 Research
 Open Access
 Published:
Extremal solutions for measure differential inclusions via Stieltjes derivatives
Advances in Difference Equations volume 2019, Article number: 239 (2019)
Abstract
Stieltjes derivatives represent a new unification of discrete and continuous calculus consisting in a differentiation process with respect to a given nondecreasing function g. This notion infers a new class of differential equations which has shown to have many applications. Herein we explore the use of such derivatives in the study of multivalued equations, the socalled gdifferential inclusions. Such multivalued differential problems simply consist in replacing the usual derivatives by Stieltjes derivatives (also known as gderivatives). Using Baire category methods, we investigate extremal solutions for gdifferential inclusions. It is shown that gdifferential inclusions offer an alternative approach to measuredriven problems; therefore, the existence of extremal solutions for measure differential inclusions is obtained as a simple consequence of the results for this new type of inclusions.
Introduction
Studying phenomena involving mixed discretecontinuous behavior (socalled hybrid systems) is, in general, a difficult task. When discrete perturbations occur on a finite set of moments, the theory of impulsive differential equations offers the necessary tools, but for dealing with infinitely many abrupt changes more refined methods are needed. Some possible approaches to address such problems rely on generalized differential equations [21, 26, 28], measure differential equations [10, 17, 25], and the analysis on time scale domains [5, 13]. Remarkably, under certain assumptions, these approaches happen to be equivalent (see [17, 18, 30]).
When dealing with problems in control theory, economics, or game theory, one has to consider setvalued functions; and consequently, the models may involve multivalued differential equations (i.e., differential inclusions, [2]). In the recent development of the theory of differential inclusions, the study of measure differential inclusions has gained popularity as it includes as special cases differential and difference inclusions, impulsive and hybrid problems (cf. [11,12,13, 16, 27, 29, 31]).
In [24], the notion of derivative with respect to monotone functions g has been revitalized. Earlier studies on such a kind of derivatives and its connection with Stieltjes integrals include Young [34], Daniell [14], Ward [33] and, more recently, Bendová and Malý [4]. With the latest attention brought to the study of Stieltjes differentiability in [24], a new class of differential problems has gained popularity: the socalled gdifferential equations [20]. These equations can be regarded as the Stieltjesdifferential counterpart of measure differential equations, and they have shown to be widely applicable to solving practical problems (e.g., [22, 23]).
In the present paper, we extend the notion of gdifferential equation to the setvalued case by introducing a class of differential inclusions based on the notion of Stieltjes derivative. In other words, we consider inclusions in which the usual derivative is replaced by a derivative with respect to a monotone function g; therefore called gdifferential inclusions. In some sense, this type of inclusions encompasses measuredriven inclusions, offering a new approach to impulsive multivalued problems.
Our aim is to establish the existence of extremal solutions for gdifferential inclusions, i.e., inclusions of the form
where \(x'_{g}\) stands for the derivative with respect to a given nondecreasing function g. Herein, we follow the approach to Stieltjes derivatives found in [20, 24]; while this derivative seems fairly suitable for our purposes, we acknowledge that other definitions available in the literature may allow for a study within more general classes of functions, e.g., [4, 33]. Like in [7, 8, 15], which are concerned with the particular case of classical differential inclusions, in the present work we use methods from the Baire category theory. More precisely, for \(w:[0,1]\to \mathbb{R}^{n}\), we consider an auxiliary problem
where \(F^{w}(t,x)\) denotes the subset of \(F(t,x)\) which maximizes the inner product with w, that is,
We prove that the set of all continuous functions \(w:[0,1]\to \mathbb{R}^{n}\) for which the solutions of the gdifferential problem above satisfy also the extremal problem
is residual in \(C([0,1],\mathbb{R}^{n})\) (Theorem 14). As a consequence, we obtain the existence of extremal solutions for gdifferential inclusions, wherefrom we deduce an analogue theorem for measuredriven inclusions.
Besides the clear importance of the knowledge on extremal solutions in optimization theory and in relaxation problems, it is worth mentioning that our result can be seen as the first existence theorem for measure differential inclusions with nonconvex righthand side. Namely, we obtain a generalization of Filippov’s classical result contained in [19].
Preliminary results. Integrals and derivatives
Throughout this paper, \(\mathcal{P}_{\mathrm{ck}}(\mathbb{R}^{n})\) stands for the family of nonempty convex compact subsets of \(\mathbb{R}^{n}\). By \(\mu _{g}\) we denote the Lebesgue–Stieltjes measure generated by a nondecreasing leftcontinuous function g.
The results and proofs in this paper rely deeply on the theories of Lebesgue and Lebesgue–Stieltjes integral. We fix the notation
respectively for the Lebesgue integral of f with respect to a Borel measure μ, and for the Lebesgue–Stieltjes integral of f with respect to a monotone function g. Recalling that every finite Borel measure in \(\mathbb{R}\) agrees with some Lebesgue–Stieltjes measure, we can find a nondecreasing leftcontinuous function \(g:\mathbb{R} \to \mathbb{R}\) so that \(\mu (B)=\mu _{g}(B)\) for every Borel set B (see [9, Theorem 3.21]). Hence, the integral notions above are in some sense equivalent.
Next, following [24], we recall some basic definitions and properties of Stieltjes derivatives (see also [25]).
