Skip to main content

Nonhomogeneous initial and boundary value problem for the Caputo-type fractional wave equation

Abstract

In this paper, we give an analytical solution of a fractional wave equation for a vibrating string with Caputo time fractional derivatives. We obtain the exact solution in terms of three parameter Mittag-Leffler function. Furthermore, some examples of the main result are exhibited.

Introduction

In recent years, fractional calculus has been one of the most popular topics in research [1,2,3,4,5]. There are many different definitions and representations of fractional integrals and derivatives in the literature, for instance, Riemann–Liouville integral, Riemann–Liouville derivatives, Caputo derivative, Hilfer derivative, and so on (see [6,7,8,9,10,11,12,13,14,15,16]).

The fractional calculus has been used effectively to solve different kinds of problems such as fractional relaxation and oscillation process, time fractional diffusive and wave processes [4, 17,18,19,20,21], generalized Langevin and fractional Fokker–Planck equations [22,23,24,25,26,27,28,29,30,31,32,33]. Furthermore, many authors have obtained the solutions of time fractional diffusion-wave equations in a bounded domain in terms of the Mittag-Leffler type functions (see [22, 31, 34,35,36,37,38,39,40,41,42,43,44]).

Here, we solve the following wave equation for a vibrating string:

$$ C_{\ast }^{\gamma }w(x,t)=\frac{\partial ^{2}w(x,t)}{\partial x^{2}}-bC _{\ast }^{\alpha }w(x,t)+g(x,t), $$
(1)

with Caputo time fractional derivatives \(C_{\ast }^{\gamma } \) and \(C_{\ast }^{\alpha }\) of orders \(1<\gamma <2\) and \(0<\alpha <1\), respectively, using the conditions

$$ w(x,t)\vert_{x=0}=h_{1}(t), \qquad w(x,t) \vert_{x=l}=h_{2}(t) $$
(2)

and

$$ w(x,t)\vert_{t=0_{+}}=\varTheta (x), \qquad \frac{\partial w(x,t)}{\partial t} \bigg\vert _{t=0_{+}}=\varPhi (x), $$
(3)

where \(t>0\), \(0\leq x\leq l\), \(g(x,t)\), \(h_{1}(t)\), \(h_{2}(t)\), \(\varTheta (x)\) and \(\varPhi (x)\) are sufficiently well-behaved functions, b is a positive constant, τ is the memory time, and \(g(x,t)\) is the external force.

This problem has the solutions for \(x\in {}[ 0,l]\) and in \(L(0,\infty )\) such that

$$ L(0,\infty )= \biggl\{ f: \Vert f \Vert _{1}= \int _{0}^{ \infty } \bigl\vert f(t) \bigr\vert \,dt< \infty \biggr\} , $$

where \(L(0,\infty )\)the Lebesgue integrable function deals with t.

This paper is organized as follows. In Sect. 2, definitions and properties of Mittag-Leffler functions and fractional integrals and derivatives are presented. In Sect. 3, we consider the fractional wave equation (1) and solve this problem by using the separation of variables and Fourier expansion method. Also, some examples under the conditions are presented in Sect. 4. Finally, in Sect. 5, we give a concluding remark.

Mathematical background

The Mittag-Leffler functions

The Mittag-Leffler functions [45] were studied and introduced in the following series:

$$ \begin{aligned} &E_{\alpha }(z) =\sum_{k=0}^{\infty } \frac{z^{k}}{\varGamma (\alpha k+1)}, \\ &\bigl(z \in \mathbb{C} ,\operatorname{Re}(\alpha )>0\bigr). \end{aligned} $$
(4)

A more general form of (4) was given by Wiman [46] in the form

$$ \begin{aligned} &E_{\alpha ,\beta }(z) = \sum_{k=0}^{\infty } \frac{z^{k}}{\varGamma ( \alpha k+\beta )}, \\ &\bigl(z,\beta \in \mathbb{C} ,\operatorname{Re}(\alpha )>0\bigr). \end{aligned} $$
(5)

It is obvious that, by using (4) and (5), we have \(E_{\alpha ,1}(z)=E_{\alpha }(z)\). The Mittag-Leffler functions are a generalization of the exponential, hyperbolic, and trigonometric functions since \(E_{1,1}(z)=e^{z}\), \(E_{2,1}(z^{2})=\cosh (z)\), \(E_{2,1}(-z ^{2})=\cos (z)\), and \(E_{2,2}(-z^{2})=\sin (z)/z\).

