_{2} \\ & {} + \frac{ \vert b \vert \ell ^{*}}{ \vert 1+b \vert \varGamma _{q} (\alpha -1) \varGamma _{q}( 2-\beta _{i})} k_{2} + \frac{ 1}{ \varGamma _{q}(\alpha -\beta _{i}+1)} A_{r} \\ & {} + \frac{ \vert b \vert }{ \vert 1+b \vert A_{r} \varGamma _{q}(\alpha ) \varGamma _{q}(2- \beta _{i})} A_{r} \end{aligned}$$

for each \(i=1, 2,\dots , n\). Hence,

$$\begin{aligned} \Vert Tu \Vert \leq{}& \frac{(1+2 \vert a \vert ) \ell ^{*}}{ \vert 1+a \vert ) \varGamma _{q}(\alpha )} k _{1} + \frac{ \vert b \vert (1+2 \vert a \vert ) \ell ^{*}}{ \vert 1+a \vert \vert 1+b \vert \varGamma _{q}(\alpha -1)} k _{2} \\ &{} + \frac{1}{\varGamma _{q} (\alpha -1) } \sum_{i=1}^{n} \biggl[ \frac{ \varGamma _{q}(\alpha -l) \ell ^{*} }{\varGamma _{q}( \alpha -\beta _{i}-l+1)} k_{2} \\ &{} + \frac{ \vert b \vert \ell ^{*}}{ \vert 1+b \vert \varGamma _{q}( \alpha -1) \varGamma _{q}( 2-\beta _{i})} k_{2} \biggr] \\ & {} + A_{r} \Biggl( \frac{(1+2 \vert a \vert )(1+ (1+ \alpha ) \vert b \vert )}{ \vert 1+a \vert \vert 1+b \vert \varGamma _{q}(\alpha +1)} \\ & {} + \sum_{i=1}^{n} \biggl[ \frac{1}{\varGamma _{q}( \alpha -\beta _{i}+1)} + \frac{ \vert b \vert }{ \vert 1+b \vert \varGamma _{q} (\alpha ) \varGamma _{q} (2-\beta _{i})} \biggr] \Biggr) \\ ={}& K_{0} + A_{r} A_{0} \leq \frac{r}{ n + 4}(n+4) = r . \end{aligned}$$

Hence, T maps \(B_{r}\) into \(B_{r}\). Now, suppose that T satisfy the condition (8). In this case, choose

$$\begin{aligned} 0< {}& r \\ \leq{}& \min \biggl\{ \biggl( \frac{1}{(n+3) A_{0} c_{1}} \biggr) ^{\frac{1}{\nu _{1}-1}}, \biggl( \frac{1}{(n+3) A_{0} c_{2} {}_{0} \lambda _{1}^{\nu _{2}}} \biggr)^{\frac{1}{\nu _{2} -1}}, \\ &{} \biggl( \frac{1}{(n+3) A_{0} c_{3} {}_{0}\lambda _{2}^{\nu _{2}}} \biggr)^{\frac{1}{\nu _{2} -1}}, \max _{i} \biggl( \frac{1}{(n+3) A_{0} d_{i}} \biggr)^{ \frac{1}{\eta _{i} - 1}} \biggr\} . \end{aligned}$$

By applying a similar argument, one can prove that \(\|Tu\| \leq r\) and so T is a self-map on \(B_{r}\). Also, one can easy to check that T is continuous, because w is continuous. For each \(u\in B_{r}\), take

$$ N = \max_{t\in J} \bigl\vert w \bigl( t, u(t), (\varphi _{1} u) (t), ( \varphi _{2} u) (t), {}^{c}D_{q}^{\beta _{1}} u(t), {}^{c}D_{q}^{\beta _{2}} u(t), \dots , {}^{c}D_{q}^{\beta _{n}} u(t) \bigr) \bigr\vert + 1. $$