Definition 1
Let \(g:[0,1]\to \mathbb{R}\) be a nondecreasing leftcontinuous function. The derivative with respect to g (or the gderivative) of a function \(f:[0,1]\to \mathbb{R}^{n}\) at a point \(t\in [0,1]\) is given by
provided the limit exists.
It is worth mentioning that if t is a point of discontinuity of g, the gderivative \(f'_{g}(t)\) exists if and only if the sided limit \(f(t+)\) exists, and in this case
Note that Definition 1 has no meaning in the parts of the domain in which g is constant; denote such a region by \(C_{g}\). However, as observed in [24], this is not a big loss because \(\mu _{g}(C_{g})=0\).
Fundamental theorems of calculus are essential when taking into account the connection between integrals and derivatives. Such a result has been proven in [33] for Perron–Stieltjes integral, while for Lebesgue–Stieltjes integrals it reads as follows [24, Theorem 2.4].
Theorem 2
Let \(g:[0,1]\to \mathbb{R}\) be a nondecreasing leftcontinuous function. If \(f:[0,1]\to \mathbb{R}^{n}\) is Lebesgue–Stieltjes integrable with respect to g and
then \(F_{g}'=f\) on \([0,1]{\setminus }N\), where \(N\subset [0,1]\) and \(\mu _{g}(N)=0\).
Related to the result above, we have the following notion of absolute continuity which traces back to the work of Ward in [33].
Definition 3
Let \(g:[0,1]\to \mathbb{R}\) be a nondecreasing leftcontinuous function. A function \(f:[0,1]\to \mathbb{R}^{n}\) is absolutely continuous with respect to g (or gabsolutely continuous) if for every \(\varepsilon >0\) there exists \(\delta >0\) such that
for any family \(\{(a_{j},b_{j})\}\) of disjoint subintervals of \([0,1]\) satisfying
By \(\mathcal{AC}_{g}([0,1],\mathbb{R}^{n})\) we denote the set of all gabsolutely continuous functions.
Notably, a function in \(\mathcal{AC}_{g}([0,1],\mathbb{R}^{n})\) shares some properties with g, namely: it is leftcontinuous on \((0,1]\), it is continuous at the points where g is continuous, and it is constant in the intervals where g is constant (cf. [24, Proposition 5.3]). Moreover, every gabsolutely continuous function is of bounded variation, therefore also regulated (i.e., it has only discontinuities of first kind).
As one could expect, the function F from Theorem 2 is gabsolutely continuous [33, Theorem 12]. The following result, a second fundamental theorem of calculus for Lebesgue–Stieltjes, has been proven in [24, Theorem 5.4] (a version involving a more general notion of integral can be found in [33, Theorem 13]).
Theorem 4
Let \(g:[0,1]\to \mathbb{R}\) be a nondecreasing leftcontinuous function. If \(F:[0,1]\to \mathbb{R}^{n}\) is gabsolutely continuous, then \(F_{g}'\) exists \(\mu _{g}\)a.e., and
A particular case of gabsolute continuity is a consequence of a Lipschitztype property that we define in the sequel.
Definition 5
Let \(g:[0,1]\to \mathbb{R}\) be a nondecreasing leftcontinuous function. Then \(f:[0,1]\to \mathbb{R}^{n}\) is said to be gLipschitz with (Lipschitz) constant \(M>0\) if
The next result describes a class of functions which are gLipschitz.
Lemma 6
Let \(g:[0,1]\to \mathbb{R}\) be a nondecreasing leftcontinuous function, and let \(f:[0,1]\to \mathbb{R}^{n}\) be a \(\mu _{g}\)measurable function with \(\f(t)\\le M\) on \([0,1]\) for some constant \(M>0\). Then the function \(F:[0,1]\to \mathbb{R}^{n}\) defined by
is gLipschitz with constant M.
Proof
Indeed, the following inequality
holds for every choice of \(0\leq t'< t\leq 1\). □
We remark that every gabsolute continuous function f is bounded and gcontinuous; in other words, for each \(t\in [0,1]\), f satisfies the following: given \(\varepsilon >0\) there exists \(\delta >0\) such that
(It is worth highlighting that the notion of continuity with respect to a function also appears in [33] with a slightly different connotation.)
The space of gcontinuous functions, \(\mathcal{BC}_{g}([0,1], \mathbb{R}^{n})\), endowed with the supremum norm is a Banach space (see [20] for details). Next, we recall a useful criterion for compactness presented in [20, Proposition 5.6].
Theorem 7
Let \(\mathcal{S}\subset \mathcal{AC}_{g}([0,1],\mathbb{R}^{n})\) be such that \(\{x(0):x\in \mathcal{S} \}\) is bounded. If there exists \(h:[0,1]\to \mathbb{R}\) Lebesgue–Stieltjes integrable with respect to g such that
then \(\mathcal{S}\) is relatively compact in \(\mathcal{BC}_{g}([0,1], \mathbb{R}^{n})\).
Main results
The notion of derivative with respect to monotone functions infers a new class of differential equations [20]. Along these lines, one can also consider a more general class of differential inclusions:
where \(F:[0,1]\times \mathbb{R}^{n}\to \mathcal{P}_{\mathrm{ck}}(\mathbb{R} ^{n})\) is a multifunction and \(g:[0,1]\to \mathbb{R}\) is a nondecreasing leftcontinuous function. Differential inclusions of the form (2) will be called gdifferential inclusions, where the derivative \(x'_{g}\) is understood in the sense of Definition 1. Clearly, in the case when g is the identity function, problem (2) corresponds to a classical differential inclusion (see [2, 32]).
