Skip to main content

Advertisement

Table 6 Comparison of maximum absolute errors acquired using the GWGM for \(\beta = 3/2, \alpha = 1\) of Example 2 with given initial and boundary conditions

From: An effective computational approach based on Gegenbauer wavelets for solving the time-fractional Kdv-Burgers-Kuramoto equation

  \(\vert u_{\mathrm{exactsol}}(x_{i},t_{i}) -u(x_{i},t_{i}) \vert \)
x t = 0.1 t = 0.2 t = 0.3
0.1 1.28974727966296e–5 6.37221034017464e–5 1.45775835758149e–4
0.2 1.54800573070029e–6 1.51839809731857e–5 3.60282480863332e–5
0.3 4.24271959892299e–6 4.04513303115025e–5 9.57015464695572e–5
0.4 2.51800080738364e–8 3.14339896132342e–5 7.67906533915459e–5
0.5 6.41361804184018e–6 6.89593487840021e–6 2.15145138523082e–5
0.6 1.05770645508711e–5 1.51763938930714e–5 2.96573521481984e–5
0.7 8.20786151897344e–6 1.77537917011340e–5 3.84092846099499e–5
0.8 4.66943705380385e–6 1.50655014542027e–5 3.10377264670508e–5
0.9 3.17087041675577e–5 9.78970055729930e–5 2.11568561082842e–4
1.0 7.62057338221985e–5 2.43923870655135e–4 5.32845339237378e–4