Skip to main content

Advertisement

Table 1 Comparison of maximum absolute errors acquired using the GWGM for \(\beta = 1/2, \alpha = 1\) of Example 1 with given initial and boundary conditions

From: An effective computational approach based on Gegenbauer wavelets for solving the time-fractional Kdv-Burgers-Kuramoto equation

  \(\vert u_{\mathrm{exactsol}}(x_{i},t_{i}) -u(x_{i},t_{i}) \vert \)
x t = 0.1 t = 0.2 t = 0.3
0.1 8.44023426375259e–5 1.25085242156167e–6 7.98318705742124e–5
0.2 1.01453889005130e–5 1.01368508112973e–5 1.51016496490672e–5
0.3 4.82189427856213e–5 2.13020499826438e–7 4.75138226363261e–5
0.4 8.94551794209612e–5 2.35787185129607e–5 2.85239083874927e–5
0.5 1.11850972005547e–4 5.43889862270885e–5 2.64569730974301e–5
0.6 1.13234212539333e–4 8.35293426424792e–5 9.78798118184132e–5
0.7 9.09947270223226e–5 1.00559107759210e–4 1.62253077775489e–4
0.8 4.21103654545561e–5 9.33896615772280e–5 1.92377410968662e–4
0.9 3.68228101639981e–5 4.84052640965463e–5 1.57617371397915e–4
1.0 1.49556505833364e–4 4.94009246828318e–5 2.42076090632183e–5