A solution of problem (2) is defined in a natural way as follows.
Definition 8
A function \(x\in \mathcal{AC}_{g}([0,1],\mathbb{R}^{n})\) is a solution of problem (2) if there exists \(N\subset [0,1]\), with \(\mu _{g}(N)=0\), such that the gderivative of x satisfies
and \(x(0)=0\).
Note that, by considering derivatives with respect to nondecreasing functions g, although the inclusion in (2) is not meaningful at the points of the set \(C_{g}\), we can still infer some property about the solution. Indeed, the gabsolute continuity ensures that the solution remains constant in the intervals where g is constant (cf. [24, Proposition 5.3]). Moreover, recalling the expression of the gderivative at discontinuity points (1), it becomes clear in which manner the jumps of a solution of (2) are controlled by the setvalued function F.
Remark 9
By Theorem 4, a solution \(x\in \mathcal{AC}_{g}([0,1], \mathbb{R}^{n})\) of (2) satisfies
Thus, if F is a bounded multifunction, it follows from Lemma 6 that x is gLipschitz continuous.
To motivate the study of problem (2), consider a measure differential inclusion
where μ is a finite regular Borel measure. According to [11], a function \(x:[0,1]\to \mathbb{R}^{n}\) is a solution of (3) if there exists a μintegrable function \(f:[0,1]\to \mathbb{R}^{n}\) such that
Since the integral above can be understood as a Lebesgue–Stieltjes integral with respect to some nondecreasing leftcontinuous function g, that is,
it follows from Theorem 2 and (4) that \(x_{g}'(t)=f(t)\in F(t,x(t))\) \(\mu _{g}\)a.e. Besides, as observed in Sect. 2, the function x is gabsolutely continuous; in other words, a solution x of (3) is a solution of problem (2) for some choice of g.
On the other hand, if x is a solution of (2), then x is gabsolutely continuous and Theorem 4 ensures that
Since \(x_{g}'(t)\in F(t,x(t))\) \(\mu _{g}\)a.e., we conclude that x is the solution of measure differential inclusion
This indicates a correspondence between gdifferential inclusions and measure differential inclusions.
Theorem 10
Let \(F:[0,1]\times \mathbb{R}^{n}\to \mathcal{P}_{\mathrm{ck}}(\mathbb{R}^{n})\). The following assertions hold:

1.
Given a finite regular Borel measure μ, if \(x:[0,1]\to \mathbb{R}^{n}\) is a solution of the measure differential inclusion (3), then x is a solution of a gdifferential inclusion (2) for some function \(g:[0,1]\to \mathbb{R}\) such that \(\mu =\mu _{g}\).

2.
Given a nondecreasing leftcontinuous function \(g:[0,1]\to \mathbb{R}\), if \(x:[0,1]\to \mathbb{R}^{n}\) is a solution of the gdifferential inclusion (2), then x is a solution of a measure differential inclusion (3) with \(\mu =\mu _{g}\).
Impulsive differential inclusions represent another important class of problems which pertains to gdifferential inclusions. Indeed, let us consider an impulsive problem with multivalued jumps \(I_{k}: \mathbb{R}^{n}\to \mathcal{P}_{\mathrm{ck}}(\mathbb{R}^{n})\), \(k=1,\dots ,m\), described by the following differential inclusion:
where \(\overline{F}:[0,1]\times \mathbb{R}^{n}\to \mathcal{P}_{\mathrm{ck}}( \mathbb{R}^{n})\), \(0< t_{1}<\cdots <t_{m}<1\). Traditionally, the solutions y are considered in the space of piecewise continuous functions, which are leftcontinuous and have right limit at the discontinuity points, e.g., [3].
For \(t\in [0,1]\) and \(y\in \mathbb{R}^{n}\), put
Thus, it is not hard to see that, with this particular choice of g and F, the impulsive problem (5) corresponds to a gdifferential inclusion (2). Indeed, if y is a solution (in the sense described above) of the impulsive problem (5), then \(y_{g}'(t)=y'(t)\) at the points t in \([0,1]\setminus \{t_{k}:k=1, \dots ,m\}\) where the usual derivative exists, while by (1) we know that
In summary, \(y_{g}'(t)\in F(t,y(t))\) a.e. in \([0,1]\).
Naturally, our object of study allows for a more general formulation of impulsive problems as countably many impulse moments can be accounted. Recall that since any monotone real function has at most a countable number of discontinuity points, the Lebesgue–Stieltjes measure \(\mu _{g}\) generated by such a function g can be decomposed as follows:
where \(A=\{t_{k},k\in \mathbb{N}\}\) is the set of atoms of \(\mu _{g}\), \(\delta _{t_{k}}\) stands for the Dirac measure concentrated at the point \(t_{k}\), and \(\mu _{g}^{C}\) is the nonatomic part of the measure \(\mu _{g}\) (i.e., the Stieltjes measure generated by the continuous part of g). Using the definition of the gderivative, problem (2) can be rewritten as follows:
where the multifunctions F̅, \(I_{k}\), \(k\in \mathbb{N}\), are such that, for \(t\in [0,1]\) and \(y\in \mathbb{R}^{n}\),
In the particular case when the continuous part of g generates the Lebesgue measure, the problem above corresponds to an impulsive differential inclusion with multivalued jumps and with possibly countably many fixed impulse points. Therefore, the investigation of gdifferential inclusions may extend what is found in the literature regarding impulsive differential inclusions [1, 3].