Thus, for each \(0< t_{1}< t_{2}< 1\), we have

$$\begin{aligned} \bigl\vert (Tu) (t_{2}) - (Tu) (t_{1}) \bigr\vert ={}& \biggl\vert I_{q}^{\alpha }F_{u(t_{2})} - I_{q}^{\alpha }F_{u(t_{1})} + \frac{b (t _{1}-t_{2})}{1+b} I_{q}^{\alpha -1} F_{u(1)} \biggr\vert \\ \leq {}& \int _{0}^{t_{1}} \frac{(t_{2} - qs)^{ (\alpha -1)} - (t_{1} - qs)^{( \alpha -1)}}{ \varGamma _{q}(\alpha )} \vert F_{u(s)} \vert \,d_{q}s \\ & {} + \int _{t_{1}}^{t_{2}} \frac{(t_{2} - qs)^{(\alpha -1)}}{\varGamma _{q}( \alpha )} \vert F_{u(s)} \vert \,d_{q}s \\ & {} + \frac{ \vert b \vert (t_{2} - t_{1} )}{ \vert 1+b \vert } \int _{0}^{1} \frac{(1-qs)^{ (\alpha -2)}}{ \varGamma _{q}(\alpha -1)} \vert F_{u(s)} \vert \,d_{q}s \\ \leq{}& N \int _{0}^{t_{1}} \frac{(t_{2}-qs)^{(\alpha -1)} - (t_{1} - qs)^{( \alpha -1)}}{ \varGamma _{q}(\alpha )} \,d_{q}s \\ & {} + N \int _{t_{1}}^{t_{2}} \frac{(t_{2} -qs)^{(\alpha -1)}}{ \varGamma _{q}( \alpha )} \,d_{q}s \\ & {} + \frac{ N \vert b \vert (t_{2} - t_{1})}{ \vert 1+b \vert } \int _{0}^{1} \frac{(1-qs)^{(\alpha -2)}}{ \varGamma _{q}(\alpha -1)} \,d_{q}s \\ ={}& \frac{N}{ \varGamma _{q}( \alpha +1)}\bigl( t_{2}^{\alpha }-t_{1}^{\alpha } \bigr) + \frac{ N \vert b \vert }{ \vert 1+b \vert \varGamma _{q}( \alpha )}(t_{2} - t_{1}). \end{aligned}$$

Furthermore, for all \(i= 1,2, \dots , n \), we obtain

$$\begin{aligned} & \bigl\vert {}^{c}D_{q}^{\beta _{i}} (Tu) (t_{2}) -{}^{c}D_{q}^{\beta _{i}}(Tu) (t _{1}) \bigr\vert \\ &\quad = \biggl\vert \int _{0}^{t_{2}} \frac{(t_{2}- qs)^{(-\beta _{i})}}{ \varGamma _{q}(1-\beta _{i})}( Tu)'(s) \,d_{q}s - \int _{0}^{t_{1}} \frac{(t_{1} -qs)^{(-\beta _{i})}}{\varGamma _{q}( 1-\beta _{i})}(Tu)'(s) \,d_{q}s \biggr\vert \\ &\quad \leq \int _{0}^{t_{1}} \frac{(t_{1}- qs)^{(-\beta _{i})} - (t_{2} - qs)^{(- \beta _{i})}}{ \varGamma _{q}(1-\beta _{i})} \biggl( \int _{0}^{s} \frac{(s-q\tau )^{(\alpha -2)}}{ \varGamma _{q}(\alpha -1)} \vert F_{u(\tau )} \vert \,d_{q}\tau \biggr) \,d_{q}s \\ &\qquad {} + \frac{ \vert b \vert }{ \vert 1+b \vert } \int _{0}^{t_{1}} \frac{(t_{1}-qs)^{(-\beta _{i})} - (t_{2}- qs)^{(- \beta _{i})}}{ \varGamma _{q}(1-\beta _{i})} \\ & \qquad {} \times \biggl( \int _{0}^{1} \frac{(1-q\tau )^{(\alpha -2)}}{ \varGamma _{q}( \alpha -1)} \vert F_{u(\tau )} \vert \,d_{q}\tau \biggr) \,d_{q}s \\ & \qquad {} + \int _{t_{1}}^{t_{2}} \frac{(t_{2} - qs)^{(-\beta _{i})}}{ \varGamma _{q}(1-\beta _{i})} \biggl( \int _{0}^{s} \frac{(s-q\tau )^{(\alpha -2)}}{ \varGamma _{q}( \alpha -1)} \vert F_{u(\tau )} \vert \,d_{q}\tau \biggr) \,d_{q}s \\ & \qquad {} + \frac{ \vert b \vert }{ \vert 1+b \vert } \int _{t_{1}}^{t_{2}} \frac{(t_{2}- qs)^{(-\beta _{i})}}{ \varGamma _{q}(1- \beta _{i})} \biggl( \int _{0}^{1} \frac{(1-q\tau )^{(\alpha -2)}}{ \varGamma _{q} ( \alpha -1)} \vert F _{u(\tau )} \vert \,d_{q}\tau \biggr) \,d_{q}s \\ &\quad \leq \frac{N}{\varGamma _{q}(\alpha )} \int _{0}^{t_{1}} \frac{(t_{1}- qs)^{(- \beta _{i})} - (t_{2}- qs)^{(-\beta _{i})}}{ \varGamma _{q}( 1 - \beta _{i})} s^{\alpha -1} \,d_{q}s \\ &\qquad {} + \frac{N \vert b \vert }{ \vert 1+b \vert \varGamma _{q}(\alpha )} \int _{0}^{t_{1}} \frac{(t _{1}- qs)^{(-\beta _{i})}- (t_{2} - qs)^{(-\beta _{i})}}{ \varGamma _{q}( 1- \beta _{i})} \,d_{q}s \\ & \qquad {} + \frac{N}{ \varGamma _{q}(\alpha )} \int _{t_{1}}^{t_{2}} \frac{(t_{2} - qs)^{(-\beta _{i})}}{ \varGamma _{q}(1- \beta _{i})} s^{\alpha -1} \,d_{q}s \\ & \qquad {} + \frac{N \vert b \vert }{ \vert 1+b \vert \varGamma _{q}(\alpha )} \int _{t_{1}}^{t _{2}} \frac{(t_{2}- qs)^{(-\beta _{i})}}{ \varGamma _{q}(1-\beta _{i})} \,d_{q}s \\ &\quad \leq \frac{(1+2 \vert b \vert ) N}{ \vert 1+b \vert \varGamma _{q}( \alpha )} \int _{0}^{t_{1}} \frac{(t_{1}- qs)^{(-\beta _{i})} - (t_{2} - qs)^{(-\beta _{i})}}{ \varGamma _{q}( 1- \beta _{i})} \,d_{q}s \\ & \qquad {} + \frac{(1+2 \vert b \vert )N}{ \vert 1+b \vert \varGamma _{q}(\alpha )} \int _{t_{1}} ^{t_{2}} \frac{(t_{2} - qs)^{(-\beta _{i})}}{ \varGamma _{q}(1-\beta _{i})} \,d_{q}s \\ &\quad \leq \frac{(1+2 \vert b \vert )N}{ \vert 1+b \vert \varGamma _{q}(\alpha ) \varGamma _{q}(2-\beta _{i})} \bigl[ \bigl(t_{2}^{1 - \beta _{i}} - t_{1}^{1-\beta _{i}} \bigr) + 2 (t_{2} - t_{1} )^{1-\beta _{i}} \bigr]. \end{aligned}$$

