Skip to main content

Theory and Modern Applications

Representation of solution for a linear fractional delay differential equation of Hadamard type

Abstract

This paper is devoted to seeking the representation of solutions to a linear fractional delay differential equation of Hadamard type. By introducing the Mittag-Leffler delay matrix functions with logarithmic functions and analyzing their properties, we derive the representation of solutions via the constant variation method.

1 Introduction

In the recent decades, fractional differential equations have been applied in engineering, physics, finance, and signal analysis. The researchers focused on the investigation of the existence, asymptotic stability, and finite-time stability of solutions of fractional linear and non-linear differential equations of Caputo type, Riemann–Liouville type, and Hadamard type [1,2,3,4,5,6,7,8,9,10,11].

Recently, the representation of solutions to delay differential equations has been considered. Klusainov and Shukin [12], Diblik and Klusainov [13, 14] derived the exact expressions of solutions of linear time invariant continuous and discrete delay equations by proposing the concepts of delay matrix functions. Next, stability and controllability problems of linear delay differential equations were studied extensively in [15,16,17]. For the literature on the related topic of linear fractional delay equations of Caputo and Riemann–Liouville type, we refer the reader to [18,19,20,21,22,23,24,25]. However, we find that there exists very limited work on the representation of solutions of fractional order delay differential equations of Hadamard type, even for linear case.

Motivated by the above-mentioned works, we try to introduce a new concept on fractional delay matrix function with a logarithmic function and use it to study the following linear fractional delay differential equations of Hadamard type:

$$ \textstyle\begin{cases} ({}_{H}\mathbb{D}_{1^{+}}^{\alpha }y)(x)=By(x-\tau ),\quad B\in R^{n \times n},x\in (\tau ,T],\tau >0, \\ y(x)=\varphi (x),\quad \varphi (x)\in R^{n},1< x\leq \tau , \\ ({}_{H}\mathbb{I}_{1^{+}}^{1-\alpha }y)(1^{+})=b,\quad b\in R^{n}, \end{cases} $$
(1)

where \({}_{H}\mathbb{D}_{1^{+}}^{\alpha }y\) denotes the α order Hadamard derivative, \({}_{H}\mathbb{I}_{1^{+}}^{1-\alpha }y\) denotes \(1-\alpha \) order Hadamard fractional integral, \(\alpha \in (0,1)\). \(T=k^{\ast }\tau \), \(k^{\ast }\in N^{+}=\{1,2,\ldots \}\), τ is a fixed moment. \(\varphi (\cdot )\) is an arbitrary Hadamard differentiable function, i.e., \({}_{H}\mathbb{D}_{1^{+}}^{\alpha } \varphi \) exists.

We use the idea from [19] and introduce a fractional delay matrix function with a logarithmic function that is used to seek a representation of solution of (1) by utilizing the constant variation method.

2 Preliminaries

Let \(a,b\in R\), \(a< b\), and \(C((a,b],R^{n})\) denotes a Banach space composed of continuous vector-valued functions. Θ denotes zero matrix, I denotes the standard identity matrix.

Definition 2.1

(see [1])

For a function \(y:(a,b)\rightarrow R^{n}\), the α order Hadamard integral of y is defined by

$$ \bigl({}_{H}\mathbb{I}_{a^{+}}^{\alpha }y\bigr) (x)=\frac{1}{\varGamma (\alpha )} \int _{a}^{x}\biggl(\ln \frac{x}{t} \biggr)^{\alpha -1}y(t)\frac{dt}{t},\quad \alpha \in (0,1). $$

Definition 2.2

(see [1])

For a function \(y:(a,b)\rightarrow R^{n}\), the α order Hadamard derivative of y is defined by

$$ \bigl({}_{H}\mathbb{D}_{a^{+}}^{\alpha }y\bigr) (x)=\frac{1}{\varGamma (1-\alpha )}\biggl(x\frac{d}{dx}\biggr) \int _{a}^{x}\biggl(\ln \frac{x}{t} \biggr)^{-\alpha }y(t) \frac{dt}{t}, \quad \alpha \in (0,1). $$

Now we propose a new concept of fractional delay matrix function with logarithmic function.