Our main goal is to discuss the question of extremal solutions for problem (2). In other words, the focus of our attention is the gdifferential problem associated with (2)
which is to be understood as the gderivative \(x'_{g}(t)\) taking values within the set of extreme points of \(F(t,x(t))\). We recall that, for some convex set \(C\subset \mathbb{R}^{n}\), a point a is called an extreme point of C if, for any \(u,v\in C\), the equality \(a= \frac{u+v}{2}\) implies \(a=u=v\).
In what follows by \(\mathcal{F}\) and \(\mathcal{F}^{\mathrm{ext}}\) we denote the solution set of (2) and (6), respectively.
Given \(w\in \mathbb{R}^{n}\), for \(t\in [0,1]\) and \(x\in \mathbb{R} ^{n}\), let \(F^{w}(t,x)\) be the compact convex subset of \(F(t,x)\) consisting in all points maximizing the inner product with w:
Under the assumption that F is a bounded Pompeiu–Hausdorff continuous multifunction, for each continuous function \(w:[0,1]\to \mathbb{R} ^{n}\), taking
we have that \(F^{w}:[0,1]\times \mathbb{R}^{n}\to \mathcal{P}_{\mathrm{ck}}( \mathbb{R}^{n})\) defines a setvalued function which is upper semicontinuous with respect to the second variable. Thanks to the equivalence between gdifferential inclusions and measure differential inclusions, Theorem 10, the solvability of the problem
is equivalent to the existence of solution of
Noting that for F bounded and continuous the multifunction \(F^{w}\) satisfies the assumptions of [11, Theorem 6], problem (8) has a solution; as a consequence, we have the following result.
Theorem 11
Let \(g:[0,1]\to \mathbb{R}\) be a nondecreasing leftcontinuous function and \(F:[0,1]\times \mathbb{R}^{n}\to \mathcal{P}_{\mathrm{ck}}(\mathbb{R}^{n})\) be a bounded Pompeiu–Hausdorff continuous multifunction. Then, for every \(w\in C([0,1],\mathbb{R}^{n})\), problem (7) has at least one solution.
Let \(\mathcal{F}^{w}\) denote the set of solutions of (7). We will see that the inclusion \(\mathcal{F}^{w}\subset \mathcal{F}^{\mathrm{ext}}\), \(w\in C([0,1],\mathbb{R}^{n})\), somehow defines a generic property in the space of continuous functions. In other words, for ‘almost’ any choice of \(w\in C([0,1],\mathbb{R}^{n})\), the solutions of (7) also satisfy inclusion (6).
One important tool in the further investigation is the socalled Choquet function ([6], p. 158) defined as follows: for \(K\in \mathcal{P}_{\mathrm{ck}}(\mathbb{R}^{n})\) and \(y\in \mathbb{R}^{n}\), if \(y\in K\) put
otherwise, we set \(\varPhi (K,y)=\infty \).
Lemma 12
Let \(x\in \mathcal{AC}_{g}([0,1],\mathbb{R}^{n})\) be given. Then \(x\in \mathcal{F}^{\mathrm{ext}}\) if and only if
Proof
Recall that \(\varPhi (K,y)=0\) if and only if y is an extreme point of the convex set K. Consequently, \(x\in \mathcal{F}^{\mathrm{ext}}\) if and only if \(\varPhi (F(t,x(t)),x'_{g}(t))=0\) \(\mu _{g}\)a.e. in \([0,1]\), which is then equivalent to
(due to the positivity of the function Φ). □
In what follows B denotes the closed unit ball in \(\mathbb{R}^{n}\), while ∂B corresponds to its boundary.
Inspired by the methods used in [7], we will consider an auxiliary function \(\phi :[0,1]\times \mathbb{R}^{n}\times \partial B \to \mathbb{R}\) defined by
Further, for \(\lambda >0\), we denote
In other words, for each \(t\in [0,1]\), \(\phi ^{\lambda }(t,\cdot , \cdot )\) corresponds to the minimum of all λLipschitz continuous functions which are greater than \(\phi (t,\cdot ,\cdot )\).
In the next lemma we summarize some properties of these auxiliary functions ϕ and \(\phi ^{\lambda }\). Its proof follows the same arguments used by Bressan in [7], pp. 2395–2396, and we omit it.
Lemma 13
Let \(F:[0,1]\times \mathbb{R}^{n}\to \mathcal{P}_{\mathrm{ck}}(\mathbb{R}^{n})\) be a Pompeiu–Hausdorff continuous multifunction such that \(F(t,x) \subset B\) for every \((t,x)\in [0,1]\times \mathbb{R}^{n}\). The functions \(\phi ,\phi ^{\lambda }:[0,1]\times \mathbb{R}^{n}\times \partial B\to \mathbb{R}\), \(\lambda >0\), defined above satisfy:

(i)
ϕ is upper semicontinuous.