Hence,

$$\begin{aligned} \bigl\Vert Tu(t_{2})- Tu(t_{1}) \bigr\Vert \leq{}& \frac{N}{\varGamma _{q}(\alpha + 1)}\bigl( t _{2}^{\alpha }- t_{1}^{ \alpha }\bigr) + \frac{N \vert b \vert }{ \vert 1+b \vert \varGamma _{q}( \alpha )}(t_{2}- t_{1}) \\ & {} + \sum_{i=1}^{n} \frac{(1+2 \vert b \vert )N}{ \vert 1+b \vert \varGamma _{q}(\alpha ) \varGamma _{q}(2-\beta _{i})} \bigl[ \bigl(t_{2}^{ 1 - \beta _{i}} - t_{1} ^{1- \beta _{i}} \bigr) \\ & {} + 2 ( t_{2} - t_{1} )^{1-\beta _{i}} \bigr], \end{aligned}$$

which implies that \(\|Tu (t_{2}) - Tu(t_{1}) \| \to 0\) as \(t_{1} \to t_{2}\). Thus, T is uniformly bounded and equicontinuous and so the theorem of Arzelá–Ascoli implies that T is completely continuous. At present, from Theorem 1, T has a fixed point in \(B_{r}\). Finally, the problem (1) has a solution. □

Corollary 2

Assume that a real-valued functionfdefined on \(J {\times } \mathbb{R}^{n+3}\)is continuous. Then the problem (1) has at least one solution whenever there exist a positive constant \(l< \alpha -1\)and a real-valued function \(\ell \in L^{ \frac{1}{l}} (J, \mathbb{R}^{+})\)such that \(\vert w ( t , x_{1}, x_{2}, x_{3}, u_{1}, u_{2}, \ldots , u_{n} ) \vert \leq \ell (t)\), for eachtinJ, and \(x_{j}\), with \(j=1,2,3\), \(u_{i}\), with \(1\leq i \leq n\), in \(\mathbb{R}\).

Examples illustrative for the problems with algorithms

In this part, we give complete computational techniques for checking working to illustrate of the problem (1), in our theorems, such that it covers all the problems and we present numerical examples which entail perfect solutions. Foremost, we present a simplified analysis that can be executed to calculate the value of the q-Gamma function, \(\varGamma _{q} (x)\), for input q, x and different values of n. To this aim, we consider a pseudo-code description of the method for calculating the q-Gamma function of order n in Algorithm 2 (for more details, see the link https://en.wikipedia.org/wiki/Q-gamma_function). Now we give the following examples to illustrate our results.

