Skip to main content

Advertisement

Table 3 Comparison of \(L_{\infty } \) errors of Example 1, for \(\alpha = 1\) and various values of x

From: An effective computational approach based on Gegenbauer wavelets for solving the time-fractional Kdv-Burgers-Kuramoto equation

  Legendre Wavelet Method in [11] Gegenbauer wavelet Galerkin Method (β = 1/2) Gegenbauer wavelet Galerkin Method (β = 3/2)
x \(L_{\infty } \) \(L_{\infty } \) \(L_{\infty } \)
0.1 2.50855e-3 5.89485917379340e–4 7.27313861244472e–4
0.2 2.64995e-3 1.89108963468243e–4 1.87503238244180e–4
0.3 2.83828e-3 3.46946817421312e–4 4.43686707221280e–4
0.4 3.09695e-3 1.02188765043587e–4 1.64783845686911e–4
0.5 3.44474e-3 6.57771755357084e–4 4.77970446358944e–4
0.6 3.89591e-3 1.43188248208831e–3 1.26736536891631e–3
0.7 4.46022e-3 2.05373983571433e–3 1.94238352198511e–3
0.8 5.14289e-3 2.22112881623499e–3 2.20080990556537e–3
0.9 5.94439e-3 1.59365562365044e–3 1.70225071965713e–3
1.0 6.86019e-3 2.03850342039347e–4 7.15353642604666e–5