(ii)
\(\phi (t,x,w)=0\) for a.e. \(w\in \partial B\) and for all \(x\in \mathbb{R}^{n}\), \(t\in [0,1]\).

(iii)
\(\phi ^{\lambda }(t,x,w)\to \phi (t,x,w)\) when \(\lambda \to \infty \), pointwise in \([0,1]\times \mathbb{R}^{n}\times \partial B\).

(iv)
for every \(\delta >0\), there exists \(\lambda >0\) such that
$$\fint _{\partial B}\phi ^{\lambda }(t,x,w)\,dw< \delta \quad \textit{for every } x\in B, t\in [0,1], $$where we integrate with respect to the probability measure uniformly distributed over the sphere ∂B.
The main result of this paper is stated below.
Theorem 14
Let \(g:[0,1]\to \mathbb{R}\) be a nondecreasing leftcontinuous function and \(F:[0,1]\times \mathbb{R}^{n}\to \mathcal{P}_{\mathrm{ck}}(\mathbb{R}^{n})\) be a bounded Pompeiu–Hausdorff continuous multifunction such that
where \(A=\{t_{k},k\in \mathbb{N}\}\) is the set of atoms of \(\mu _{g}\). Then
is a residual subset of \(C([0,1],\mathbb{R}^{n})\).
Proof
In the case \(n=1\), note that
where for each \(k\in \mathbb{N}\)
Thus, to see that W is residual, it is enough to show that \(C_{k},k\in \mathbb{N}\), is a dense open subset of \(C([0,1], \mathbb{R})\).
Each \(C_{k}\) is dense. Indeed, given \(h\in C([0,1],\mathbb{R})\) and \(\varepsilon >0\), we know that there exists a polynomial \(P_{\varepsilon }\) such that
Let \(x_{1},\dots ,x_{p_{\varepsilon }}\) be the roots of \(P_{\varepsilon }\). If \(x_{\ell }\in \overline{A}\) for some ℓ, then choose \(\delta >0\) such that \(x_{i}+\delta \notin \overline{A}\) for every \(i=1,\dots ,p_{\varepsilon }\) and \( P_{\varepsilon }(t\delta )P _{\varepsilon }(t)<\frac{\varepsilon }{2}\) for every \(t\in [0,1]\). Thus the polynomial \(P_{\varepsilon }^{*}(t)=P_{\varepsilon }(t\delta )\) clearly belongs to \(C_{k}\) for every \(k\in \mathbb{N}\) and
proving that any εneighborhood of the function h intersects \(C_{k}\), \(k\in \mathbb{N}\).
Each \(C_{k}\) is open. Indeed, given \(w\in C_{k}\), denote by p the number of intervals of \(A_{w}\), and let
where δ is chosen in such a way that there are no atoms of \(\mu _{g}\) in the neighborhood of \(A_{w}\) of radius δ. Then any function \(f\in C([0,1],\mathbb{R})\) with
has the property that it is null at most on the set \(A_{f}\) formed by \(A_{w}\) together with 2p intervals of length \(\frac{\alpha }{2p}\) each. Hence, \(\mu _{g}(A_{f})\leq \mu _{g}(A_{w})+2p\frac{\alpha }{2p}< \frac{1}{k}\) and \(f\in C_{k}\), so the case \(n=1\) is clarified.
Now assume \(n\in \mathbb{N}\), \(n\geq 2\). In view of Lemma 12, we can write
Thus, to prove that W is of second Baire category in \(C([0,1], \mathbb{R}^{n})\), it suffices to show that, for every \(\varepsilon >0\),
is open and dense in \(C([0,1],\mathbb{R}^{n})\). This will be done in two steps. Without loss of generality we can assume that \(F(t,x)\subset B\) for every \((t,x)\in [0,1]\times \mathbb{R}^{n}\).
Step I. Prove that \(W^{\varepsilon }\) is open (equivalently, prove that its complement is closed). To this end, consider a sequence of functions \(\{w_{k}\}_{k}\) such that \(w_{k}\notin W^{\varepsilon }\) and \(w_{k}\) converges uniformly to \(w\in C([0,1],\mathbb{R}^{n})\). For each \(k\in \mathbb{N}\), there exists \(x_{k}\in \mathcal{F}^{w_{k}}\) such that
The fact that \((x_{k})_{g}'(t)\in F(t,x_{k}(t))\subset B\) \(\mu _{g}\)a.e. means that
and by Theorem 7 we can find a subsequence of \(\{x_{k}\}_{k}\) (for simplicity, not relabeled) which converges uniformly to a gcontinuous bounded function \(x:[0,1]\to \mathbb{R}^{n}\). Therefore, for any \(s< t\) in \([0,1]\),
whence \(\x(t)x(s)\\leq g(t)g(s)\), showing that \(x\in \mathcal{AC} _{g}([0,1],\mathbb{R}^{n})\). On the other hand, the continuity of F implies that for each \(t\in [0,1]\) the sequence of sets \(F(t,x_{k}(t))\) converge in the Pompeiu–Hausdorff distance to \(F(t,x(t))\). Consequently \(x_{g}'(t)\in F(t,x(t))\) \(\mu _{g}\)a.e. and
In summary, \(x\in \mathcal{F}^{w}\). It remains to show that
The upper semicontinuity of Φ [6, Proposition 4.2] implies that
Note that by (10), for \(\mu _{g}\)a.e. \(t\in [0,1]\) and for all \(k\in \mathbb{N}\), we have
for every \(f:[0,1]\to F(t,x_{k}(t))\) such that \(\int _{0}^{1} f(s) \,d s=(x _{k})'_{g}(t)\). Thus,
and by the reverse Fatou lemma:
This together with (9) and (11) yields
in other words, \(w\notin W^{\varepsilon }\).
