Skip to main content

Advertisement

Table 5 Comparison of maximum absolute errors acquired using the GWGM for \(\beta = 1/2, \alpha = 1\) of Example 2 with given initial and boundary conditions

From: An effective computational approach based on Gegenbauer wavelets for solving the time-fractional Kdv-Burgers-Kuramoto equation

  \(\vert u_{\mathrm{exactsol}}(x_{i},t_{i}) -u(x_{i},t_{i}) \vert \)
x t = 0.1 t = 0.2 t = 0.3
0.1 1.64448492039189e–5 3.40779317786841e–6 2.25988426999788e–5
0.2 1.87731045064128e–5 5.97358504202715e–5 1.30555104564375e–4
0.3 1.15879083329642e–5 6.95840221958677e–5 1.60605435236950e–4
0.4 2.72228116434108e–7 4.54907671489490e–5 1.11098743317741e–4
0.5 1.21163098417837e–5 6.22006127947924e–6 2.42539738067593e–5
0.6 1.94477268430655e–5 3.02416554125058e–5 5.94593532960083e–5
0.7 1.80091811202948e–5 4.68651779270031e–5 1.01725577990534e–4
0.8 3.82522667346499e–6 2.77487462640481e–5 6.67656902768529e–5
0.9 2.67580094974375e–5 4.17231595763699e–5 7.83051898450571e–5
1.0 7.70363213923580e–5 1.74733689594274e–4 3.63149182375185e–4