Definition 2.3

Let \(\alpha \in (0,1)\). Fractional delay matrix function \(\mathbb{E} _{\tau ,\alpha }^{B(\ln x)^{\alpha }}\) with logarithmic function is defined by

$$ \mathbb{E}_{\tau ,\alpha }^{B(\ln x)^{\alpha }}= \textstyle\begin{cases} \varTheta , & {-}\infty < x\leq 1, \\ I\frac{(\ln x)^{\alpha -1}}{\varGamma (\alpha )},& 1< x\leq \tau , \\ I\frac{(\ln x)^{\alpha -1}}{\varGamma (\alpha )}+B\frac{(\ln x-\ln \tau )^{2\alpha -1}}{\varGamma (2\alpha )}+\cdots \\ \quad {}+B^{k}\frac{(\ln x- \ln k\tau )^{(k+1)\alpha -1}}{\varGamma ((k+1)\alpha )},& k\tau < x\leq (k+1) \tau ,k\in N^{+}. \end{cases} $$

Lemma 2.4

For \(k\tau < x\leq (k+1)\tau \), \(k\in N^{+}\), one has

$$ \int _{k\tau }^{x}(\ln x-\ln t)^{-\alpha }(\ln t-\ln k\tau )^{(k+1) \alpha -1}\frac{dt}{t}=(\ln x-\ln k\tau )^{k\alpha }\mathbb{B}\bigl[1- \alpha ,(k+1)\alpha \bigr], $$

where \(\mathbb{B}[\xi ,\eta ]=\int _{0}^{1}s^{\xi -1}(1-s)^{\eta -1}\,ds\) is a beta function.

Proof

Using the formula of integration by parts, we can obtain

$$\begin{aligned}& \int _{k\tau }^{x}(\ln x-\ln t)^{-\alpha }(\ln t-\ln k\tau )^{(k+1) \alpha -1}\frac{dt}{t} \\& \quad = \int _{0}^{\ln x-k\tau }(\ln x-z-\ln k\tau )^{-\alpha }z^{(k+1) \alpha -1}\,dz \\& \quad = \int _{0}^{\ln x-k\tau }(\ln x-\ln k\tau )^{-\alpha } \biggl(1-\frac{z}{ \ln x-\ln k\tau }\biggr)^{-\alpha }z^{(k+1)\alpha -1}\,dz \\& \quad = (\ln x-\ln k\tau )^{k\alpha }\mathbb{B}\bigl[1-\alpha ,(k+1)\alpha \bigr]. \end{aligned}$$

The proof is completed. □

3 Representation of the solutions

In the section, we adopt the general method of solving linear fractional differential equations to seek the exact solutions by using the notation of \(\mathbb{E}_{\tau ,\alpha }^{B(\ln \cdot )^{\alpha }}\).

We establish the following fundamental result.

Theorem 3.1

If \(\mathbb{E}_{\tau ,\alpha }^{B(\ln \cdot )^{\alpha }}:(k\tau ,(k+1) \tau ]\longrightarrow R^{n\times n}\), \(k\in N^{+}\) satisfies

$$ \bigl({}_{H}\mathbb{D}_{1^{+}}^{\alpha } \mathbb{E}_{\tau ,\alpha }^{B( \ln t)^{\alpha }}\bigr) (x)=B\mathbb{E}_{\tau ,\alpha }^{B(\ln x-\ln k \tau )^{\alpha }}, $$
(2)

then \(\mathbb{E}_{\tau ,\alpha }^{B(\ln x)^{\alpha }}\) is a solution of \(({}_{H}\mathbb{D}_{1^{+}}^{\alpha }y)(x)=By(x-\tau )\) with the initial value \(\mathbb{E}_{\tau ,\alpha }^{B(\ln x)^{\alpha }}=I\frac{( \ln x)^{\alpha -1}}{\varGamma (\alpha )}\), \(1< x\leq \tau \).

Proof

If \(x\in (-\infty ,1]\), according to Definition 2.3, we have \(\mathbb{E}_{\tau ,\alpha }^{B(\ln x)^{\alpha }}=\varTheta \), obviously, (2) holds. Next, for \(x\in (k\tau ,(k+1)\tau ]\), \(k\in N^{+}\), we use mathematical induction to prove that the conclusion is also valid.

