Skip to main content

Advertisement

Table 4 Comparison between FSG(C-N) and FSkG(C-N) iterative methods at \(\tau =1/10\) for Example 1

From: On skewed grid point iterative method for solving 2D hyperbolic telegraph fractional differential equation

\(h^{-1}\)MethodExecution time (sec.)Ite.Ave errorMax errorTotal operations
α = 0.65
10FSG(C-N)2.93282204.71168 × 10−29.69517 × 10−2403,380
FSkG(C-N)1.10761124.88586 × 10−21.00569 × 10−1132,468
15FSG(C-N)12.5737354.41042 × 10−29.71679 × 10−21,708,140
FSkG(C-N)4.30563214.48098 × 10−29.87645 × 10−2539,334
20FSG(C-N)35.2718544.26392 × 10−29.72095 × 10−24,854,006
FSkG(C-N)11.6689324.30456 × 10−29.81329 × 10−21,487,028
25FSG(C-N)78.9365754.17918 × 10−29.75259 × 10−210,756,800
FSkG(C-N)25.1786444.20595 × 10−29.81334 × 10−23,232,394
α = 0.75
10FSG(C-N)2.26201163.82775 × 10−27.67695 × 10−2322,704
FSkG(C-N)0.90480103.98710 × 10−28.01500 × 10−2112,050
15FSG(C-N)9.42246273.58042 × 10−27.83929 × 10−21,317,708
FSkG(C-N)3.33842173.64650 × 10−27.98128 × 10−2441,228
20FSG(C-N)26.3018413.46193 × 10−27.86265 × 10−23,685,449
FSkG(C-N)8.81406253.49882 × 10−27.94765 × 10−21,171,545
25FSG(C-N)57.9856583.39374 × 10−27.85311 × 10−28,318,592
FSkG(C-N)18.6265343.41800 × 10−27.91150 × 10−22,514,029
α = 0.85
10FSG(C-N)1.87201132.39638 × 10−25.27844 × 10−2262,197
FSkG(C-N)0.7956192.53145 × 10−25.55785 × 10−2101,841
15FSG(C-N)7.36325212.24018 × 10−25.21491 × 10−21,024,884
FSkG(C-N)2.71442132.29590 × 10−25.34259 × 10−2343,122
20FSG(C-N)20.1397322.17059 × 10−25.27656 × 10−22,876,448
FSkG(C-N)6.89524192.20033 × 10−25.34685 × 10−2901,131
25FSG(C-N)44.0391442.13271 × 10−25.25357 × 10−26,310,656
FSkG(C-N)14.6017262.15153 × 10−25.29944 × 10−21,939,337