Skip to main content

Theory and Modern Applications

A non-autonomous Leslie–Gower model with Holling type IV functional response and harvesting complexity

Abstract

This paper considers a non-autonomous modified Leslie–Gower model with Holling type IV functional response and nonlinear prey harvesting. The permanence of the model is obtained, and sufficient conditions for the existence of a periodic solution are presented. Two examples and their simulations show the validity of our results.

1 Introduction

It is well known that predation activities are ubiquitous in nature [1]. Modeling of predator-prey interaction has become an important topic in mathematical biology. Song and Yuan [2] studied bifurcation analysis in a predator-prey system with time delay. Ruan and Xiao [3] provided a global analysis in a predator-prey system with a nonmonotonic functional response, and they proved the existence of two limit cycles. Huang and Xiao [4] considered a bifurcation analysis and stability for a predator-prey system with Holling-IV functional response. Xiao and Ruan [5] and Xue and Duan [6] considered time-delay effects to a predator-prey model with Holling-IV type functional response, where stability and bifurcation of periodic solutions were investigated. For the non-autonomous case, Chen [7] proved the existence of two periodic solutions for a model with Holling-IV functional response, and Xia et al. [8] obtained some sufficient conditions for the existence of two periodic solutions in a stage-structured predator-prey model. Li et al. [9] established the existence of multiple periodic solutions for a stage-structured model with harvesting terms. Wang et al. [10] studied the existence of multiple periodic solutions for an impulsive model with a Holling IV type functional response. A two-species model (the so-called LG model) was proposed by Leslie and Gower [11] in 1960. Korobeinikov [12] proved the existence of the limit cycle in such a model. For autonomous predator-prey models with Holling II or III type functional response, the existence of a limit cycle was proved and for the non-autonomous case, the existence of periodic solutions was established. Yu [13] reported some important research for a modified Leslie–Gower model. The Leslie–Gower type predator-prey model with Holling type IV functional response is described by

$$ \textstyle\begin{cases} \frac{du}{dt} = [r(1-\frac{u}{K})- \frac{mv}{\frac{u^{2}}{i}+u+a} ]u, \\ \frac{dv}{dt} = s(1-\frac{nv}{u})v, \end{cases} $$
(1.1)

where \(u\equiv u(t)\) and \(v\equiv v(t)\) are the prey and predator population density, respectively, r and s are intrinsic growth rates of the prey and predator, respectively. K is the carrying capacity of prey population; here m and i denote the maximum per capita predation rate and a measure of the predator’s immunity from or tolerance of the prey, respectively, and a and n are the half saturation constant and the number of prey required to support one predator at equilibrium, respectively. Upadhyay et al. [14] studied that interaction between prey and predator with a Holling type IV functional response. We know that there are three main types of harvesting in the biomodel article: (1) constant rate of harvesting, (2) proportional harvesting \(H(x)=qEx\), and (3) nonlinear harvesting \(H(u)=\frac{qEu}{m_{1}E+m_{2}u}\), where \(m_{1}\), \(m_{2}\) are suitable constants, E is the effort applied to harvest individuals and q is the catchability coefficient. Zhang et al. [15] introduced the nonlinear harvesting \(H(u)=\frac{qEu}{m_{1}E+m_{2}u}\) into model (1.1), and it can be described by

$$ \textstyle\begin{cases} \frac{du}{dt} = [r(1-\frac{u}{K})- \frac{mv}{\frac{u^{2}}{i}+u+a}-\frac{qE}{m_{1}E+m_{2}u} ]u, \\ \frac{dv}{dt} = s(1-\frac{nv}{u})v. \end{cases} $$
(1.2)

Taking

$$\begin{aligned} &u=Kx,\qquad t=rT,\qquad h=\frac{qE}{rm_{2}K},\qquad c=\frac{m_{1}E}{m_{2}K},\qquad v= \frac{rKy}{m},\qquad \alpha =\frac{i}{k},\\ & \beta =\frac{nr}{m},\qquad \gamma = \frac{a}{K},\qquad \delta =\frac{s}{r}, \end{aligned}$$

then system (1.2) becomes

$$ \textstyle\begin{cases} \frac{dx}{dt} = x(1-x)-\frac{xy}{\frac{x^{2}}{\alpha }+x+\gamma }-\frac{hx}{x+c}, \\ \frac{dy}{dt} = {\delta }y(1-\beta \frac{y}{x}). \end{cases} $$
(1.3)

In spite of a lot of works focused on the global dynamics and bifurcation analysis of the ecological systems (e.g., [2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23]), in realistic environment, ecological systems are usually affected by the seasonable perturbations or other unpredictable disturbances (e.g., see [24,25,26,27,28,29,30,31,32,33,34,35,36]). Thus the time-varying parameters are more reasonable when we try to consider the periodic environment. In this paper, we consider the following non-autonomous model:

$$ \textstyle\begin{cases} \frac{dx}{dt} = x(1-x)-\frac{xy}{\frac{x^{2}}{\alpha (t)}+x+\gamma (t)}- \frac{h(t)x}{x+c(t)}, \\ \frac{dy}{dt} = {\delta (t)}y(1-\beta (t)\frac{y}{x}). \end{cases} $$
(1.4)

The rest of this paper is organized as follows. In Sect. 2, we discuss the permanence for the general nonautonomous case. Section 3 is to obtain some sufficient conditions for the existence of periodic solution of system (1.4). Finally, we use numerical simulation to fully demonstrate the existence of our periodic solution.

2 Permanence

In this section, we assume that \(\alpha (t), \gamma (t), h(t), c(t), \delta (t)\), and \(\beta (t)\) are all continuous and bounded above and below by positive constants. Let \(\mathbb{R}_{+}^{2}:=\) \(\{(x,y) \in \mathbb{R}^{2}\mid x\geq 0, y\geq 0 \}\). For a continuous bounded function \(f(t)\) on \(\mathbb{R}\), denote

$$ f^{u}:= \operatorname{sup}_{t\in \mathbb{R}} f(t),\qquad f^{l}:= \operatorname{inf}_{t \in \mathbb{R}} f(t). $$

From a biological viewpoint, we assume that the initial conditions satisfy

$$ x(t_{0})=x_{0}>0,\qquad y(t_{0})=y_{0}>0. $$

Definition 2.1

If a positive solution \((x(t), y(t))\) of system (1.4) satisfies

$$ \min { \Bigl\{ \lim_{t\rightarrow \infty }\inf x(t), \lim_{t\rightarrow \infty } \inf y(t) \Bigr\} }=0, $$

then system (1.4) is non-persistent.