(i) When \(k=1\), \(\tau < x\leq 2\tau \), we have

$$ y(x)=\mathbb{E}_{\tau ,\alpha }^{B(\ln x)^{\alpha }}=I \frac{(\ln x)^{ \alpha -1}}{\varGamma (\alpha )}+B\frac{(\ln x-\ln \tau )^{2\alpha -1}}{ \varGamma (2\alpha )}. $$
(3)

According to (3) and Lemma 2.4, we can get

$$\begin{aligned}& \bigl({}_{H}\mathbb{D}_{1^{+}}^{\alpha } \mathbb{E}_{\tau ,\alpha }^{B( \ln t)^{\alpha }}\bigr) (x) \\& \quad = \frac{1}{\varGamma (1-\alpha )}\biggl(x\frac{d}{dx}\biggr) \int _{1}^{x}\biggl(\ln \frac{x}{t} \biggr)^{-\alpha }y(t)\frac{dt}{t} \\& \quad = \frac{1}{\varGamma (1-\alpha )}\biggl(x\frac{d}{dx}\biggr) \biggl( \frac{I}{\varGamma ( \alpha )} \int _{1}^{x}\biggl(\ln \frac{x}{t} \biggr)^{-\alpha }(\ln t)^{\alpha -1} \frac{dt}{t} \\& \qquad {}+ \frac{B}{\varGamma (2\alpha )} \int _{\tau }^{x}\biggl(\ln \frac{x}{t} \biggr)^{-\alpha }(\ln t-\ln \tau )^{2\alpha -1}\frac{dt}{t} \biggr) \\& \quad = \frac{1}{\varGamma (1-\alpha )}\biggl(x\frac{d}{dx}\biggr) \biggl( \mathbb{B}[1- \alpha ,\alpha ]+\frac{B}{\varGamma (2\alpha )}(\ln x-\ln \tau ) \mathbb{B}[1-\alpha ,2\alpha ] \biggr) \\& \quad = B\frac{(\ln x-\ln \tau )^{\alpha -1}}{\varGamma (\alpha )}. \end{aligned}$$

(ii) When \(k=2\), \(2\tau < x\leq 3\tau \), we have

$$ y(x)=\mathbb{E}_{\tau ,\alpha }^{B(\ln x)^{\alpha }}=I \frac{(\ln x)^{ \alpha -1}}{\varGamma (\alpha )}+B\frac{(\ln x-\ln \tau )^{2\alpha -1}}{ \varGamma (2\alpha )}+B^{2} \frac{(\ln x-\ln 2\tau )^{3\alpha -1}}{\varGamma (3\alpha )}. $$
(4)

According to (4) and Lemma 2.4, we can get

$$\begin{aligned}& \bigl({}_{H}\mathbb{D}_{1^{+}}^{\alpha } \mathbb{E}_{\tau ,\alpha }^{B( \ln t)^{\alpha }}\bigr) (x) \\& \quad = \frac{1}{\varGamma (1-\alpha )}\biggl(x\frac{d}{dx}\biggr) \biggl( \int _{1}^{2\tau }( \ln x-\ln t)^{-\alpha }y(t) \frac{dt}{t}+ \int _{2\tau }^{x}(\ln x- \ln t)^{-\alpha }y(t) \frac{dt}{t} \biggr) \\& \quad = \frac{1}{\varGamma (1-\alpha )}\biggl(x\frac{d}{dx}\biggr) \biggl( \frac{I}{\varGamma ( \alpha )} \int _{1}^{x}\biggl(\ln \frac{x}{t} \biggr)^{-\alpha }(\ln t)^{\alpha -1} \frac{dt}{t} \\& \qquad {}+ \frac{B}{\varGamma (2\alpha )} \int _{\tau }^{x}(\ln x-\ln t)^{- \alpha }(\ln t-\ln \tau )^{2\alpha -1}\frac{dt}{t} \\& \qquad {} +\frac{B^{2}}{\varGamma (3\alpha )} \int _{2\tau }^{x}(\ln x-\ln t)^{- \alpha }(\ln x-\ln 2\tau )^{3\alpha -1}\frac{dt}{t} \biggr) \\& \quad = B\frac{(\ln x-\ln t)^{\alpha -1}}{\varGamma (\alpha )}+\frac{B^{2}}{ \varGamma (3\alpha )}\frac{1}{\varGamma (1-\alpha )}\biggl(x \frac{d}{dx}\biggr) \int _{2 \tau }^{x}(\ln x-\ln t)^{-\alpha }(\ln x-\ln 2\tau )^{3\alpha -1} \frac{dt}{t} \\& \quad = B\frac{(\ln x-\ln \tau )^{\alpha -1}}{\varGamma (\alpha )}+B^{2}\frac{( \ln x-\ln 2\tau )^{2\alpha -1}}{\varGamma (2\alpha )}. \end{aligned}$$