Example 1

Consider the multi-term nonlinear fractional q-integro-differential equation

$$ \textstyle\begin{cases} {}^{c}D_{q}^{\frac{8}{5}} u(t) = \frac{ e^{-\pi t }}{30 \sqrt{\pi } + e^{- \pi t}} [ \frac{ \cos t + e^{t}}{1 + t^{4}} + \frac{ 2 \vert u(t) \vert }{1+ 2 \vert u(t) \vert } \\ \hphantom{{}^{c}D_{q}^{\frac{8}{5}} u(t) =}{}+ \frac{ e^{-\pi t} \sin \pi t}{1+ t^{3}} (1+ \frac{ 2 \vert ( \varphi _{1} u)(t) + {}^{c}D_{q}^{ \frac{1}{3}} u(t) \vert }{ 1+ 2 \vert (\varphi _{1} u)(t) + {}^{c}D_{q}^{ \frac{1}{3}} u(t) \vert } ) \\ \hphantom{{}^{c}D_{q}^{\frac{8}{5}} u(t) =}{} + \frac{1+ \cos ^{2}\pi t}{ 3(t^{\frac{4}{3}} + 6)} ( 3(\varphi _{2} u)(t) + \frac{ 2 \vert {}^{c}D_{q}^{ \frac{2}{5}} u(t) \vert }{ 1+ 2 \vert {}^{c}D_{q}^{\frac{2}{5}} u(t) \vert } ) ], \end{cases} $$
(9)

under boundary conditions \(u(0) + u(1)=0\) and \(u'(0) + u'(1)=0\), where \((\varphi _{1} u)(t) \) and \((\varphi _{2} u)(t) \) are defined by \(\frac{1}{10} \int _{0}^{t} e^{-2(s-t)} u(s) \,d_{q}s\) and \(\frac{1}{10} \int _{0}^{t} e^{-(s - t)/4} u(s) \,d_{q}s\), respectively, with

$$\begin{aligned} {}_{0}\lambda _{1} & = \sup_{t\in J} \biggl\vert \int _{0}^{t} \frac{e^{-2(s-t)}}{10} \,d_{q}s \biggr\vert = \sup_{t\in J} \Biggl\vert t ( 1- q) \sum_{k=0}^{\infty }q^{k} \frac{ e^{2t(1-q^{k})}}{10} \Biggr\vert \\ & = \vert 1- q \vert \sum_{k=0}^{\infty } \biggl\vert q^{k} \frac{ e ^{2(1-q^{k})}}{10} \biggr\vert \end{aligned}$$

and

$$\begin{aligned} {}_{0}\lambda _{2} & =\sup_{t\in I} \biggl\vert \int _{0}^{t} \frac{e^{-(s-t)/4}}{10} \,d_{q}s \biggr\vert = \sup_{t\in I} \Biggl\vert t (1-q) \sum_{k=0}^{\infty }q^{k} \frac{e^{t(1- q^{k})/4}}{10} \Biggr\vert \\ & = \vert 1- q \vert \sum_{k=0}^{\infty } \biggl\vert q^{k} \frac{e ^{(1- q^{k})/4}}{10} \biggr\vert . \end{aligned}$$

Then we have

$$\begin{aligned} \vert F_{u(t)} - F_{v(t)} \vert \leq{}& \frac{1}{30 \sqrt{\pi }} \bigl( \bigl\vert u(t) - v(t) \bigr\vert \\ & {} + \bigl\vert (\varphi _{1} u) (t) - (\varphi _{1} v) (t) \bigr\vert + \bigl\vert (\varphi _{2} u) (t) - (\varphi _{2} v) (t) \bigr\vert \\ & {} + \bigl\vert {}^{c}D_{q}^{\frac{1}{3}} u(t)- {}^{c}D_{q}^{ \frac{1}{3}} v(t) \bigr\vert + \bigl\vert {}^{c}D_{q}^{\frac{2}{5}} u(t) - {}^{c}D_{q}^{\frac{2}{5}} v(t) \bigr\vert \bigr), \end{aligned}$$

where

$$\begin{aligned} &F_{u(t)} = w \bigl( t, u(t), (\varphi _{1} u) (t), ( \varphi _{2} u) (t), {}^{c}D_{q}^{\frac{1}{3}} u(t), {}^{c}D_{q}^{\frac{2}{5}} u(t) \bigr), \\ &F_{v(t)} = w \bigl(t, v(t), (\varphi _{1} v) (t), ( \varphi _{2} v) (t), {}^{c}D_{q}^{\frac{1}{3}} v(t), {}^{c}D_{q}^{ \frac{2}{5}} v(t) \bigr). \end{aligned}$$

Take \(\ell (t) =\frac{1}{30 \sqrt{\pi }}\) belongs to \(L^{\frac{1}{5}}( J, \mathbb{R}^{+})\), \(\kappa =\frac{1}{5}\) and

$$ \ell ^{\ast }= \biggl( \int _{0}^{1} \biggl( \frac{1}{30\sqrt{\pi }} \biggr)^{5} \,d_{q}s \biggr)^{ \frac{1}{5}} = \Biggl( (1-q) \sum_{k=0}^{\infty } \frac{q ^{k}}{(30\sqrt{\pi })^{5}} \Biggr)^{ \frac{1}{5}}. $$