Definition 2.2

If there exist two positive constants ϕ and \(\varphi (0< \phi < \varphi )\) with

$$\begin{aligned} &\min { \Bigl\{ \lim_{t\rightarrow \infty }\inf x(t), \lim_{t\rightarrow \infty } \inf y(t) \Bigr\} }\geq \phi, \\ &\max { \Bigl\{ \lim_{t\rightarrow \infty }\sup x(t), \lim_{t\rightarrow \infty } \sup y(t) \Bigr\} }\leq \varphi, \end{aligned}$$

then system (1.4) is permanent.

Define the collections:

$$\begin{aligned} &S_{1}= \bigl\{ \bigl(c^{u}, c^{l}, h^{u}, \gamma ^{l}, \alpha ^{u}\bigr)\mid c^{u}>1, c ^{l}>h^{u}, 4\gamma ^{l}< \alpha ^{u} \bigr\} ; \\ &S_{2}= \bigl\{ \bigl(c^{u}, c^{l}, h^{u}, h^{l}, \gamma ^{l}, \alpha ^{u}, \beta ^{l}\bigr)\mid c^{u}>1, c^{l}>h^{u}, 4 \gamma ^{l}>\alpha ^{u},\\ &\phantom{S_{2}=} \beta ^{l}\bigl(c ^{u}-1\bigr) \bigl(c^{l}-h^{u}\bigr) \bigl(4\gamma ^{l}-\alpha ^{u}\bigr)>4c^{l}\bigl(c^{u}-h^{l} \bigr) \bigr\} ; \\ &S_{3}= \biggl\{ \bigl(c^{u}, c^{l}, h^{u}, h^{l}, \gamma ^{l}, \alpha ^{u}, \beta ^{l}\bigr)\mid c^{u}>h^{l}, c^{u}>1, c^{l}< h^{u}, 4\gamma ^{l}< \alpha ^{u},\\ &\phantom{S_{3}=}\frac{4c ^{l}(c^{u}-h^{l})}{(4\gamma ^{l}-\alpha ^{u})}>\beta ^{l}\bigl(c^{u}-1\bigr) \bigl(c^{l}-h ^{u}\bigr) \biggr\} ; \\ &S_{4}= \bigl\{ \bigl(c^{u}, c^{l}, h^{u}, h^{l}, \gamma ^{l}, \alpha ^{u}, \beta ^{l}\bigr)\mid c^{u}< h^{l}, c^{u}< 1, 4\gamma ^{l}< \alpha ^{u},\\ &\phantom{S_{4}= } 4c^{l} \bigl(c^{u}-h ^{l}\bigr)>\beta ^{l} \bigl(c^{u}-1\bigr) \bigl(c^{l}-h^{u}\bigr) \bigl(4 \gamma ^{l}-\alpha ^{u}\bigr) \bigr\} . \end{aligned}$$

The set Γ is defined by

$$ \varGamma = \bigl\{ (x, y)\in \mathbb{R}^{2} \mid 0< g_{1}\leq x \leq G_{1}, 0< g _{2}\leq y \leq G_{2} \bigr\} , $$
(2.1)

where

$$\begin{aligned} &G_{1}=\frac{c^{u}-h^{l}}{c^{u}-1},\qquad g_{1}= \frac{\beta ^{l} (c^{u}-1)(c ^{l}-h^{u})(4\gamma ^{l}-\alpha ^{u})-4c^{l}(c^{u}-h^{l})}{\beta ^{l}c ^{l}(c^{u}-1)(4\gamma ^{l}-\alpha ^{u})}, \end{aligned}$$
(2.2)
$$\begin{aligned} &G_{2}=\frac{c^{u}-h^{l}}{\beta ^{l}(c^{u}-1)}, \qquad g_{2}=\frac{\beta ^{l}(c ^{u}-1)(c^{l}-h^{u})(4\gamma ^{l}-\alpha ^{u})-4c^{l}(c^{u}-h^{l})}{ \beta ^{u}\beta ^{l}c^{l}(c^{u}-1)(4\gamma ^{l}-\alpha ^{u})}. \end{aligned}$$
(2.3)

Theorem 2.3

If \(S_{1}\cup S_{2}\cup S_{3}\cup S_{4}\neq \emptyset \), then the set Γ is a positively invariant and bounded region with respect to system (1.4).

Proof

Let \((x(t), y(t))\) be any solution of system (1.4) satisfying the initial values \((x(t_{0}), y(t_{0}))=(x_{0}, y_{0}) \in \varGamma \). It suffices to show that all the solutions starting from the point in Γ keep inside Γ. From the first equation of system (1.4), we get

$$\begin{aligned} \dot{x}(t) &\leq x(t) \biggl(1-x(t)-\frac{h^{l}}{x(t)+c^{u}}\biggr) \\ &=\frac{x(t)}{x(t)+c^{u}} \bigl\{ x(t)-x^{2}(t)+c^{u}-c^{u}x(t)-h^{l} \bigr\} \\ &\leq \frac{x(t)}{x(t)+c^{u}} \bigl\{ c^{u}-h^{l}- \bigl(c^{u}-1\bigr)x(t) \bigr\} \\ &\leq \frac{x(t)(c^{u}-1)}{x(t)+c^{u}} \biggl\{ \frac{c^{u}-h^{l}}{c ^{u}-1}-x(t) \biggr\} \\ &=\frac{x(t)(c^{u}-1)}{x(t)+c^{u}} \bigl\{ G_{1}-x(t) \bigr\} , \end{aligned}$$

