Skip to main content

Advertisement

Table 5 Comparison between FSG(C-N) and FSkG(C-N) iterative methods \(\tau =1/15\) for Example 2

From: On skewed grid point iterative method for solving 2D hyperbolic telegraph fractional differential equation

\(h^{-1}\)MethodExecution time (sec.)Ite.Ave errorMax errorTotal operations
α = 0.60
12FSG(C-N)12.3553261.13977 × 10−23.04174 × 10−21,145,144
FSkG(C-N)4.27443161.12180 × 10−23.11192 × 10−2377,104
16FSG(C-N)34.7570401.12653 × 10−23.04467 × 10−23,276,000
FSkG(C-N)11.0605241.11831 × 10−23.08253 × 10−21,027,936
20FSG(C-N)78.3905571.11666 × 10−23.08420 × 10−27,490,028
FSkG(C-N)25.7246331.11369 × 10−23.09775 × 10−22,239,692
24FSG(C-N)150.182761.10778 × 10−23.09794 × 10−214,634,256
FSkG(C-N)48.0327441.10844 × 10−23.11293 × 10−24,340,336
α = 0.70
12FSG(C-N)8.82966198.23924 × 10−32.59719 × 10−2836,836
FSkG(C-N)3.26042128.21954 × 10−32.65085 × 10−2288,288
16FSG(C-N)24.1490298.06517 × 10−32.63727 × 10−22,375,100
FSkG(C-N)8.40845188.06394 × 10−32.66746 × 10−2781,144
20FSG(C-N)53.4459417.96695 × 10−32.65627 × 10−25,387,564
FSkG(C-N)17.5189247.98367 × 10−32.67728 × 10−21,646,736
24FSG(C-N)104.567547.89936 × 10−32.66550 × 10−210,398,024
FSkG(C-N)32.7290327.93508 × 10−32.68291 × 10−23,182,816
α = 0.80
12FSG(C-N)6.61444141.15550 × 10−22.71116 × 10−2616,616
FSkG(C-N)2.69882101.15107 × 10−22.76285 × 10−2243,880
16FSG(C-N)17.3941211.11922 × 10−22.74914 × 10−21,719,900
FSkG(C-N)6.55204131.11648 × 10−22.76485 × 10−2575,484
20FSG(C-N)37.9550281.09646 × 10−22.75706 × 10−23,679,312
FSkG(C-N)13.2445181.09317 × 10−22.76839 × 10−21,251,432
24FSG(C-N)72.2909371.08101 × 10−22.76601 × 10−27,124,572
FSkG(C-N)23.9930221.07676 × 10−22.76683 × 10−22,218,216