Skip to main content

Theory and Modern Applications

Table 1 Ternary-FDT for some basic functions

From: Ternary-fractional differential transform schema: theory and application

Function w(x,y,t)

Transformed form

\(t^{n\alpha _{1}}x^{m\alpha _{2}}y^{l\alpha _{3}}\)

\(E_{\alpha _{2}} (\lambda x^{\alpha _{2}} )={\sum_{j=0}^{\infty }\frac{\lambda ^{j}x^{j\alpha _{2} }}{\varGamma (j\alpha _{2}+1)}}\)

\(t^{n\alpha _{1}}x^{m\alpha _{2}}y^{l\alpha _{3}}E_{\alpha _{2}} (\lambda x^{\alpha _{2}} )\)

\(E_{\alpha _{1}} (\mu t^{\alpha _{1}} )E_{\alpha _{2}} (\lambda x^{\alpha _{2}} )E_{\alpha _{3}} (\nu y^{\alpha _{3}} )\)

\(\sin _{\alpha _{2}} (\lambda x^{\alpha _{2}} )={\sum_{j=0}^{\infty }\frac{(-1)^{j} (\lambda x^{\alpha _{2}} )^{2j+1}}{\varGamma ((2j+1)\alpha _{2}+1 )}}\)

View full size image

\(\cos _{\alpha _{2}} (\lambda x^{\alpha _{2}} )={\sum_{j=0}^{\infty }\frac{(-1)^{j} (\lambda x^{\alpha _{2}} )^{2j}}{\varGamma (2j\alpha _{2}+1 )}}\)

\(\sinh _{\alpha _{2}} (\lambda x^{\alpha _{2}} )={\sum_{j=0}^{\infty }\frac{ (\lambda x^{\alpha _{2}} )^{2j+1}}{\varGamma ((2j+1)\alpha _{2}+1 )}}\)

View full size image

\(\cosh _{\alpha _{2}} (\lambda x^{\alpha _{2}} )={\sum_{j=0}^{\infty }\frac{ (\lambda x^{\alpha _{2}} )^{2j}}{\varGamma (2j\alpha _{2}+1 )}}\)