which implies

$$ 0\leq x(t_{0})\leq G_{1}\Rightarrow x(t)\leq G_{1}, \quad t\geq t_{0}. $$

From the second equation of system (1.4), we obtain

$$\begin{aligned} \dot{y}(t) &\leq \delta ^{u}y(t) \biggl[1-\frac{\beta ^{l}y(t)}{G_{1}} \biggr] \\ &= \frac{\delta ^{u}\beta ^{l}(c^{u}-1)y(t)}{c^{u}-h^{l}} \biggl[\frac{c ^{u}-h^{l}}{\beta ^{l}(c^{u}-1)}-y(t) \biggr] \\ &= \frac{\delta ^{u}\beta ^{l}(c^{u}-1)y(t)}{c^{u}-h^{l}} \bigl[G_{2}-y(t) \bigr], \end{aligned}$$

which implies

$$ 0\leq y(t_{0})\leq G_{2}\Rightarrow y(t)\leq G_{2},\quad t\geq t_{0}. $$

Similarly, we have

$$\begin{aligned} \dot{x}(t) &\geq x(t) \biggl[1-x(t)-\frac{h^{u}}{c^{l}}-\frac{G_{2} \alpha ^{u}}{x(t)^{2}+\alpha ^{u}x(t)+\alpha ^{u}\gamma ^{l}} \biggr] \\ &\geq x(t) \biggl[1-x(t)-\frac{h^{u}}{c^{l}}-\frac{4G_{2}\alpha ^{u}}{4 \alpha ^{u}\gamma ^{l}-(\alpha ^{u})^{2}} \biggr] \\ &= x(t) \biggl[\frac{\beta ^{l}(c^{u}-1)(c^{l}-h^{u})(4\gamma ^{l}-\alpha ^{u})-4c^{l}(c^{u}-h^{l})}{\beta ^{l}c^{l}(c^{u}-1)(4\gamma ^{l}-\alpha ^{u})}-x(t) \biggr] \\ &= x(t) \bigl[g_{1}-x(t) \bigr], \end{aligned}$$

which leads to

$$ x(t_{0})\geq g_{1}\Rightarrow x(t)\geq g_{1},\quad t \geq t_{0}. $$

Moreover, it follows from the predator equation that

$$\begin{aligned} \dot{y}(t) &\geq \delta ^{l}y(t) \biggl[1-\frac{\beta ^{u}y}{g_{1}} \biggr] \\ &=\frac{\beta ^{u}\delta ^{l}y(t)}{g_{1}} \biggl[\frac{\beta ^{l}(c^{u}-1)(c ^{l}-h^{u})(4\gamma ^{l}-\alpha ^{u})-4c^{l}(c^{u}-h^{l})}{\beta ^{u} \beta ^{l}c^{l}(c^{u}-1)(4\gamma ^{l}-\alpha ^{u})}-y \biggr] \\ &=\frac{\beta ^{u}\delta ^{l}y(t)}{g_{1}} [g_{2}-y ], \end{aligned}$$

and hence,

$$ y(t_{0})\geq g_{2}\Rightarrow y(t)\geq g_{1}, \quad t \geq t_{0}. $$

This completes the proof of Theorem 2.3. □

Theorem 2.4

Assume that the condition in Theorem 2.3 is satisfied. Then the set Γ is the ultimately bounded region of system (1.4).

3 Periodic case

This section is to obtain some sufficient conditions for the existence of a periodic solution of system (1.4). When we study the non-autonomous periodic system, we focus on obtaining the existence of positive periodic solutions. Therefore, we assume that all the parameters of system (1.4) are periodic in t of period \(\omega > 0\). It is easy to follow from Brouwer’s fixed point theorem that

Theorem 3.1

In addition to the conditions of Theorem 2.3, system (1.4) has at least one positive periodic solution of period ω, say \((x^{*}(t),y^{*}(t))\), which lies in Γ, i.e., \(g _{1}\leq x^{*}(t)\leq G_{2}, g_{2}\leq y^{*}(t)\leq g_{2}(t)\), where \(g_{i}, G_{i}, i=1, 2\), are defined in (2.2).

Alternatively, we can employ another method (coincidence degree theory) to investigate periodic solutions of system (1.4). We adopt the notations and lemmas from [24, 27, 37,38,39]. We denote \(\bar{f}:=\frac{1}{\omega }\int ^{\omega }_{0}f(t)\,dt\) when \(f(t)\) is a periodic and continuous function with period ω (see [31]). Let

$$\begin{aligned} &H_{1}:= \ln {\biggl\{ 1+\frac{\bar{h}}{\bar{c}}\biggr\} }+2 \omega,\qquad H_{2}:= \ln {\biggl\{ \frac{\exp {\{H_{1}\}}}{\bar{\beta }}\biggr\} }+2\bar{\delta } \omega, \\ &H_{3}:=\ln { \biggl\{ \frac{(\bar{c}-\bar{h})(4\gamma ^{l}-\alpha ^{u})-4 \exp {\{H_{2}\}}\bar{c}}{\bar{c}(4\gamma ^{l}-\alpha ^{u})} \biggr\} }-2 \omega,\qquad H_{4}:=\ln {\biggl\{ \frac{\exp {\{H_{3}\}}}{\bar{\beta }}\biggr\} }-2\bar{\delta }\omega, \end{aligned}$$

and define the collections

$$\begin{aligned} &\bar{S}_{1}= \bigl\{ \bigl(\bar{c}, \bar{h},\gamma ^{l}, \alpha ^{u}\bigr)\mid 4\gamma ^{l}< \alpha ^{u}, \bar{c}>\bar{h} \bigr\} ; \\ &\bar{S}_{2}= \bigl\{ \bigl(\bar{c}, \bar{h},\gamma ^{l}, \alpha ^{u}, H_{2}\bigr)\mid 4\gamma ^{l}>\alpha ^{u}, \bar{c}>\bar{h}, (\bar{c}-\bar{h}) \bigl(4\gamma ^{l}- \alpha ^{u}\bigr)>4\exp {\{H_{2}\}}\bar{c} \bigr\} ; \\ &\bar{S}_{3}= \bigl\{ \bigl(\bar{c}, \bar{h},\gamma ^{l}, \alpha ^{u}, H_{2}\bigr)\mid 4\gamma ^{l}< \alpha ^{u}, \bar{c}< \bar{h}, (\bar{c}-\bar{h}) \bigl(4\gamma ^{l}- \alpha ^{u}\bigr)< 4\exp {\{H_{2}\}}\bar{c} \bigr\} . \end{aligned}$$

Theorem 3.2

If \((S_{1}\cup S_{2}\cup S_{3}\cup S_{4})\cap ( \bar{S}_{1}\cup \bar{S}_{2}\cup \bar{S}_{3})\neq \emptyset \), then system (1.4) has at least one positive ω periodic solution, namely \((x^{*}(t), y^{*}(t))\).