For different values of q, which are shown in Tables 1, 2 and 3, by using Algorithm 6, we obtain

$$\begin{aligned} \Delta ={}& ( 1+ {}_{0}\lambda _{1} + {}_{0}\lambda _{2} ) \biggl[ \frac{3\ell ^{\ast }}{ 2\varGamma _{q}(\alpha )} k_{1} + \frac{ \ell ^{\ast }}{4 \varGamma _{q}(\alpha -1)} k_{2} \\ &{} + \frac{\varGamma _{q}(\alpha -\kappa ) \ell ^{\ast }}{ \varGamma _{q}( \alpha -1)} k_{2} \biggl( \frac{1}{ \varGamma _{q}( \alpha - \beta _{1}- \kappa +1)} + \frac{1}{\varGamma _{q}( \alpha -\beta _{2} -\kappa +1)} \biggr) \\ & {} + \frac{\ell ^{\ast }}{ 2\varGamma _{q}(\alpha -1)} k_{2} \biggl( \frac{1}{ \varGamma _{q}( 2 -\beta _{1})} + \frac{1}{\varGamma _{q}( 2-\beta _{2})} \biggr) \biggr] \\ ={}& ( 1+ {}_{0}\lambda _{1} + {}_{0} \lambda _{2} ) \biggl[ \frac{3 \ell ^{\ast }}{ 2\varGamma _{q}(\frac{8}{5})} \biggl( \frac{4}{7} \biggr) ^{\frac{4}{5}} + \frac{\ell ^{\ast }}{4 \varGamma _{q}(\frac{3}{5})} ( 2 )^{\frac{4}{5}} \\ & {} + \frac{\varGamma _{q}(\frac{7}{5}) \ell ^{\ast }}{ \varGamma _{q}( \frac{3}{5})} (2 )^{\frac{4}{5}} \biggl( \frac{1}{ \varGamma _{q}( \frac{31}{15})} + \frac{1}{\varGamma _{q}(2)} \biggr) \\ &{} + \frac{\ell ^{\ast }}{ 2\varGamma _{q}(\frac{3}{5})} (2 ) ^{\frac{4}{5}} \biggl( \frac{1}{ \varGamma _{q}( \frac{5}{3})} + \frac{1}{ \varGamma _{q}(\frac{8}{5})} \biggr) \biggr] \\ < {}& 1, \end{aligned}$$

where \(k_{1}= (\frac{ 1 -\kappa }{\alpha -\kappa } )^{1-\kappa }\) and \(k_{2}= (\frac{1-\kappa }{ \alpha -\kappa -1} )^{1-\kappa }\). Now, by using Algorithms 1 and 2, we calculated \({}_{0}\lambda _{1}\), \({}_{0}\lambda _{2}\), \(\ell ^{\ast }\), \(\varGamma _{q}( \frac{8}{5})\), \(\varGamma _{q}(\frac{3}{5})\), \(\varGamma _{q}(\frac{7}{5})\), \(\varGamma _{q}(\frac{31}{15})\) and \(\varGamma _{q}(2)\) for some values \(n \in \mathbb{N}\) and \(q \in (0,1)\). Table 1 shows these calculated values. So, from Theorem 4, the problem (9) has a unique solution. In Tables 1, 2 and 3, we put

$$\begin{aligned} \varOmega ={}& \frac{3\ell ^{\ast }}{ 2\varGamma _{q}(\alpha )} k_{1} + \frac{ \ell ^{\ast }}{4 \varGamma _{q}(\alpha -1)} k_{2} \\ &{} + \frac{\varGamma _{q}(\alpha -\kappa ) \ell ^{\ast }}{ \varGamma _{q}(\alpha -1)} k_{2} \biggl( \frac{1}{ \varGamma _{q}( \alpha -\beta _{1}-\kappa +1)} + \frac{1}{\varGamma _{q}( \alpha -\beta _{2} -\kappa +1)} \biggr) \\ & {} + \frac{\ell ^{\ast }}{ 2 \varGamma _{q}(\alpha -1)} k_{2} \biggl( \frac{1}{ \varGamma _{q}( 2 -\beta _{1})} + \frac{1}{\varGamma _{q}( 2-\beta _{2})} \biggr). \end{aligned}$$

Algorithm 6 shows the technique of calculation Δ which was introduced in Eq. (6). Tables 1, 2 and 3 show variables of Δ when \(q=\frac{1}{3}\), \(q=\frac{1}{2}\) and \(q=\frac{4}{5}\), respectively. As it is seen, always \(\Delta <1\) for all n and \(q \in (0,1)\). In addition, when values q are close to one, Δ is obtained with more values of n in comparison with other rows. It is shown by underlined rows. They have been underlined in line 10 of Table 1, line 14 of Table 2 and line 31 of Table 3.

