Skip to main content

Theory and Modern Applications

Table 1 Transition probabilities

From: Numerical treatment of stochastic heroin epidemic model

Transitions (\(\mathrm{T}_{\mathrm{i}}\))

Probabilities (\(\mathrm{P}_{\mathrm{i}}\))

\(\mathrm{T}_{1} = (\Delta \mathrm{W})_{1} = [1,0,0]^{\mathrm{T}}\)

\(\mathrm{P}_{1} =\varLambda\Delta \mathrm{t}\)

\(\mathrm{T}_{2} = (\Delta \mathrm{W})_{2} = [-1,1,0]^{\mathrm{T}}\)

\(\mathrm{P}_{2} = \beta_{1} \mathrm{U}_{1} \mathrm{S}\Delta \mathrm{t}\)

\(\mathrm{T}_{3} =(\Delta \mathrm{W})_{3} = [-1,0,0]^{\mathrm{T}}\)

\(\mathrm{P}_{3} = \mu_{1} \mathrm{S} \Delta \mathrm{t}\)

\(\mathrm{T}_{4} = (\Delta \mathrm{W})_{4} = [0,-1,1]^{\mathrm{T}}\)

\(\mathrm{P}_{4} =\mathrm{p} \mathrm{U}_{1} \Delta \mathrm{t}\)

\(\mathrm{T}_{5} = (\Delta \mathrm{W})_{5} = [0,1,-1]^{\mathrm{T}}\)

\(\mathrm{P}_{5} = \beta_{3} \mathrm{U}_{1} \mathrm{U}_{2} \Delta \mathrm{t}\)

\(\mathrm{T}_{6} = (\Delta \mathrm{W})_{5} = [0,-1,0]^{\mathrm{T}}\)

\(\mathrm{P}_{6} = \mu_{1} \mathrm{U}_{1} \Delta \mathrm{t}\)

\(\mathrm{T}_{7} = (\Delta \mathrm{W})_{5} = [0,0,-1]^{\mathrm{T}}\)

\(\mathrm{P}_{7} = \mu_{2} \mathrm{U}_{2} \Delta \mathrm{t}\)