Proof

We make the change of variables:

$$ x(t)=\exp {\bigl\{ \tilde{x}(t)\bigr\} },\qquad y(t)=\exp {\bigl\{ \tilde{y}(t)\bigr\} }. $$

Then system (1.4) becomes

$$ \textstyle\begin{cases} \tilde{x}'(t)=1-\exp {\{\tilde{x}(t)\}}-\frac{\alpha (t)\exp {\{\tilde{y}(t)\}}}{( \exp {\{\tilde{x}(t)\}})^{2}+\alpha (t)\exp {\{\tilde{x}(t)\}}+\alpha (t)\gamma (t)} -\frac{h(t)}{\exp {\{\tilde{x}(t)\}}+c(t)}, \\ \tilde{y}'(t)=\delta (t) (1-\beta (t)\frac{\exp {\{\tilde{y}(t)\}}}{\exp {\{\tilde{x}(t)\}}} ). \end{cases} $$
(3.1)

We denote

$$\begin{aligned} &\mathcal{X}=\mathcal{Y}= \bigl\{ (\tilde{x}, \tilde{y}) \in C\bigl( \mathbb{R}, \mathbb{R}^{2}\bigr) | \tilde{x}(t+\omega )=\tilde{x}, \tilde{y}(t+ \omega )=\tilde{y} \bigr\} , \\ &\bigl\Vert (\tilde{x}, \tilde{y}) \bigr\Vert =\max_{t\in [0, \omega ]} \bigl( \bigl\vert \tilde{x}(t) \bigr\vert + \bigl\vert \tilde{y}(t) \bigr\vert \bigr),\quad (\tilde{x}, \tilde{y})\in \mathcal{X}\ (\text{or } \mathcal{Y}). \end{aligned}$$

Clearly, \(\mathcal{X}\) and \(\mathcal{Y}\) are Banach spaces. Let

$$\begin{aligned} &N \begin{bmatrix} \tilde{x} \\ \tilde{y} \end{bmatrix}= \begin{bmatrix} 1-\exp {\{\tilde{x}(t)\}}-\frac{\alpha (t)\exp {\{\tilde{y}(t)\}}}{( \exp {\{\tilde{x}(t)\}})^{2}+\alpha (t)\exp {\{\tilde{x}(t)\}}+\alpha (t)\gamma (t)} -\frac{h(t)}{\exp {\{\tilde{x}(t)\}}+c(t)} \\ \delta (t) (1-\beta (t)\frac{\exp {\{\tilde{y}(t)\}}}{\exp {\{\tilde{x}(t)\}}} ) \end{bmatrix}, \\ &L \begin{bmatrix} \tilde{x} \\ \tilde{y} \end{bmatrix}= \begin{bmatrix} \tilde{x}' \\ \tilde{y}' \end{bmatrix},\qquad P \begin{bmatrix} \tilde{x} \\ \tilde{y} \end{bmatrix}=Q \begin{bmatrix} \tilde{x} \\ \tilde{y} \end{bmatrix}= \begin{bmatrix} \frac{1}{\omega }\int _{0}^{\omega }\tilde{x}(t) \,dt \\ \frac{1}{\omega }\int _{0}^{\omega }\tilde{y}(t) \,dt \end{bmatrix}. \end{aligned}$$

We easily see that the inverse \(Kp: \operatorname{Im}L\rightarrow \operatorname{Dom}L\cap \operatorname{ker}P\) exists, and a simple computation leads to

$$ QN \begin{bmatrix} \tilde{x} \\ \tilde{y} \end{bmatrix}= \begin{bmatrix} \frac{1}{\omega }\int _{0}^{\omega } [1-\exp {\{\tilde{x}(t)\}}-\frac{\alpha (t)\exp {\{\tilde{y}(t)\}}}{( \exp {\{\tilde{x}(t)\}})^{2}+\alpha (t)\exp {\{\tilde{x}(t)\}}+\alpha (t)\gamma (t)} -\frac{h(t)}{\exp {\{\tilde{x}(t)\}}+c(t)} ]\,dt \\ \frac{1}{\omega }\int _{0}^{\omega } [\delta (t) (1-\beta (t)\frac{\exp {\{\tilde{y}(t)\}}}{\exp {\{\tilde{x}(t)\}}} ) ]\,dt \end{bmatrix} $$

and

$$ Kp(I-Q)N \begin{bmatrix} \tilde{x} \\ \tilde{y} \end{bmatrix}= \begin{bmatrix} \int _{0}^{t}N_{1}(s)\,ds-\frac{1}{\omega }\int _{0}^{\omega }\int _{0} ^{t}N_{1}(s)\,ds\,dt-(\frac{t}{\omega }-\frac{1}{2})\int _{0}^{\omega }N _{1}(s)\,ds \\ \int _{0}^{t}N_{2}(s)\,ds-\frac{1}{\omega }\int _{0}^{\omega }\int _{0} ^{t}N_{2}(s)\,ds\,dt-(\frac{t}{\omega }-\frac{1}{2})\int _{0}^{\omega }N _{2}(s)\,ds \end{bmatrix}. $$