Step II. Show that \(W^{\varepsilon }\) is dense in \(C([0,1], \mathbb{R}^{n})\). Since \(F([0,1]\times \mathbb{R}^{n})\subset B\), we clearly have \(F^{w}(t,x)=F^{w/w}(t,x)\), \(x,w\in \mathbb{R}^{n}\), \(t \in [0,1]\). Recalling that functions in \(C([0,1],\mathbb{R}^{n})\) can be uniformly approximated by continuous functions \(w:[0,1]\to \mathbb{R}^{n}\setminus \{0\}\), we prove the density of \(W^{\varepsilon }\) by showing that for an arbitrary continuous function \(z:[0,1] \to \partial B\) and any \(\rho >0\), we have
where \(B(z,4\rho )\) stands for the open ball in the space \(C([0,1], \partial B)\), centered in z, with radius 4ρ. In other words, we will construct a continuous function \(w:[0,1]\to \partial B\) such that
for every \(x\in \mathcal{AC}_{g}([0,1],\mathbb{R}^{n})\) satisfying \(x_{g}'(t)\in F^{w(t)}(t,x(t))\) \(\mu _{g}\)a.e. in \([0,1]\).
Following Lemma 13(iv), one may choose \(\lambda >0\) such that
where \(S(y)=\{\varsigma \in \partial B:\varsigma y<\rho \}\). By reasoning like in Step 4 of the proof of [7, Theorem 2], we know that we can choose ν points \(p_{1}(0),\dots ,p_{\nu }(0)\) in the spherical cap \(S(z(0))\) such that
for every λLipschitz continuous function \(h: \mathbb{R}^{n} \to \mathbb{R}\). Moreover, for each \(s\in [0,1]\), the points defined by \(p_{j}(s)=\varTheta (s)p_{j}(0)\), \(j=1,\ldots,\nu \) (where \(\varTheta (s)\) is a rotation mapping \(z(s)\) to \(z(0)\)), share the same property. From this it follows that, for each \(s\in [0,1]\), we can choose a finite number of points \(p_{j}(s)\in S(z(s))\), \(j=1,\ldots,\nu \) (with ν depending only on ρ) such that the inequality
holds for any choice of \(t\in [0,1]\) and for every function \(f:[0,1]\times \mathbb{R}^{n}\to \mathbb{R}\) such that \(f(t,\cdot )\) is λLipschitz continuous.
Let \(g^{C}\) denote the continuous part of g. Given \(N\in \mathbb{N}\), consider a division \(0=s_{0}< s_{1}<\cdots <s_{N}=1\) such that
Again by the continuity of \(g^{C}\), we can divide each subinterval \([s_{i1},s_{i}]\) into ν parts \(s_{i1}=s_{i,0}< s_{i,1}<\cdots <s _{i,\nu }=s_{i}\) such that
Define \(z_{N}(s)=p_{j}(s_{i})\) for \(s\in [s_{i,j1},s_{i,j})\), \(i=1,\ldots,N, \ j=1,\ldots,\nu \). Therefore, for N sufficiently large, we have
Let \(x:[0,1]\to \mathbb{R}^{n}\) be a gLipschitz continuous function with constant 1 (Definition 5). Thus
Noting that for each \(t\in [0,1]\) the function \(\phi ^{\lambda }(t, \cdot ,\cdot )\) is λLipschitz continuous, we get the following estimate:
This together with (14) yields
On the other hand, for each \(i=1,\dots , N\), applying (13) with the choice \(f(t,\varsigma )=\phi ^{\lambda }(t,x(s_{i}),\varsigma )\) and using (12), we obtain
Therefore, using (14), the term in (16) can be estimated as follows:
In summary
Hence, for N sufficiently large, we have
Having in mind (15), we can choose a continuous function \(w:[0,1]\to \partial B\) such that
By (P), for each \(k\in \mathbb{N}\), \(F^{w}(t_{k},x(t_{k}))\) is a singleton, thus
Moreover, \(F([0,1]\times \mathbb{R}^{n})\subset B\) implies \(\phi \leq 1\), and consequently \(\phi ^{\lambda }\leq 1\). Thus
that is,
for every function \(x:[0,1]\to \mathbb{R}^{n}\) which is gLipschitz continuous with constant 1. In particular, the inequality holds for \(x\in \mathcal{F}^{w}\) (see Remark 9 and Lemma 6). Hence, recalling the definition of ϕ, we get
proving that \(W^{\varepsilon } \bigcap B(z,4\rho )\neq \emptyset \) and, consequently, that \(W^{\varepsilon }\) is indeed dense. □
Remark 15
Clearly, for g continuous, property (P) plays no role. Furthermore, if g is the identity function, \(x_{g}'\) coincides with the usual derivative \(x'\), and consequently Theorem 14 corresponds to a generalization of [7, Theorem 1] to nonautonomous differential inclusions. When dealing with impulsive differential inclusions (5), property (P) is automatically satisfied if, like in [3], the multifunctions \(I_{k}\) describing the jumps at the impulse points are singlevalued. However, this property allows for more interesting cases of multivalued jumps; for example, if the values of \(I_{k}\) are balls or if their boundaries do not contain segments.