(iii) Assume \(k=n\), \(n\tau < x\leq (n+1)\tau \), the following equality holds:

$$ \bigl({}_{H}\mathbb{D}_{1^{+}}^{\alpha } \mathbb{E}_{\tau ,\alpha }^{B( \ln t)^{\alpha }}\bigr) (x)=B\frac{(\ln x)^{\alpha -1}}{\varGamma (\alpha )}+B ^{2}\frac{(\ln x-\ln \tau )^{2\alpha -1}}{\varGamma (2\alpha )}+\cdots +B ^{n} \frac{(\ln x-\ln n\tau )^{n\alpha -1}}{\varGamma (n\alpha )}. $$

For \(k=n+1\), \((n+1)\tau < x\leq (n+2)\tau \), we can get

$$\begin{aligned} y(x)&=\mathbb{E}_{\tau ,\alpha }^{B(\ln x)^{\alpha }} \\ &=I \frac{(\ln x)^{ \alpha -1}}{\varGamma (\alpha )}+B\frac{(\ln x-\ln \tau )^{2\alpha -1}}{ \varGamma (2\alpha )}+\cdots +B^{n+1} \frac{(\ln x-\ln (n+1)\tau )^{(n+2) \alpha -1}}{\varGamma ((n+1)\alpha )+\alpha }. \end{aligned}$$
(5)

According to (5) and Lemma 2.4, we can get

$$\begin{aligned}& \bigl({}_{H}\mathbb{D}_{1^{+}}^{\alpha } \mathbb{E}_{\tau ,\alpha }^{B( \ln t)^{\alpha }}\bigr) (x) \\& \quad = \frac{1}{\varGamma (1-\alpha )}\biggl(x\frac{d}{dx}\biggr) \biggl( \int _{1}^{\tau }( \ln x-\ln t)^{-\alpha }y(t) \frac{dt}{t}+ \int _{\tau }^{2\tau }(\ln x- \ln t)^{-\alpha }y(t) \frac{dt}{t}+\cdots \\& \qquad {} + \int _{(n+1)\tau }^{x}(\ln x-\ln t)^{-\alpha }y(t) \frac{dt}{t} \biggr) \\& \quad = B\frac{(\ln x-\ln \tau )^{\alpha -1}}{\varGamma (\alpha )}+B^{2}\frac{( \ln x-\ln 2\tau )^{2\alpha -1}}{{\varGamma (2\alpha )}}+\cdots +B^{n}\frac{( \ln x-\ln n\tau )^{n\alpha -1}}{{\varGamma (n\alpha )}} \\& \qquad {} +\frac{1}{\varGamma (1-\alpha )}\biggl(x\frac{d}{dx}\biggr) \\& \qquad {}\times\biggl( \frac{B^{n+1}}{ \varGamma ((n+1)\alpha )+\alpha } \int _{n\tau }^{x}(\ln x-\ln t)^{-\alpha } \bigl(\ln x-\ln (n+1)\tau \bigr)^{(n+2)\alpha -1}\frac{dt}{t} \biggr) \\& \quad = B\frac{(\ln x-\ln \tau )^{\alpha -1}}{\varGamma (\alpha )}+B^{2}\frac{( \ln x-\ln 2\tau )^{2\alpha -1}}{\varGamma (2\alpha )}+\cdots +B^{n+1}\frac{( \ln x-\ln (n+1)\tau )^{(n+1)\alpha -1}}{\varGamma ((n+1)\alpha )}. \end{aligned}$$