Also, it is easy to prove that N is L-compact on Ω̅ with any open bounded set \(\varOmega \subset X\). Now we find an appropriate open bounded subset Ω for the application of the continuation theorem of [24, 37]. According to the equation \(Lx=\lambda Nx, \lambda \in (0, 1)\), we get

$$ \textstyle\begin{cases} \tilde{x}'(t)=\lambda [1-\exp {\{\tilde{x}(t)\}}-\frac{\alpha (t)\exp {\{\tilde{y}(t)\}}}{( \exp {\{\tilde{x}(t)\}})^{2}+\alpha (t)\exp {\{\tilde{x}(t)\}}+\alpha (t)\gamma (t)} -\frac{h(t)}{\exp {\{\tilde{x}(t)\}}+c(t)} ], \\ \tilde{y}'(t)=\lambda [\delta (t) (1-\beta (t)\frac{\exp {\{\tilde{y}(t)\}}}{\exp {\{\tilde{x}(t)\}}} ) ]. \end{cases} $$
(3.2)

Assume that \((\tilde{x}(t), \tilde{y}(t))\) is an arbitrary solution of system (3.1) with certain \(\lambda \in (0, 1)\). Integration on both sides of system (3.2) over the interval \([0, \omega ]\) leads to

$$ \textstyle\begin{cases} \omega =\int _{0}^{\omega } [\exp {\{\tilde{x}(t)\}}+\frac{\alpha (t)\exp {\{\tilde{y}(t)\}}}{( \exp {\{\tilde{x}(t)\}})^{2}+\alpha (t)\exp {\{\tilde{x}(t)\}}+\alpha (t)\gamma (t)} +\frac{h(t)}{\exp {\{\tilde{x}(t)\}}+c(t)} ]\,dt, \\ \bar{\delta }\omega =\int _{0}^{\omega } [\delta (t)\beta (t)\frac{\exp {\{\tilde{y}(t)\}}}{\exp {\{ \tilde{x}(t)\}}} ]\,dt. \end{cases} $$
(3.3)

According to system (3.2) and (3.3), we get

$$ \textstyle\begin{cases} \int _{0}^{\omega } \vert \tilde{x}'(t) \vert \,dt\\ \quad\leq \lambda [\int _{0}^{ \omega }1\,dt +\int _{0}^{\omega }\exp {\{\tilde{x}(t)\}}\,dt+\int _{0}^{\omega }\frac{\alpha (t)\exp {\{\tilde{y}(t)\}}}{( \exp {\{\tilde{x}(t)\}})^{2}+\alpha (t)\exp {\{\tilde{x}(t)\}}+\alpha (t)\gamma (t)}\,dt \\ \qquad{}+\int _{0}^{\omega }\frac{h(t)}{\exp {\{\tilde{x}(t)\}}+c(t)}\,dt ] \\ \quad < 2\omega, \\ \int _{0}^{\omega } \vert \tilde{y}'(t) \vert \,dt\\ \quad\leq \lambda [\int _{0}^{ \omega }\delta (t)\,dt+ \int _{0}^{\omega }\delta (t)\beta (t)\frac{\exp {\{\tilde{y}(t)\}}}{\exp {\{ \tilde{x}(t)\}}}\,dt ] \\ \quad< 2\bar{\delta }\omega. \end{cases} $$
(3.4)

Since \((\tilde{x}(t), \tilde{y}(t))\in \mathcal{X}\), we know that there exist \(\xi _{i}\) and \(\eta _{i}\in [0, \omega ], i=1,2\), such that

$$\begin{aligned} \begin{aligned}& \tilde{x}(\xi _{1})=\min _{t\in [0,\omega ]}\tilde{x}(t),\qquad \tilde{x}(\eta _{1})=\max _{t\in [0,\omega ]}\tilde{x}(t), \\ &\tilde{y}(\xi _{2})=\min_{t\in [0,\omega ]}\tilde{y}(t),\qquad \tilde{y}(\eta _{2})=\max_{t\in [0,\omega ]}\tilde{y}(t). \end{aligned} \end{aligned}$$
(3.5)

According to the first equation of system (3.3), we have

$$\begin{aligned} &\omega \geq \int _{0}^{\omega }\exp {\bigl\{ \tilde{x}(\xi _{1})\bigr\} }\,dt- \int _{0}^{\omega } \frac{h(t)}{c(t)}\,dt=\exp {\bigl\{ \tilde{x}(\xi _{1})\bigr\} }\omega -\frac{\bar{h}}{\bar{c}}\omega , \\ &\tilde{x}(\xi _{1})\leq \ln {\biggl\{ 1+\frac{\bar{h}}{\bar{c}}\biggr\} }. \end{aligned}$$

From systems (3.4) and (3.5), we obtain

$$ \tilde{x}(t)\leq \tilde{x}(\xi _{1})+ \int _{0}^{\omega } \bigl\vert \tilde{x}'(t) \bigr\vert \,dt< \ln {\biggl\{ 1+\frac{\bar{h}}{\bar{c}}\biggr\} }+2 \omega:=H_{1}. $$
(3.6)

According to system (3.5) and the second equation of system (3.3), we have

$$\begin{aligned} &\bar{\delta }\omega \geq \int _{0}^{\omega }\beta (t)\delta (t)\frac{\exp {\{\tilde{y}(\xi _{2})\}}}{\exp {\{H _{1}\}}} \,dt=\bar{\beta }\bar{\delta }\frac{\exp {\{\tilde{y}(\xi _{2})\}}}{ \exp {\{H_{1}\}}}\omega, \\ &\tilde{y}(\xi _{2})\leq \ln {\biggl\{ \frac{\exp {\{H_{1}\}}}{\bar{\beta }}\biggr\} }, \end{aligned}$$

and hence,

$$\begin{aligned} \tilde{y}(t)\leq \tilde{y}(\xi _{2})+ \int _{0}^{\omega } \bigl\vert \tilde{y}'(t) \bigr\vert \,dt< \ln {\biggl\{ \frac{\exp {\{H_{1}\}}}{\bar{\beta }}\biggr\} }+2\bar{\delta }\omega :=H_{2}. \end{aligned}$$
(3.7)

