Skip to main content

Advertisement

Table 4 Comparison of \(L_{\infty } \) errors of Example 1, for various values of x

From: An effective computational approach based on Gegenbauer wavelets for solving the time-fractional Kdv-Burgers-Kuramoto equation

  Legendre wavelet method in [11] (α = 0.75) Gegenbauer wavelet Galerkin method (β = 1/2,α = 0.75) Gegenbauer wavelet Galerkin method (β = 1/2,α = 0.90)
x \(L_{\infty } \) \(L_{\infty } \) \(L_{\infty } \)
0.1 9.57606e -2 8.55547702219717e–3 4.51445591132160e–3
0.2 5.85324e -2 6.79113832036982e–3 3.11622146809487e–3
0.3 3.19023e -2 6.02803684752118e–3 2.54162812421266e–3
0.4 4.06402e -2 6.08029490365147e–3 2.64328797967528e–3
0.5 3.80953e -2 6.69028888876044e–3 3.21692323448264e–3
0.6 6.76929e -2 7.53122370284809e–3 4.00340828863466e–3
0.7 1.00724e -1 8.21039734591478e–3 4.69135794213144e–3
0.8 1.36832e -1 8.27312581796025e–3 4.92023909497280e–3
0.9 1.75597e -1 7.20728461898440e–3 4.28397314715895e–3
1.0 2.16518e -1 4.44842734898737e–3 2.33499309868973e–3