The generalized Mittag-Leffler functions were defined by Praphakar [47], that is,

$$ \begin{aligned} &E_{\alpha ,\beta }^{\gamma }(z) =\sum_{k=0}^{\infty } \frac{(\gamma )_{k}}{\varGamma (\alpha k+\beta )}\frac{z^{k}}{k!}, \\ &\bigl(\alpha ,\beta ,\gamma \in \mathbb{C} ,\operatorname{Re}(\alpha )>0, \operatorname{Re}(\beta )>0;z \in \mathbb{C} \bigr), \end{aligned} $$
(6)

where \((\gamma )_{k}\) is the Pochhammer symbol [48] defined by

$$ (\gamma )_{k}=\frac{\varGamma (\gamma +k)}{\varGamma (\gamma )}= \textstyle\begin{cases} 1; & k=0,\gamma \neq 0, \\ \gamma (\gamma +1)\cdots (\gamma +k-1); & k=1,2,\ldots. \end{cases} $$

Note that \(E_{\alpha ,\beta }^{1}(x)=E_{\alpha ,\beta }(x)\). The four parameter Mittag-Leffler function [49] was defined by

$$ \begin{aligned} &E_{\alpha ,\beta }^{\gamma ,\kappa }(z) =\sum_{n=0}^{\infty } \frac{( \gamma )_{\kappa n}}{\varGamma (\alpha n+\beta )}\frac{z^{n}}{n!}, \\ &\bigl(\alpha ,\beta ,\gamma \in \mathbb{C} , \operatorname{Re}(\alpha )>\max \bigl\{ 0, \operatorname{Re}(\kappa )-1\bigr\} ,\operatorname{Re}(\kappa )>0\bigr). \end{aligned} $$
(7)

From (6) and (7), we see that \(E_{\alpha ,\beta }^{ \gamma ,1}(z)=E_{\alpha ,\beta }^{\gamma }(z)\).

The Laplace transform of the Mittag-Leffler functions (6) is represented by (see [47, 50])

$$ \mathbb{L} \bigl[ t^{\beta -1}E_{\alpha ,\beta }^{\gamma }\bigl(u t^{ \alpha }\bigr) \bigr] (s)=\frac{s^{\alpha \gamma -\beta }}{(s^{\alpha }-u )^{\gamma }}, $$
(8)

where \(\vert \frac{u }{s^{\alpha }} \vert <1\).

Now, we give basic definitions and properties that will be used throughout the paper.

Definition 2.1

(Riemann–Liouville integral (see [5]))

Let \(\varOmega =[a,b]\) be a finite interval of the real axis. The Riemann–Liouville fractional integral of order \(\mu \in \mathbb{C }\) (\(\operatorname{Re} ( \mu ) >0 \)) is defined by

$$ {}_{x}I_{a^{+}}^{\gamma } [ g ] =\frac{1}{\varGamma (\gamma )} \int _{a}^{x}\frac{g(t) \,dt}{(x-t)^{1-\gamma }} \quad \bigl(x>a, \operatorname{Re} ( \mu ) >0\bigr). $$
(9)

Definition 2.2

(Caputo derivative (see [4] and [51]))

Let \(\gamma >0\), \(n=\lceil \gamma \rceil \), and \(g\in AC^{n}[a,b]\). The Caputo derivative of \(\gamma >0\) is defined as

$$ C_{\ast }^{\gamma }g(t)= \textstyle\begin{cases} \frac{1}{\varGamma (n-\gamma )}\int _{0}^{t}\frac{g^{(n)}(s) }{(t-s)^{ \gamma +1-n}}\,ds; & n-1< \gamma < n, \\ \frac{d^{n}g(t)}{dt^{n}}; & \gamma =n . \end{cases} $$
(10)

Note that the following expression gives us the relationship between the Caputo fractional derivative (10) and the Riemann–Liouville fractional integral operator (9) (see [4])

$$ C_{\ast }^{\gamma }g(t)=I^{n-\gamma }_{0^{+}}g^{(n)}(t), $$

where \(g^{(n)}\) is denoted by n-order derivative.