From the first equation of system (3.3), we also obtain

$$\begin{aligned} \omega &\leq \int _{0}^{\omega } \biggl[\exp {\bigl\{ \tilde{x}(\eta _{1})\bigr\} }+ \frac{4\alpha (t)\exp {\{H_{2}\}}}{4 \alpha (t)\gamma (t)-\{\alpha (t)\}^{2}}+ \frac{h(t)}{c(t)} \biggr]\,dt \\ &=\exp {\bigl\{ \tilde{x}(\eta _{1})\bigr\} }\omega +\frac{4\exp {\{H_{2}\}}}{4 \gamma ^{l}-\alpha ^{u}} \omega +\frac{\bar{h}}{\bar{c}}\omega, \end{aligned}$$

and therefore,

$$\begin{aligned} \exp {\bigl\{ \tilde{x}(\eta _{1})\bigr\} }&\geq 1-\frac{4\exp {\{H_{2}\}}}{4 \gamma ^{l}-\alpha ^{u}}- \frac{\bar{h}}{\bar{c}} \\ &=\frac{4\gamma ^{l}\bar{c}-\alpha ^{u}\bar{c}-4\exp {\{H_{2}\}}\bar{c}- \bar{h}(4\gamma ^{l}-\alpha ^{u})}{\bar{c}(4\gamma ^{l}-\alpha ^{u})} \\ &=\frac{(\bar{c}-\bar{h})(4\gamma ^{l}-\alpha ^{u})-4\exp {\{H_{2}\}} \bar{c}}{\bar{c}(4\gamma ^{l}-\alpha ^{u})}, \end{aligned}$$

which implies

$$ \tilde{x}(\eta _{1})\geq \ln { \biggl\{ \frac{(\bar{c}-\bar{h})(4\gamma ^{l}-\alpha ^{u})-4\exp {\{H_{2}\}}\bar{c}}{\bar{c}(4\gamma ^{l}-\alpha ^{u})} \biggr\} }. $$

Thus,

$$ \tilde{x}(t)\geq \tilde{x}(\eta _{1})- \int _{0}^{\omega } \bigl\vert \tilde{x}'(t) \bigr\vert \,dt>\ln { \biggl\{ \frac{(\bar{c}-\bar{h})(4\gamma ^{l}-\alpha ^{u})-4 \exp {\{H_{2}\}}\bar{c}}{\bar{c}(4\gamma ^{l}-\alpha ^{u})} \biggr\} }-2 \omega :=H_{3}. $$
(3.8)

The second equation of system (3.3) also produces

$$\begin{aligned} &\bar{\delta }\omega \leq \int _{0}^{\omega }\beta (t)\delta (t)\frac{\exp {\{\tilde{y}(\eta _{2})\}}}{\exp {\{H_{3}\}}} \,dt=\beta \delta \frac{\exp {\{\tilde{y}(\xi _{2})\}}}{\exp {\{H_{3}\}}}\omega, \\ &\tilde{y}(\eta _{2})\geq \ln {\biggl\{ \frac{\exp {\{H_{3}\}}}{\bar{\beta }} \biggr\} }; \end{aligned}$$

and consequently,

$$ \tilde{y}(t)\geq \tilde{y}(\eta _{2})- \int _{0}^{\omega } \bigl\vert \tilde{y}'(t) \bigr\vert \,dt >\ln {\biggl\{ \frac{\exp {\{H_{3}\}}}{\bar{\beta }}\biggr\} }-2\bar{\delta }\omega :=H_{4}. $$
(3.9)

It follows from (3.6)–(3.9) that

$$ \textstyle\begin{cases} \max_{t\in [0,\omega ]} \vert \tilde{x}(t) \vert \leq \max \{ \vert H_{1} \vert , \vert H _{3} \vert \}:=C_{1}, \\ \max_{t\in [0,\omega ]} \vert \tilde{y}(t) \vert \leq \max \{ \vert H_{2} \vert , \vert H _{4} \vert \}:=C_{2}. \end{cases} $$
(3.10)

We choose \(C>0\) such that \(C>C_{1}+C_{2}\). Let \(\varOmega =\{(\tilde{x}, \tilde{y})\in X\mid \Vert (\tilde{x}, \tilde{y}) \Vert < C\}\). Then it is easy to verify that requirement \((1)\) in the continuation theorem of [24, 37] is satisfied. Also,

$$ QN \begin{bmatrix} \tilde{x} \\ \tilde{y} \end{bmatrix}= \begin{bmatrix} 1-\frac{1}{\omega }\int _{0}^{\omega }\exp {\{\tilde{x}(t)\}}\,dt-\frac{1}{ \omega }\int _{0}^{\omega }\frac{\alpha (t)\exp {\{\tilde{y}(t)\}}}{( \exp {\{\tilde{x}(t)\}})^{2}+\alpha (t)\exp {\{\tilde{x}(t)\}}+\alpha (t)\gamma (t)}\,dt \\ -\frac{1}{\omega }\int _{0}^{\omega }\frac{h(t)}{\exp {\{\tilde{x}(t) \}}+c(t)}\,dt, \\ \frac{1}{\omega }\int _{0}^{\omega }\delta (t)\,dt-\frac{1}{\omega }\int _{0}^{\omega }\delta (t)\beta (t)\frac{\exp {\{\tilde{y}(t)\}}}{\exp {\{ \tilde{x}(t)\}}}\,dt \end{bmatrix} \neq \begin{bmatrix} 0 \\ 0 \end{bmatrix}. $$

In addition, we have \(\operatorname{deg}\{JQN, \varOmega \cap \operatorname{Ker}L,0\}\neq 0\). Thus all the conditions in the continuation theorem are satisfied (see, e.g., [24, 37]). Hence, system (3.1) has at least one ω periodic solution \((\tilde{x}^{*}(t), \tilde{y}^{*}(t))\). It is easy to see that \(x^{*}(t)=\exp {\{\tilde{x}^{*}(t)\}}, y^{*}(t)=\exp {\{\tilde{y} ^{*}(t)\}}\), and then \((x^{*}(t), y^{*}(t))\) is an ω periodic solution of system (1.4). The proof of Theorem 3.2 is complete. □

4 Numerical simulations

To support the previous theoretical analysis, in this section, we present two numerical simulation results for the different coefficients of system (1.4).