Algorithm 6
figuref

The proposed method for calculation of Δ

Table 1 Some numerical results for calculation of Δ with \(q=\frac{1}{3}\) and \(n=15\) of Algorithm 6
Table 2 Some numerical results for calculation of Δ with \(q=\frac{1}{2}\) and \(n=19\) of Algorithm 6
Table 3 Some numerical results for calculation of Δ with \(q=\frac{4}{5}\) and \(n=35\) of Algorithm 6

Example 2

Consider the multi-term nonlinear fractional q-integro-differential equation

$$ \textstyle\begin{cases} {}^{c}D_{q}^{\frac{7}{4}} u (t) = \frac{\lambda e^{-2\pi t}}{ \sqrt{1 + t^{3}}} + \frac{\sin \pi t}{ \sqrt{2\pi + \vert u(t) \vert + \vert {}^{c}D_{q}^{ \frac{1}{2}} u(t) \vert }} (u(t))^{\sigma _{1} } \\ \hphantom{{}^{c}D_{q}^{\frac{7}{4}} u (t) =}{}+ \frac{e^{-2\pi t}( 1 + \cos ^{2} u(t))}{ (t+6)^{2}} ((\varphi _{1} u)(t) )^{\sigma _{2}} \\ \hphantom{{}^{c}D_{q}^{\frac{7}{4}} u (t) =}{} + \frac{t u(t)}{( 5 + t^{2})(1+ \vert u(t) \vert )} ((\varphi _{2} u)(t) ) ^{\sigma _{3}} \\ \hphantom{{}^{c}D_{q}^{\frac{7}{4}} u (t) =}{}+ \frac{(1 + \alpha )(t - \frac{1}{2})^{2}}{ \varGamma _{q}( \alpha )(1+ \vert u(t)+ {}^{c}D_{q}^{ \frac{3}{2}} u(t) \vert )} \sum_{k=1}^{4} (\frac{ \sin k \pi t}{2^{k}} ) ({}^{c}D_{q}^{ \beta _{k}} u(t))^{ \delta _{k}}, \end{cases} $$
(10)

under boundary conditions \(u(0) + \frac{1}{4} u(1) =0\) and \(u'(0) + \frac{3}{4} u'(1) =0\), here \(\beta _{1}=\frac{1}{3}\), \(\beta _{2} = \frac{3}{5} \), \(\beta _{3}=\frac{1}{2}\), \(\beta _{4} =\frac{1}{6}\), \(\lambda \in [0,\infty )\),

$$\begin{aligned} (\varphi _{1} u) (t) = \int _{0}^{t} \frac{s e^{-(s-t)}u(s)}{s^{2} + 4} \,d_{q}s,\qquad (\varphi _{2} u) (t) = \int _{0}^{t} \frac{16(t-s)^{4} u(s)}{\sqrt{1 + s^{2}}} \,d_{q}s. \end{aligned}$$

Hence, we obtain

$$\begin{aligned} \vert F_{u(t)} \vert \leq{}& \ell (t) + \frac{1}{\sqrt{2\pi }} \bigl\vert u(t) \bigr\vert ^{ \sigma _{1}} + \frac{1}{18} \bigl\vert (\varphi _{1} u) (t) \bigr\vert ^{\sigma _{2}} + \frac{1}{5} \bigl\vert (\varphi _{2} u) (t) \bigr\vert ^{\sigma _{3}} \\ & {} + \sum_{k=1}^{4} \frac{1 + \alpha }{ \varGamma _{q} (\alpha )2^{k+2}} \bigl\vert {}^{c}D_{q} ^{\beta _{k}} u(t) \bigr\vert ^{\delta _{k}}, \end{aligned}$$

where

$$\begin{aligned} F_{u(t)} &= w \bigl( t, u(t),(\varphi _{1} u) (t), ( \varphi _{2} u) (t), {}^{c}D_{q}^{ \beta _{1}} u(t), {}^{c}D_{q}^{\beta _{2}} u(t), {}^{c}D _{q}^{\beta _{3}} u(t), {}^{c}D_{q}^{\beta _{4}} u(t) \bigr), \end{aligned}$$

and \(m(t) = \frac{\lambda e^{-\pi t}}{\sqrt{1+t^{2}}}\) for t belongs to J. Also, if \(l=\frac{1}{2}\) and \(\lambda =1\), then we have

$$ \ell ^{*}= \biggl( \int _{0}^{1} \bigl(\ell (t) \bigr)^{\frac{1}{\kappa }} \,d_{q} s \biggr) ^{\kappa }= \Biggl( (1-q) \sum_{k=0}^{\infty } \biggl( \frac{\lambda q ^{k} e^{-\pi q^{k}}}{\sqrt{1+q^{2k}}} \biggr)^{2} \Biggr)^{ \frac{1}{2}}. $$