We give the Laplace transform for the Caputo fractional derivative in the following formula (see [5, 52]):

$$ \mathbb{L} \bigl[ C_{\ast }^{\gamma }g(t) \bigr] (s)= \int _{0}^{ \infty }e^{-st}C_{\ast }^{\gamma }g(t) \,dt=s^{\gamma }G(s)-\sum_{k=0} ^{n-1}g^{(k)}(0_{+})s^{\gamma -1-k}, $$
(11)

where \(\gamma \in (n-1,n)\) and \(G(s)\) is the representation of Laplace transform for the function \(g(t)\). Clearly, \(C_{\ast }^{\gamma }1 \equiv 0\) for \(\gamma >0\).

Definition 2.3

The integral operator \(\mathcal{E}_{a^{+};\alpha ,\beta }^{u ;\gamma ,\kappa }\varphi \) (see [49]) was introduced by Srivastava and Tomovski in the following form:

$$ \begin{aligned} &\bigl( \mathcal{E}_{a^{+};\alpha ,\beta }^{u ;\gamma ,\kappa }\varphi \bigr) (x) = \int _{a}^{x}(x-t)^{\beta -1}E_{\alpha ,\beta }^{ \gamma ,\kappa } \bigl[u (x-t)^{\alpha }\bigr]\varphi (t)\,dt, \\ &\bigl(\rho ,\mu ,u ,\gamma \in \mathbb{C} ,\operatorname{Re}(\rho ), \operatorname{Re}(\mu )>0\bigr), \end{aligned} $$
(12)

where \(E_{\alpha ,\beta }^{\gamma ,\kappa }(z)\) is the four parameter Mittag-Leffler function given in (7).

When \(u =0 \) and \(a=0\), the integral operator (12) coincides with the Riemann–Liouville integral operator (9) such that

$$ \bigl( \mathcal{E}_{0^{+};\alpha ,\beta }^{0;\gamma ,\kappa }\varphi \bigr) (x)= \bigl( I_{0^{+}}^{\beta }\varphi \bigr) (x). $$

Analytical results for the problem

In this section, we investigate the analytical solution of the proposed problem (1)–(3). In order to obtain the solution, we need the following lemmas.

Lemma 3.1

Let \(s,b,\alpha ,\lambda _{n}\in \mathbb{R} ^{+}\) and \(u \in \mathbb{R} \). Then the inverse Laplace transform of the function

$$ f(s)=\frac{s^{\gamma -1}+bs^{\alpha -1}+u s^{\gamma -2}}{s^{\gamma }+bs ^{\alpha }+\lambda _{n}} $$
(13)

deals with

$$ \begin{aligned}[b] \bigl(\mathbb{L}^{-1}f\bigr) (t) &= \mathbb{L}^{-1}\bigl[f(s)\bigr](t) \\ &=\sum_{p=0}^{\infty } ( -b ) ^{p}t^{(\gamma -\alpha )p}E _{\gamma ,(\gamma -\alpha )p+1}^{(p+1)}\bigl(-\lambda _{n}t^{\gamma }\bigr) \\ &\quad {}+b\sum_{p=0}^{\infty }(-b)^{p}t^{(\gamma -\alpha )(p+1)}E_{\gamma ,( \gamma -\alpha )(p+1)+1}^{(p+1)} \bigl(-\lambda _{n}t^{\gamma }\bigr) \\ &\quad {}+u \sum_{p=0}^{\infty } ( -b ) ^{p}t^{(\gamma -\alpha )p+1}E _{\gamma ,(\gamma -\alpha )p+2}^{(p+1)}\bigl(-\lambda _{n}t^{\gamma }\bigr), \end{aligned} $$
(14)

where \(0<\frac{\lambda _{n}}{s^{\gamma }+bs^{\alpha }}<1\) and \(0<\frac{b}{s^{\gamma -\alpha }}<1\),

Proof

Since \(0<\frac{\lambda _{n}}{s^{\gamma }+bs^{\alpha }}<1 \) and \(0<\frac{b}{s^{\gamma -\alpha }}<1\), we rewrite relation (13) in the following way:

$$\begin{aligned} f(s)&= \bigl( s^{\gamma -1}+bs^{\alpha -1}+u s^{\gamma -2} \bigr) . \frac{s ^{-\alpha }}{s^{\gamma -\alpha }+b}.\frac{1}{1+\frac{\lambda _{n}s^{- \alpha }}{s^{\gamma -\alpha }+b}} \\ &=\sum_{j=0}^{\infty }(-\lambda _{n})^{j} \biggl\{ \frac{s^{-\alpha (j+1)+ \gamma -1}}{(s^{\gamma -\alpha }+b)^{j+1}}+b\frac{s^{-\alpha j-1}}{(s ^{\gamma -\alpha }+b)^{j+1}}+u \frac{s^{-\alpha (j+1)+\gamma -2}}{(s ^{\gamma -\alpha }+b)^{j+1}} \biggr\} . \end{aligned}$$