Example 1

Consider the following model:

$$ \textstyle\begin{cases} \frac{dx}{dt}= x(1-x)-\frac{xy}{\frac{x^{2}}{[2+\sin (0.1\pi t)]}+x+[101+ \sin (0.1\pi t)]}-\frac{[2+\sin (0.1\pi t)]x}{x+[3+\sin (0.1\pi t)]}, \\ \frac{dy}{dt} = {[3+\sin (0.1\pi t)]}y(1-[2+\sin (0.1\pi t)]\frac{y}{x}). \end{cases} $$
(4.1)

It is easy to verify that the coefficients of system (1.4) satisfy the conditions in Theorem 3.2. Thus, system (1.4) has a 20-periodic solution. Figure 1 shows the validity of our results.

Figure 1
figure 1

20-periodic solution

Example 2

Consider the following model:

$$ \textstyle\begin{cases} \frac{dx}{dt} = x(1-x)-\frac{xy}{\frac{x^{2}}{[100+\sin (0.01\pi t)]}+x+[3+ \sin (0.01\pi t)]}- \frac{[2+\sin (0.01\pi t)]x}{x+[5+\sin (0.01\pi t)]}, \\ \frac{dy}{dt} = {[3+\sin (0.01\pi t)]} y(1-[2+\sin (0.01\pi t)]\frac{y}{x}). \end{cases} $$
(4.2)

It is easy to verify that the coefficients of system (1.4) satisfy the conditions in Theorem 3.2. Thus, system (1.4) has a 200-periodic solution. Figure 2 shows the validity of our results.

Figure 2
figure 2

200-periodic solution

5 Conclusions

This paper considers a non-autonomous modified Leslie–Gower model with Holling type IV functional response and nonlinear prey harvesting. We study the permanence of the model. Sufficient conditions are obtained for the existence of a periodic solution by Brouwer fixed point theorem and coincidence degree theory, respectively. Also, we give examples and simulations to verify our theoretical analysis.

References

  1. Taylor, R.: Predation. Chapman and Hall, New York (1984)

    Book  Google Scholar 

  2. Song, Y., Yuan, S.: Bifurcation analysis in a predator-prey system with time delay. Nonlinear Anal., Real World Appl. 7(2), 265–284 (2006)

    Article  MathSciNet  Google Scholar 

  3. Ruan, S., Xiao, D.: Global analysis in a predator-prey system with nonmonotonic functional response. SIAM J. Appl. Math. 61, 1445–1472 (2001)

    Article  MathSciNet  Google Scholar 

  4. Huang, J., Xiao, D.: Analysis of bifurcations and stability in a predator-prey system with Holling type-IV functional response. Acta Math. Appl. Sin. Engl. Ser. 20, 167–178 (2004)

    Article  MathSciNet  Google Scholar 

  5. Xiao, D., Ruan, S.: Multiple bifurcations in a delayed predator-prey system with nonmonotonic functional response. J. Differ. Equ. 176, 494–510 (2001)

    Article  MathSciNet  Google Scholar 

  6. Xue, Y., Duan, X.: The dynamic complexity of a Holling type-IV predator-prey system with stage structure and double delays. Discrete Dyn. Nat. Soc. 2011, Article ID 509871 (2011)

    Article  MathSciNet  Google Scholar 

  7. Chen, Y.: Multiple periodic solution of delayed predator-prey systems with type IV functional responses. Nonlinear Anal., Real World Appl. 5(1), 45–53 (2004)

    Article  MathSciNet  Google Scholar 

  8. Xia, Y., Cao, J., Cheng, S.: Multiple periodic solutions of a delayed stage-structured predator-prey model with non-monotone functional responses. Appl. Math. Model. 31(9), 1947–1959 (2007)

    Article  Google Scholar 

  9. Li, Z., Zhao, K., Li, Y.: Multiple positive periodic solutions for a non-autonomous stage-structured predatory-prey system with harvesting terms. Commun. Nonlinear Sci. Numer. Simul. 15(8), 2140–2148 (2010)

    Article  MathSciNet  Google Scholar 

  10. Wang, Q., Dai, B., Chen, Y.: Multiple periodic solutions of an impulsive predator-prey model with Holling-type IV functional response. Math. Comput. Model. 49(9–10), 1829–1836 (2009)

    Article  MathSciNet  Google Scholar 

  11. Leslie, P., Gower, J.: The properties of a stochastic model for the predator-prey type of interaction between two species. Biometrika 47, 219–234 (1960)

    Article  MathSciNet  Google Scholar 

  12. Korobeinikov, A.: A Lyapunov function for Leslie–Gower predator-prey models. Appl. Math. Lett. 14(6), 697–699 (2001)

    Article  MathSciNet  Google Scholar 

  13. Yu, S.: Global stability of a modified Leslie-Gower model with Beddington–DeAngelis functional response. Adv. Differ. Equ. 2014, 84 (2014)

    Article  MathSciNet  Google Scholar 

  14. Upadhyay, R., Iyengar, S.: Introduction to Mathematical Modelling and Chaotic Dynamics. CRC Press, Taylor and Francis Group, London (2013)

    Book  Google Scholar 

  15. Zhang, Z., Upadhyay, R., Datta, J.: Bifurcation analysis of a modified Leslie–Gower model with Holling type IV functional response and nonlinear prey harvesting. Adv. Differ. Equ. 2018, 127 (2018)

    Article  MathSciNet  Google Scholar 

  16. Huang, C., Zhao, X., Wang, X., Wang, Z., Xiao, M., Cao, J.: Disparate delays-induced bifurcations in a fractional-order neural network. J. Franklin Inst. 356(5), 2825–2846 (2019)

    Article  MathSciNet  Google Scholar 

  17. Zhang, B., Zhuang, J., Liu, H., Cao, J., Xia, Y.: Master-slave synchronization of a class of fractional-order Takagi–Sugeno fuzzy neural networks. Adv. Differ. Equ. 2018, 473 (2018)

    Article  MathSciNet  Google Scholar 

  18. Huang, C., Cao, J.: Impact of leakage delay on bifurcation in high-order fractional BAM neural networks. Neural Netw. 98, 223–235 (2018)