Then, for \(\forall k\in N^{+}\), \(k\tau < x\leq (k+1)\tau \),

$$\begin{aligned}& \bigl({}_{H}\mathbb{D}_{1^{+}}^{\alpha } \mathbb{E}_{\tau ,\alpha }^{B( \ln t)^{\alpha }}\bigr) (x) \\& \quad = B \biggl(\frac{(\ln x-\ln \tau )^{\alpha -1}}{\varGamma (\alpha )}+B\frac{( \ln x-\ln 2\tau )^{2\alpha -1}}{\varGamma (2\alpha )}+\cdots +B^{k-1}\frac{( \ln x-\ln k\tau )^{k\alpha -1}}{\varGamma (k\alpha )} \biggr) \\& \quad = B\mathbb{E}_{\tau ,\alpha }^{B(\ln x-\ln k\tau )^{\alpha }}. \end{aligned}$$

The proof is completed. □

In what follows, we give the main result of this paper.

Theorem 3.2

For \(k\tau < x\leq (k+1)\tau \), \(k\in N^{+}\), the solution \(y\in C(X,R ^{n})\) of (1) can be written to

$$ y(x)=\mathbb{E}_{\tau ,\alpha }^{B(\ln x)^{\alpha }}b+ \int _{1}^{ \tau }\mathbb{E}_{\tau ,\alpha }^{B(\ln x-\ln s)^{\alpha }} \bigl({}_{H} \mathbb{D}_{1^{+}}^{\alpha }\varphi \bigr) (s)\frac{ds}{s}, $$
(6)

where \(X=(k\tau ,(k+1)\tau ]\cap (1,(k+1)\tau ]\), \(0<\alpha < \frac{1}{n+1}\) or \(X=[k\tau ,(k+1)\tau ]\cap [1,(k+1)\tau ]\), \(\alpha \geq \frac{1}{n+1}\).

Proof

Assume that \(Y_{0}(x)=B\mathbb{E}_{\tau ,\alpha }^{B(\ln x)^{\alpha }}\) satisfies Theorem 3.1, and the solution of (1) is given by

$$ y(x)=B\mathbb{E}_{\tau ,\alpha }^{B(\ln x)^{\alpha }}C+ \int _{1}^{ \tau }\mathbb{E}_{\tau ,\alpha }^{B(\ln x-\ln s)^{\alpha }}z(s) \frac{ds}{s}, $$
(7)

where \(C\in R^{n}\) is an unknown constant vector, \(z(\cdot )\) is an unknown Hadamard differentiable function. Since \(Y_{0}(x)\) is the solution of Equation (1) and \(\mathbb{E}_{\tau ,\alpha }^{B( \ln x)^{\alpha }}=I\frac{(\ln x)^{\alpha -1}}{\varGamma (\alpha )}\), \(1< x \leq \tau \), thus we can choose C such that \(({}_{H}\mathbb{I} _{1^{+}}^{1-\alpha }y)(1^{+})=b\).

Let \(x\rightarrow 1^{+}\), by Definition 2.3, we have \(\mathbb{E}_{\tau ,\alpha }^{B(-\ln \tau -\ln s)^{\alpha }}=\varTheta \), \(1< s\leq \tau \). For \(1< x\leq \tau \), we obtain

$$\begin{aligned} b =&\bigl({}_{H}\mathbb{I}_{1^{+}}^{1-\alpha }y \bigr) \bigl(1^{+}\bigr)=\lim _{x\rightarrow 1^{+}}\bigl({}_{H} \mathbb{I}_{1^{+}}^{1-\alpha }y\bigr) (x) \\ =&\lim _{x\rightarrow 1^{+}} \biggl(\frac{1}{\varGamma (1-\alpha )} \int _{1}^{x}(\ln x-\ln t)^{-\alpha }Y_{0}(t)C \frac{dt}{t} \biggr) \\ =&\frac{C}{\varGamma (1-\alpha )}\lim _{x\rightarrow 1^{+}} \biggl( \int _{1}^{x}(\ln x-\ln t)^{-\alpha }(\ln t)^{\alpha -1}\frac{dt}{t} \biggr) \\ =&\lim _{x\rightarrow 1^{+}}C=C. \end{aligned}$$