Table 4 shows the variables of \(\varGamma _{q}(\alpha )\), \(\varGamma _{q}(\alpha -1)\), \(A_{0}\), \(\ell ^{*}\) and \(K_{0}\) when \(q =\frac{1}{3}\) and \(m=1, \ldots , 40\). Since \(0< \sigma _{j} \), for \(j=1, 2, 3\), and \(\delta _{i} < 1\), for \(i=1, 2, 3, 4\), the assumption (7) holds. At present, if \(\lambda = 0\), \(\delta _{i} > 1\) and \(\sigma _{j}> 1\) for \(i=1, 2, 3, 4\) and \(j=1, 2, 3\), respectively, the second condition, (8) of Theorem 5 holds. Thus, problem (10) has at least one solution. Note the features of the q-Gamma function, for values of q close to one, the results are obtained at a greater rate of m.

Table 4 Some numerical results for calculation of \(\varGamma_{q}(\alpha )\), \(\varGamma_{q}(\alpha-1)\), A, M and K in Theorem 5 with \(q=\frac{1}{3}\) and \(m=40\)

References

  1. 1.

    Jackson, F.H.: q-difference equations. Am. J. Math. 32, 305–314 (1910). https://doi.org/10.2307/2370183

  2. 2.

    Carmichael, R.D.: The general theory of linear q-difference equations. Am. J. Math. 34, 147–168 (1912)

  3. 3.

    Mason, T.E.: On properties of the solution of linear q-difference equations with entire function coefficients. Am. J. Math. 37, 439–444 (1915)

  4. 4.

    Adams, C.R.: The general theory of a class of linear partial q-difference equations. Trans. Am. Math. Soc. 26, 283–312 (1924)

  5. 5.

    Adams, C.R.: Note on the integro-q-difference equations. Trans. Am. Math. Soc. 31(4), 861–867 (1929)

  6. 6.

    Trjitzinsky, W.J.: Analytic theory of linear q-difference equations. Acta Math. 61, 1–38 (1933). https://doi.org/10.1007/BF02547785

  7. 7.

    Al-Salam, W.A.: Some fractional q-integrals and q-derivatives. Proc. Edinb. Math. Soc. 15, 135–140 (1966–1967). https://doi.org/10.1017/S0013091500011469

  8. 8.

    Agarwal, R.P.: Certain fractional q-integrals and q-derivatives. Proc. Camb. Philos. Soc. 66, 365–370 (1969). https://doi.org/10.1017/S0305004100045060

  9. 9.

    Annaby, M.H., Mansour, Z.S.: q-Fractional Calculus and Equations. Springer, Cambridge (2012). https://doi.org/10.1007/978-3-642-30898-7

  10. 10.

    Rajković, P.M., Marinković, S.D., Stanković, M.S.: Fractional integrals and derivatives in q-calculus. Appl. Anal. Discrete Math. 1, 311–323 (2007)

  11. 11.

    Stanković, M.S., Rajković, P.M., Marinković, S.D.: On q-fractional derivatives of Riemann–Liouville and Caputo type (2009). e-prints arXiv:0909.0387

  12. 12.

    Ahmad, B., Ntouyas, S.K., Tariboon, J.: Quantum Calculus. New Concepts, Impulsive IVPs and BVPs, Inequalities. Trends in Abstract and Applied Analysis, vol. 4. World Scientific, Hackensack (2016). https://doi.org/10.1142/10075

  13. 13.

    Goodrich, C., Peterson, A.: Discrete Fractional Calculus. Springer, Berlin (2015). https://doi.org/10.1007/978-3-319-25562-0

  14. 14.

    Ahmad, B., Ntouyas, S.K.: Existence of solutions for nonlinear fractional q-difference inclusions with nonlocal robin (separated) conditions. Mediterr. J. Math. 10, 133–1351 (2013). https://doi.org/10.1007/s00009-013-0258-0

  15. 15.

    Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

  16. 16.

    Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000). https://doi.org/10.1142/3779

  17. 17.

    Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

  18. 18.

    Ahmad, B., Sivasundaram, S.: On four-point nonlocal boundary value problems of nonlinear integro-differential equations of fractional order. Appl. Math. Comput. 217(2), 480–487 (2010). https://doi.org/10.1016/j.amc.2010.05.080

  19. 19.

    Ahmad, B., Nieto, J.J.: Riemann–Liouville fractional integro-differential equations with fractional nonlocal integral boundary conditions. Bound. Value Probl. 2011, 36 (2011). https://doi.org/10.1186/1687-2770-2011-36

  20. 20.