    Article  Google Scholar 

  19. Huang, C., Li, T., Cai, L., Cao, J.: Novel design for bifurcation control in a delayed fractional dual congestion model. Phys. Lett. A 383(5), 440–445 (2019)

    Article  MathSciNet  Google Scholar 

  20. Yu, X., Yuan, S., Zhang, T.: Survival and ergodicity of a stochastic phytoplankton-zooplankton model with toxin-producing phytoplankton in an impulsive polluted environment. Appl. Math. Comput. 347(15), 249–264 (2019)

    MathSciNet  Google Scholar 

  21. Xu, C., Yuan, S., Zhang, T.: Average break-even concentration in a simple chemostat model with telegraph noise. Nonlinear Anal. Hybrid Syst. 29, 373–382 (2018)

    Article  MathSciNet  Google Scholar 

  22. Zhang, T., Liu, X., Meng, X., Zhang, T.: Spatio-temporal dynamics near the steady state of a planktonic system. Comput. Math. Appl. 75(12), 4490–4504 (2018)

    Article  MathSciNet  Google Scholar 

  23. Huang, C., Li, H., Cao, J.: A novel strategy of bifurcation control for a delayed fractional predator-prey model. Appl. Math. Comput. 347, 808–838 (2019)

    Article  MathSciNet  Google Scholar 

  24. Fan, M., Wang, Q., Zou, X.: Dynamics of a non-autonomous ratio-dependent predator-prey system. Proc. R. Soc. Edinb. A 133, 97–118 (2003)

    Article  MathSciNet  Google Scholar 

  25. Liu, B., Teng, Z., Chen, L.: Analysis of a predator-prey model with Holling II functional response concerning impulsive control strategy. J. Comput. Appl. Math. 193(1), 347–362 (2006)

    Article  MathSciNet  Google Scholar 

  26. Meng, X., Zhao, S., Feng, T., Zhang, T.: Dynamics of a novel nonlinear stochastic SIS epidemic model with double epidemic hypothesis. J. Math. Anal. Appl. 433(1), 227–242 (2016)

    Article  MathSciNet  Google Scholar 

  27. Xia, Y.: Periodic solution of certain nonlinear differential equations: via topological degree theory and matrix spectral theory. Int. J. Bifurc. Chaos 22(8), 940287 (2012)

    Article  MathSciNet  Google Scholar 

  28. Nie, L., Teng, Z., Hu, L., Peng, J.: The dynamics of a Lotka–Volterra predator-prey model with state dependent impulsive harvest for predator. Biosystems 98, 67–72 (2009)

    Article  Google Scholar 

  29. Song, J., Hu, M., Bai, Y., Xia, Y.: Dynamic analysis of a non-autonomous ratio-dependent predator-prey model with additional food. J. Appl. Anal. Comput. 8(6), 1893–1909 (2018)

    MathSciNet  Google Scholar 

  30. Song, Y., Tang, X.: Stability, steady-state bifurcations, and turing patterns in a predator-prey model with herd behavior and prey-taxis. Stud. Appl. Math. 139(3), 371–404 (2017)

    Article  MathSciNet  Google Scholar 

  31. Wei, F.: Existence of multiple positive periodic solutions to a periodic predator-prey system with harvesting terms and Holling III type functional response. Commun. Nonlinear Sci. Numer. Simul. 16(4), 2130–2138 (2011)

    Article  MathSciNet  Google Scholar 

  32. Wei, F., Fu, Q.: Hopf bifurcation and stability for predator-prey systems with Beddington–DeAngelis type functional response and stage structure for prey incorporating refuge. Appl. Math. Model. 40(1), 126–134 (2016)

    Article  MathSciNet  Google Scholar 

  33. Yuan, S., Xu, C., Zhang, T.: Spatial dynamics in a predator-prey model with herd behavior. Chaos 23, 033102 (2013)

    Article  MathSciNet  Google Scholar 

  34. Zhang, T., Zhang, T., Meng, X.: Stability analysis of a chemostat model with maintenance energy. Appl. Math. Lett. 68, 1–7 (2017)

    Article  MathSciNet  Google Scholar 

  35. Bai, Y., Li, Y.: Stability and Hopf bifurcation for a stage-structured predator-prey model incorporating refuge for prey and additional food for predator. Adv. Differ. Equ. 2019, 42 (2019)

    Article  MathSciNet  Google Scholar 

  36. Zhang, Z., Hou, Z.: Existence of four positive periodic solutions for a ratio-dependent predator-prey system with multiple exploited (or harvesting) terms. Nonlinear Anal., Real World Appl. 11(3), 1560–1571 (2010)

    Article  MathSciNet  Google Scholar 

  37. Gaines, R., Mawhin, J.: Coincidence Degree and Nonlinear Differential Equations. Springer, Berlin (1977)

    Book  Google Scholar 

  38. Zhang, T., Liu, J., Teng, Z.: Existence of positive periodic solutions of an SEIR model with periodic coefficients. Appl. Math. 57(6), 601–616 (2012)

    Article  MathSciNet  Google Scholar 

  39. Zheng, H., Guo, L., Bai, Y., Xia, Y.: Periodic solutions of a non-autonomous predator-prey system with migrating prey and disease infection: via Mawhin’s coincidence degree theory. J. Fixed Point Theory Appl. 21, 37 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Availability of data and materials

All data are fully available without restriction.

Funding

This work was supported by the National Natural Science Foundation of China (No. 11671176), the Natural Science Foundation of Fujian Province (No. 2018J01001), the Start-up Fund of Huaqiao University (Z16J0039), China Postdoctoral Science Foundation (No. 2014M551873), and Subsidized Project for Postgraduates’ Innovative Fund in Scientific Research of Huaqiao University (18011020008).

Author information

Authors and Affiliations

Authors

Contributions

All authors have the same contributions. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yuzhen Bai.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, J., Xia, Y., Bai, Y. et al. A non-autonomous Leslie–Gower model with Holling type IV functional response and harvesting complexity. Adv Differ Equ 2019, 299 (2019). https://doi.org/10.1186/s13662-019-2203-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13662-019-2203-4

Keywords