It indicates that (7) has the form

$$ y(x)=B\mathbb{E}_{\tau ,\alpha }^{B(\ln x)^{\alpha }}b+ \int _{1}^{ \tau }\mathbb{E}_{\tau ,\alpha }^{B(\ln x-\ln s)^{\alpha }}z(s) \frac{ds}{s}. $$

By Definition 2.3, we divide \((0,\tau ]\) into two subintervals, we can get:

(i) For \(1< s\leq x\) and \(0\leq \ln x-\ln s\leq \ln x\), we have

$$ \mathbb{E}_{\tau ,\alpha }^{B(\ln x-\ln s)^{\alpha }}=I\frac{(\ln x- \ln s)^{\alpha -1}}{\varGamma (\alpha )}. $$

(ii) For \(x< s\leq \tau \) and \(\ln x-\ln \tau \leq \ln x-\ln s\leq 0\), then \(\mathbb{E}_{\tau ,\alpha }^{B(-\ln \tau -\ln s)^{\alpha }}= \varTheta \). Thus, for \(1< x\leq \tau \), we have

$$ \varphi (x)=I\frac{(\ln x)^{\alpha -1}}{\varGamma (\alpha )}b+ \int _{1} ^{\tau }\mathbb{E}_{\tau ,\alpha }^{B(\ln x-\ln s)^{\alpha }}z(s) \frac{ds}{s}. $$
(8)

By calculating Hadamard type fractional order derivatives on both sides of (8), we can get

$$\begin{aligned}& \bigl({}_{H}\mathbb{D}_{1^{+}}^{\alpha }\varphi \bigr) (x) \\& \quad = \frac{1}{\varGamma (1-\alpha )}\biggl(x\frac{d}{dx}\biggr) \int _{1}^{x}(\ln x- \ln t)^{-\alpha } \biggl(I\frac{(\ln t)^{\alpha -1}}{\varGamma (\alpha )} \varphi (1)+ \int _{1}^{x}I\frac{(\ln t-\ln s )^{\alpha -1}}{\varGamma ( \alpha )}z(s) \frac{ds}{s} \biggr)\frac{dt}{t} \\& \quad = \frac{1}{\varGamma (1-\alpha )}\biggl(x\frac{d}{dx}\biggr) \int _{1}^{x}\frac{z(s)}{ \varGamma (\alpha )} \biggl( \int _{s}^{x}(\ln x-\ln t)^{-\alpha }(\ln t- \ln s) ^{\alpha -1}\frac{dt}{t} \biggr)\frac{ds}{s} \\& \quad = x\frac{d}{dx} \int _{-\tau }^{x}z(s)\frac{ds}{s}=z(s). \end{aligned}$$

The proof is completed. □

To end this paper, we give an example to illustrate the above theoretical result.

Let \(\alpha =0.3\), \(\tau =1.2\), \(k^{*}=4\). Consider

$$ \textstyle\begin{cases} ({}_{H}\mathbb{D}_{1^{+}}^{0.3}y)(x)=By(x-1.2),\quad x\in (1.2,6],\tau >0, \\ y(x)=(0.1,0.2),\quad 1< x\leq 1.2, \\ ({}_{H}\mathbb{I}_{1^{+}}^{0.7}y)(1^{+})=b, \end{cases} $$
(9)

where \(y(x)=(y_{1}(x),y_{2}(x))^{T}\), \(b=(1,2)^{T}\), and

$$ B= \begin{pmatrix} 2 & 1 \\ 3 & 5 \end{pmatrix}. $$

By Theorem 3.2, for every \(x\in (1.2k,1.2(k+1)]\), \(k=\{0,1,2,3,4 \}\), the solution of (9) can be represented by

$$ y(x)=\mathbb{E}_{1,2,0.3}^{B(\ln x)^{\alpha }}b+ \int _{1}^{1.2} \mathbb{E}_{1,2,0.3}^{B(\ln x-\ln s)^{0.3}} \bigl({}_{H}\mathbb{D}_{1^{+}} ^{0.3}\varphi \bigr) (s)\frac{ds}{s}, $$

