Skip to main content

Table 2 Values of the approximate solution of problem (57) at different values of x and \(T = 1\), using \(\varOmega = (0, \pi )\), \(\alpha = 1.8\), and \(K = 0.1\). Computationally, we used different combinations of values of h and τ. The results were obtained using the EFDA, IFDA, and FMoL reported in [36], as well as the DM method introduced in the present manuscript

From: Discrete monotone method for space-fractional nonlinear reaction–diffusion equations

  Method
x EFDA IFDA FMoL DM method
h = π/200, τ = 0.016
0.3142 0.71389626 0.72323636 0.71312860 0.71947583
0.6283 1.24037640 1.24612454 1.24780762 1.24680145
0.9425 1.59030472 1.58819777 1.59121579 1.58946310
1.2566 1.78102704 1.77545588 1.77773300 1.77701456
1.5708 1.83207836 1.83457607 1.83648052 1.83573913
1.8850 1.77206738 1.77552773 1.77783878 1.77713605
2.1991 1.58670064 1.58831821 1.59176807 1.59042740
2.5133 1.24770350 1.24628205 1.25101528 1.24589045
2.8274 0.73840275 0.72338189 0.72768746 0.72902617
h = π/400, τ = 0.008
0.3142 0.71745620 0.71869375 0.71739547 0.71825673
0.6283 1.24936024 1.24673018 1.24695142 1.24680021
0.9425 1.58920413 1.58824503 1.59047160 1.58896095
1.2566 1.77024701 1.77730806 1.77781163 1.77740204
1.5708 1.83278407 1.83479204 1.83502709 1.83480527
1.8850 1.77106482 1.77732094 1.77759317 1.77762806
2.1991 1.59178365 1.59003758 1.58984672 1.58824720
2.5133 1.24907602 1.24506232 1.24630048 1.24686015
2.8274 0.71260986 0.71746539 0.71745204 0.71730264
h = π/800, τ = 0.004
0.3142 0.71796578 0.71802674 0.71796470 0.71807628
0.6283 1.24570889 1.24680373 1.24670367 1.24678390
0.9425 1.58941153 1.58926493 1.58922784 1.58920036
1.2566 1.77697364 1.77729566 1.77740225 1.77726490
1.5708 1.83511650 1.83472546 1.83480026 1.83478660
1.8850 1.77683902 1.77746225 1.77748929 1.77744028
2.1991 1.58896130 1.58906777 1.58887466 1.58902267
2.5133 1.24620755 1.24649110 1.24657834 1.24679221
2.8274 0.71796274 0.71889936 0.71803795 0.71814852