According to Theorem 14, the set of continuous functions w satisfying the relation \(\mathcal{F}^{w}\subset \mathcal{F}^{\mathrm{ext}}\) is ‘large’ enough. Recalling that Theorem 11 ensures that \(\mathcal{F}^{w}\) is nonempty for any choice of \(w\in C([0,1], \mathbb{R}^{n})\), we conclude the following.
Theorem 16
Let \(g:[0,1]\to \mathbb{R}\) be a nondecreasing leftcontinuous function and \(F:[0,1]\times \mathbb{R}^{n}\to \mathcal{P}_{\mathrm{ck}}(\mathbb{R}^{n})\) be a bounded Pompeiu–Hausdorff continuous multifunction with property (P). Then the gdifferential inclusion (6) admits at least one solution.
Combining the theorem above with the correspondence described in Theorem 10, we get the following result regarding extremal solutions for measure differential inclusions.
Corollary 17
Let μ be a finite regular Borel measure and \(F:[0,1]\times \mathbb{R}^{n}\to \mathcal{P}_{\mathrm{ck}}(\mathbb{R}^{n})\) be a bounded Pompeiu–Hausdorff continuous multifunction such that the set \(F^{w}(t,x)\) is a singleton for every \(w,x\in \mathbb{R}^{n}\), whenever \(\{t\}\subset [0,1]\) is an atom of μ. Then the problem
admits extremal solutions.
Another important consequence of Theorem 14 is an existence result for nonconvex valued gdifferential inclusions generalizing the classical result in [19].
Theorem 18
Let \(g:[0,1]\to \mathbb{R}\) be a nondecreasing leftcontinuous function and \(G:[0,1]\times \mathbb{R}^{n}\to 2^{\mathbb{R}^{n}}\) be a bounded multifunction with compact values, continuous with respect to the Pompeiu–Hausdorff distance and such that, for each discontinuity point t of g and for every \(x\in \mathbb{R}^{n}\), the set \(G(t,x)\) is convex and satisfies (P). Then the problem
admits at least one solution.
Proof
Define \(F:[0,1]\times \mathbb{R}^{n}\to \mathcal{P}_{\mathrm{ck}}(\mathbb{R} ^{n})\) by
By Mazur’s theorem, \(F(t,x)\) is, indeed, convex and compact in \(\mathbb{R}^{n}\). Furthermore, the hypothesis over G ensures that F has property (P). Therefore, by Theorem 14, the problem
admits a solution. Recalling that compact sets contain the extreme points of their closed convex hulls (Krein–Millman theorem), the result follows. □
Thanks to the relation previously described between gdifferential inclusions and differential inclusions driven by measures, we then obtain the following Filippovtype result for measure differential inclusions.
Corollary 19
Let μ be a finite regular Borel measure and \(G:[0,1]\times \mathbb{R}^{n}\to 2^{\mathbb{R}^{n}}\) be a bounded multifunction with compact values, continuous with respect to the Pompeiu–Hausdorff distance and such that, when \(\{t\}\subset [0,1]\) is an atom of μ, we have \(G(t,x)\) convex and for every \(w,x\in \mathbb{R}^{n}\), the set \(G^{w}(t,x)\) is a singleton. Then the problem
admits at least one solution.
References
 1.
Abada, N., Agarwal, R.P., Benchohra, M., Hammouche, H.: Impulsive semilinear neutral functional differential inclusions with multivalued jumps. Appl. Math. 56, 227–250 (2011)
 2.
Aubin, J.P., Cellina, A.: Differential Inclusions. Springer, Berlin (1984)
 3.
Benchohra, M., Henderson, J., Ntouyas, S.: Impulsive Differential Equations and Inclusions. Hindwi Publishing Corporation, New York (2006)
 4.
Bendová, H., Malý, J.: An elementary way to introduce a Perronlike integral. Ann. Acad. Sci. Fenn., Math. 36(1), 153–164 (2011)
 5.
Bohner, M., Peterson, A.: Dynamic Equations on Time Scales: An Introduction with Applications. Birkhäuser, Boston (2001)
 6.
Bressan, A.: The most likely path of a differential inclusion. J. Differ. Equ. 88, 155–174 (1990)
 7.
Bressan, A.: Extremal solutions of differential inclusions via Baire category: a dual approach. J. Differ. Equ. 255, 2392–2399 (2013)
 8.
Bressan, A., Staicu, V.: Random extremal solutions of differential inclusions. Nonlinear Differ. Equ. Appl. (2016). https://doi.org/10.1007/s0003001603750
 9.
Bruckner, A.M., Bruckner, J.B., Thomson, B.S.: Real Analysis. Prentice–Hall, Upper Saddle River (1997)
 10.
Cao, Y., Sun, J.: On existence of nonlinear measure driven equations involving nonabsolutely convergent integrals. Nonlinear Anal. Hybrid Syst. 20, 72–81 (2016)
 11.
Cichoń, M., Satco, B.: Measure differential inclusions—between continuous and discrete. Adv. Differ. Equ. (2014). https://doi.org/10.1186/16871847201456
 12.