where

$$ \mathbb{E}_{1,2,0.3}^{B(\ln x)^{\alpha }}b= \textstyle\begin{cases} \mathbf{0},& {-}\infty < x\leq 1, \\ I\frac{(\ln x)^{-0.7}}{\varGamma (0.3)}(1,2)^{T},& 1< x\leq 1.2, \\ (I\frac{(\ln x)^{-0.7}}{\varGamma (0.3)}+B\frac{(\ln x-\ln 1.2)^{-0.4}}{ \varGamma (0.6)})(1,2)^{T},&1.2< x\leq 2.4, \\ (I\frac{(\ln x)^{-0.7}}{\varGamma (0.3)}+B\frac{(\ln x-\ln 1.2)^{-0.4}}{ \varGamma (0.6)}+B^{2}\frac{(\ln x-\ln 2.4)^{-0.1}}{\varGamma (0.9)})(1,2)^{T},&2.4< x \leq 3.6, \\ (I\frac{(\ln x)^{-0.7}}{\varGamma (0.3)}+B\frac{(\ln x-\ln 1.2)^{-0.4}}{ \varGamma (0.6)}+B^{2}\frac{(\ln x-\ln 2.4)^{-0.1}}{\varGamma (0.9)} \\ \quad {}+B^{3}\frac{( \ln x-\ln 3.6)^{0.2}}{\varGamma (1.2)})(1,2)^{T},&3.6< x\leq 4.8, \\ (I\frac{(\ln x)^{-0.7}}{\varGamma (0.3)}+B\frac{(\ln x-\ln 1.2)^{-0.4}}{ \varGamma (0.6)}+B^{2}\frac{(\ln x-\ln 2.4)^{-0.1}}{\varGamma (0.9)} \\ \quad {}+B^{3}\frac{( \ln x-\ln 3.6)^{0.2}}{\varGamma (1.2)}+B^{3}\frac{(\ln x-\ln 3.6)^{0.5}}{ \varGamma (1.5)})(1,2)^{T}, & 4.8< x\leq 6. \end{cases} $$

References

  1. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  2. Zhu, B., Liu, L., Wu, Y.: Local and global existence of mild solutions for a class of nonlinear fractional reaction–diffusion equation with delay. Appl. Math. Lett. 61, 73–79 (2016)

    Article  MathSciNet  Google Scholar 

  3. Wang, Y., Liu, L., Wu, Y.: Positive solutions for a nonlocal fractional differential equation. Nonlinear Anal. 74, 3599–3605 (2011)

    Article  MathSciNet  Google Scholar 

  4. Zhang, X., Liu, L., Wu, Y.: Existence results for multiple positive solutions of nonlinear higher order perturbed fractional differential equations with derivatives. Appl. Math. Comput. 219, 1420–1433 (2012)

    MathSciNet  MATH  Google Scholar 

  5. Wang, Y., Liu, L., Zhang, X., Wu, Y.: Positive solutions of a fractional semipositone differential system arising from the study of HIV infection models. Appl. Math. Comput. 258, 312–324 (2015)

    MathSciNet  MATH  Google Scholar 

  6. Zhang, X., Liu, L., Wu, Y.: Variational structure and multiple solutions for a fractional advection–dispersion equation. Comput. Math. Appl. 68, 1794–1805 (2014)

    Article  MathSciNet  Google Scholar 

  7. Zhang, X., Mao, C., Liu, L., Wu, Y.: Exact iterative solution for an abstract fractional dynamic system model for bioprocess. Qual. Theory Dyn. Syst. 16, 205–222 (2017)

    Article  MathSciNet  Google Scholar 

  8. Zhang, X., Liu, L., Wu, Y., Wiwatanapataphee, B.: Nontrivial solutions for a fractional advection dispersion equation in anomalous diffusion. Appl. Math. Lett. 66, 1–8 (2017)

    Article  MathSciNet  Google Scholar 

  9. Jiang, J., Liu, L., Wu, Y.: Multiple positive solutions of singular fractional differential system involving Stieltjes integral conditions. Electron. J. Qual. Theory Differ. Equ. 2012, 43 (2012)

    Article  MathSciNet  Google Scholar 

  10. Klimek, M.: Sequential fractional differential equations with Hadamard derivative. Commun. Nonlinear Sci. Numer. Simul. 16, 4689–4697 (2011)

