Skip to main content

Advertisement

Table 2 Comparison of maximum absolute errors acquired using the GWGM for \(\beta = 3/2, \alpha = 1\) of Example 1 with given initial and boundary conditions

From: An effective computational approach based on Gegenbauer wavelets for solving the time-fractional Kdv-Burgers-Kuramoto equation

  \(\vert u_{\mathrm{exactsol}}(x_{i},t_{i}) -u(x_{i},t_{i}) \vert \)
x t = 0.1 t = 0.2 t = 0.3
0.1 1.16323454320191e–6 2.14990877132823e–5 5.87312912886107e–5
0.2 4.37862738458718e–6 1.79419881498818e–6 1.17538622877236e–5
0.3 1.18903522953583e–5 3.01675389158262e–6 2.68520048517379e–5
0.4 2.01364671892027e–5 1.28895024835568e–5 2.31760359661881e–6
0.5 2.74046230660501e–5 3.90751903103677e–5 6.03438430572881e–5
0.6 3.15227119258325e–5 6.68518695888243e–5 1.27677703530248e–4
0.7 2.98805597686801e–5 8.57788603190225e–5 1.80827655015550e–4
0.8 1.94560165945315e–5 8.37675425009263e–5 1.92594337513209e–4
0.9 3.15485559659271e–6 4.72021761344938e–5 1.32342311023180e–4
1.0 4.17037628047444e–5 3.89240787802368e–5 3.36937744545157e–5