    Anguraj, A., Karthikeyan, P., Trujillo, J.J.: Existence of solutions to fractional mixed integrodifferential equations with nonlocal initial condition. Adv. Differ. Equ. 2011(1), 690653 (2011). https://doi.org/10.1155/2011/690653

  21. 21.

    Rezapour, S., Shabibi, M.: A singular fractional differential equation with Riemann–Liouville integral boundary condition. J. Adv. Math. Stud. 8(1), 80–88 (2015)

  22. 22.

    Shabibi, M., Rezapour, S., Vaezpour, S.M.: A singular fractional integro-differential equation. UPB Sci. Bull., Ser. A 79(1), 109–118 (2017)

  23. 23.

    Ntouyas, S.K., Etemad, S.: On the existence of solutions for fractional differential inclusions with sum and integral boundary conditions. Appl. Math. Comput. 266, 235–243 (2017). https://doi.org/10.1016/j.amc.2015.05.036

  24. 24.

    Samei, M.E., Khalilzadeh Ranjbar, G.: Some theorems of existence of solutions for fractional hybrid q-difference inclusio. J. Adv. Math. Stud. 12(1), 63–76 (2019)

  25. 25.

    Samei, M.E., Ranjbar, G.K., Hedayati, V.: Existence of solutions for equations and inclusions of multi-term fractional q-integro-differential with non-separated and initial boundary conditions. J. Inequal. Appl. 2019, 273 (2019). https://doi.org/10.1186/s13660-019-2224-2

  26. 26.

    Ahmad, B., Ntouyas, S.K., Purnaras, I.K.: Existence results for nonlocal boundary value problems of nonlinear fractional q-difference equations. Adv. Differ. Equ. 2012, 140 (2012). https://doi.org/10.1186/1687-1847-2012-140

  27. 27.

    Zhao, Y., Chen, H., Zhang, Q.: Existence results for fractional q-difference equations with nonlocal q-integral boundary conditions. Adv. Differ. Equ. 2013, 48 (2013). https://doi.org/10.1186/1687-1847-2013-48

  28. 28.

    Ahmad, B., Nieto, J.J., Alsaedi, A., Al-Hutami, H.: Existence of solutions for nonlinear fractional q-difference integral equations with two fractional orders and nonlocal four-point boundary conditions. J. Franklin Inst. 351, 2890–2909 (2014). https://doi.org/10.1016/j.jfranklin.2014.01.020

  29. 29.

    Ahmad, B., Alsaedi, A., Al-Hutami, H.: A study of sequential fractional q-integro-difference equations with perturbed anti-periodic boundary conditions. In: Fractional Dynamics, pp. 110–128. De Gruyter, Berlin (2015). https://doi.org/10.1515/9783110472097-007

  30. 30.

    Ahmad, B., Ntouyas, S.K., Alsaedi, A.: Existence of solutions for fractional q-integro-difference inclusions with fractional q-integral boundary conditions. Adv. Differ. Equ. 2014, 257 (2014). https://doi.org/10.1186/1687-1847-2014-257

  31. 31.

    Ahmad, B., Etemad, S., Ettefagh, M., Rezapour, S.: On the existence of solutions for fractional q-difference inclusions with q-antiperiodic boundary conditions. Bull. Math. Soc. Sci. Math. Roum. 59(107)(2), 119–134 (2016)

  32. 32.

    Abdeljawad, T., Alzabut, J., Baleanu, D.: A generalized q-fractional Gronwall inequality and its applications to non-linear delay q-fractional difference systems. J. Inequal. Appl. 2016, 240 (2016). https://doi.org/10.1186/s13660-016-1181-2

  33. 33.

    Kac, V., Cheung, P.: Quantum Calculus. Universitext. Springer, New York (2002). https://doi.org/10.1007/978-1-4613-0071-7-1

  34. 34.

    Ferreira, R.A.C.: Nontrivial solutions for fractional q-difference boundary value problems. Electron. J. Qual. Theory Differ. Equ. 2010, 70 (2010)

  35. 35.

    Agarwal, R.P., O’Regan, D., Sahu, D.R.: Fixed Point Theory for Lipschitzian-Type Mappings with Applications. Springer, Dordrecht (2009). https://doi.org/10.1007/978-0-387-75818-3

Download references

Availability of data and materials

Not applicable.

Funding

Not applicable.

Author information

All authors contributed equally and significantly in this manuscript and they read and approved the final manuscript.

Correspondence to Mohammad Esmael Samei.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Consent for publication

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ntouyas, S.K., Samei, M.E. Existence and uniqueness of solutions for multi-term fractional q-integro-differential equations via quantum calculus. Adv Differ Equ 2019, 475 (2019) doi:10.1186/s13662-019-2414-8

Download citation

MSC

  • 34A08
  • 39A13
  • 34K37

Keywords

  • Multi-term fractional q-integro-differential equation
  • Caputo q-derivative
  • Quantum calculus
  • Fixed point