    Article  MathSciNet  Google Scholar 

  11. Ma, Q., Wang, R., Wang, J., Ma, Y.: Qualitative analysis for solutions of a certain more generalized two-dimensional fractional differential system with Hadamard derivative. Appl. Math. Comput. 257, 436–445 (2014)

    MathSciNet  MATH  Google Scholar 

  12. Khusainov, D.Y., Shuklin, G.V.: Linear autonomous time-delay system with permutation matrices solving. Stud. Univ. Žilina Math. Ser. 17, 101–108 (2003)

    MathSciNet  MATH  Google Scholar 

  13. Diblík, J., Khusainov, D.Y.: Representation of solutions of discrete delayed system \(x(k+1)=Ax(k)+Bx(k-m)+f(k)\) with commutative matrices. J. Math. Anal. Appl. 318, 63–76 (2006)

    Article  MathSciNet  Google Scholar 

  14. Diblík, J., Khusainov, D.Y.: Representation of solutions of linear discrete systems with constant coefficients and pure delay. Adv. Differ. Equ. 2006, Article ID 80825 (2006)

    Article  MathSciNet  Google Scholar 

  15. Khusainov, D.Y., Diblík, J., Růžičková, M., Lukáčová, J.: Representation of a solution of the Cauchy problem for an oscillating system with pure delay. Nonlinear Oscil. 11, 261–270 (2008)

    Article  MathSciNet  Google Scholar 

  16. Diblík, J., Fečkan, M., Pospišil, M.: Representation of a solution of the Cauchy problem for an oscillating system with two delays and permutable matrices. Ukr. Math. J. 65, 58–69 (2013)

    Article  MathSciNet  Google Scholar 

  17. Medveď, M., Pospišil, M.: Sufficient conditions for the asymptotic stability of nonlinear multidelay differential equations with linear parts defined by pairwise permutable matrices. Nonlinear Anal. 75, 3348–3363 (2012)

    Article  MathSciNet  Google Scholar 

  18. Li, M., Wang, J.: Exploring delayed Mittag-Leffler type matrix functions to study finite time stability of fractional delay differential equations. Appl. Math. Comput. 324, 254–265 (2018)

    MathSciNet  MATH  Google Scholar 

  19. Li, M., Wang, J.: Finite time stability of fractional delay differential equations. Appl. Math. Lett. 64, 170–176 (2017)

    Article  MathSciNet  Google Scholar 

  20. Liang, C., Wang, J., O’Regan, D.: Representation of solution of a fractional linear system with pure delay. Appl. Math. Lett. 77, 72–78 (2018)

    Article  MathSciNet  Google Scholar 

  21. Cao, X., Wang, J.: Finite-time stability of a class of oscillating systems with two delays. Math. Methods Appl. Sci. 41, 4943–4954 (2018)

    Article  MathSciNet  Google Scholar 

  22. Mahmudov, N.I.: Delayed perturbation of Mittag-Leffler functions and their applications to fractional linear delay differential equations. Math. Methods Appl. Sci., 1–9 (2018). https://doi.org/10.1002/mma.5446

    Article  Google Scholar 

  23. Mahmudov, N.I.: Representation of solutions of discrete linear delay systems with non permutable matrices. Appl. Math. Lett. 85, 8–14 (2018)

    Article  MathSciNet  Google Scholar 

  24. Mahmudov, N.I.: A novel fractional delayed matrix cosine and sine. Appl. Math. Lett. 92, 41–48 (2019)

    Article  MathSciNet  Google Scholar 

  25. Li, M., Debbouche, A., Wang, J.: Relative controllability in fractional differential equations with pure delay. Math. Methods Appl. Sci. 41, 8906–8914 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support by the National Natural Science Foundation of China (11661016; 11271309).

Funding

This work is partially supported by the National Natural Science Foundation of China (11661016; 11271309).

Author information

Authors and Affiliations

Authors

Contributions

All authors read and approved the final manuscript.

Corresponding author

Correspondence to JinRong Wang.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, P., Wang, J. & Zhou, Y. Representation of solution for a linear fractional delay differential equation of Hadamard type. Adv Differ Equ 2019, 300 (2019). https://doi.org/10.1186/s13662-019-2246-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13662-019-2246-6

Keywords