Cichoń, M., Satco, B.: On the properties of solutions set for measure driven differential inclusions. Discrete Contin. Dyn. Syst. 2015 (Special Issue), 287–296 (2015)
 13.
Cichoń, M., Satco, B., SikorskaNowak, A.: Impulsive nonlocal differential equations through differential equations on time scales. Appl. Math. Comput. 218, 2449–2458 (2011)
 14.
Daniell, P.J.: Differentiation with respect to a function of limited variation. Trans. Am. Math. Soc. 19(4), 353–362 (1918)
 15.
De Blasi, F.S., Pianigiani, G.: Baire’s category and relaxation problems for locally Lipschitzian differential inclusions on finite and infinite time intervals. Nonlinear Anal. 72, 288–301 (2010)
 16.
Di Piazza, L., Marraffa, V., Satco, B.: Closure properties for integral problems driven by regulated functions via convergence results. J. Math. Anal. Appl. 466, 690–710 (2018)
 17.
Federson, M., Mesquita, J.G., Slavík, A.: Measure functional differential equations and functional dynamic equations on time scales. J. Differ. Equ. 252, 3816–3847 (2012)
 18.
Federson, M., Mesquita, J.G., Slavík, A.: Basic results for functional differential and dynamic equations involving impulses. Math. Nachr. 286, 181–204 (2013)
 19.
Filippov, A.F.: The existence of solutions of multivalued differential equations. Mat. Zametki 10, 307–313 (1971)
 20.
Frigon, M., López Pouso, R.: Theory and applications of firstorder systems of Stieltjes differential equations. Adv. Nonlinear Anal. 6, 13–36 (2017)
 21.
Kurzweil, J.: Generalized ordinary differential equations and continuous dependence on a parameter. Czechoslov. Math. J. 7, 418–449 (1957)
 22.
López Pouso, R., Márquez Albés, I.: General existence principles for Stieltjes differential equations with applications to mathematical biology. J. Differ. Equ. 264, 5388–5407 (2018)
 23.
López Pouso, R., Márquez Albés, I., Monteiro, G.A.: Extremal solutions of systems of measure differential equations and applications in the study of Stieltjes differential problems. Electron. J. Qual. Theory Differ. Equ. (2018). https://doi.org/10.14232/ejqtde.2018.1.38
 24.
López Pouso, R., Rodriguez, A.: A new unification of continuous, discrete, and impulsive calculus through Stieltjes derivatives. Real Anal. Exch. 40, 319–353 (2015)
 25.
Monteiro, G.A., Satco, B.: Distributional differential and integral problems: equivalence and existence results. Electron. J. Qual. Theory Differ. Equ. (2017). https://doi.org/10.14232/ejqtde.2017.1.7
 26.
Monteiro, G.A., Slavík, A., Tvrdý, M.: Kurzweil–Stieltjes Integral: Theory and Applications. World Scientific, Singapore (2019)
 27.
Satco, B.: Measure integral inclusions with fast oscillating data. Electron. J. Differ. Equ. 2015, 107 (2015)
 28.
Schwabik, Š.: Generalized Ordinary Differential Equations. World Scientific, Singapore (1992)
 29.
Silva, G.N., Vinter, R.B.: Measure driven differential inclusions. J. Math. Anal. Appl. 202, 727–746 (1996)
 30.
Slavík, A.: Dynamic equations on time scales and generalized ordinary differential equations. J. Math. Anal. Appl. 385, 534–550 (2012)
 31.
Stewart, D.E.: Reformulations of measure differential inclusions and their closed graph property. J. Differ. Equ. 175(1), 108–129 (2001)
 32.
Tolstonogov, A.A.: Differential Inclusions in a Banach Space. Kluwer, Dordrecht (2000)
 33.
Ward, A.J.: The Perron–Stieltjes integral. Math. Z. 41, 578–604 (1936)
 34.
Young, W.H.: On integrals and derivatives with respect to a function. Proc. Lond. Math. Soc. 15 (1), 35–63 (1917)
Acknowledgements
The authors are deeply indebted to the anonymous reviewers for their valuable suggestions.
Funding
The research of G. Monteiro has been supported by RVO: 67985840. The second author has been supported by “Excellence in Advanced Research, Leadership in Innovation and Patenting for University and Regional Development”—EXCALIBUR, Grant Contract no. 18PFE / 10.16.2018 Institutional Development Project—Funding for Excellence in RDI, Program 1—Development of the National R & D System, Subprogram 1.2—Institutional Performance, National Plan for Research and Development and Innovation for the period 2015–2020 (PNCDI III).
Author information
Affiliations
Contributions
All authors contributed equally and significantly in writing this paper. All authors read and approved the final manuscript.
Corresponding author
Correspondence to Bianca Satco.
Ethics declarations
Competing interests
The authors declare that they have no competing interests.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Monteiro, G.A., Satco, B. Extremal solutions for measure differential inclusions via Stieltjes derivatives. Adv Differ Equ 2019, 239 (2019) doi:10.1186/s1366201921727
Received
Accepted
Published
DOI
MSC
 34A60
 34A36
 26A24
 26A45
 46G05
 49K21
Keywords
 Measure differential inclusion
 Extremal solution
 Stieltjes derivative