By using relation (8), we get

$$\begin{aligned} &\mathbb{L}^{-1}\bigl[f(s)\bigr](t) \\ &\quad =\sum_{j=0}^{\infty }(-\lambda _{n})^{j}t^{\gamma j}E_{\gamma - \alpha ,\gamma j+1}^{(j+1)} \bigl(-bt^{\gamma -\alpha }\bigr) \\ &\qquad {}+b\sum_{j=0}^{\infty }(-\lambda _{n})^{j}t^{\gamma (j+1)-\alpha }E _{\gamma -\alpha ,\gamma (j+1)-\alpha +1}^{(j+1)} \bigl(-bt^{\gamma -\alpha }\bigr) \\ &\qquad {}+u \sum_{j=0}^{\infty }(-\lambda _{n})^{j}t^{\gamma j+1}E_{\gamma - \alpha ,\gamma j+2}^{j+1} \bigl(-bt^{\gamma -\alpha }\bigr) \\ &\quad =\sum_{j=0}^{\infty }\sum _{p=0}^{\infty }(-\lambda _{n})^{j}t^{ \gamma j} \frac{(j+1)_{p}}{\varGamma ((\gamma -\alpha )p+\gamma j+1)}\frac{(-bt ^{\gamma -\alpha })^{p}}{p!} \\ &\qquad {}+b\sum_{j=0}^{\infty }\sum _{p=0}^{\infty }(-\lambda _{n})^{j}t^{ \gamma j+1-\alpha } \frac{(j+1)_{p}}{\varGamma ((\gamma -\alpha )p+\gamma (j+1)-\alpha +1)}\frac{(-bt^{\gamma -\alpha })^{p}}{p!} \\ &\qquad {}+u \sum_{j=0}^{\infty }\sum _{p=0}^{\infty }(-\lambda _{n})^{j}t^{ \gamma j+1} \frac{(j+1)_{p}}{\varGamma ((\gamma -\alpha )p+\gamma j+2)}\frac{(-bt ^{\gamma -\alpha })^{p}}{p!} \\ &\quad =\sum_{j=0}^{\infty }\sum _{p=0}^{\infty }(-b)^{p}t^{(\gamma -\alpha )p} \frac{(p+1)_{j}}{\varGamma ((\gamma -\alpha )p+\gamma j+1)}\frac{(- \lambda _{n}t^{\gamma })^{j}}{j!} \\ &\qquad {}+b\sum_{j=0}^{\infty }\sum _{p=0}^{\infty }(-b)^{p}t^{(\gamma - \alpha )(p+1)} \frac{(p+1)_{j}}{\varGamma (\gamma j+(\gamma -\alpha )(p+1)+1)}\frac{(- \lambda _{n}t^{\gamma })^{j}}{j!} \\ &\qquad {}+u \sum_{j=0}^{\infty }\sum _{p=0}^{\infty }(-b)^{p}t^{(\gamma - \alpha )p+1} \frac{(p+1)_{j}}{\varGamma ((\gamma -\alpha )p+\gamma j+2)}\frac{(- \lambda _{n}t^{\gamma })^{j}}{j!} \\ &\quad =\sum_{p=0}^{\infty } ( -b ) ^{p}t^{(\gamma -\alpha )p}E _{\gamma ,(\gamma -\alpha )p+1}^{(p+1)}\bigl(-\lambda _{n}t^{\gamma }\bigr) \\ &\qquad {}+b\sum_{p=0}^{\infty }(-b)^{p}t^{(\gamma -\alpha )(p+1)}E_{\gamma ,( \gamma -\alpha )(p+1)+1}^{(p+1)} \bigl(-\lambda _{n}t^{\gamma }\bigr) \\ &\qquad {}+u \sum_{p=0}^{\infty } ( -b ) ^{p}t^{(\gamma -\alpha )p+1}E _{\gamma ,(\gamma -\alpha )p+2}^{(p+1)}\bigl(-\lambda _{n}t^{\gamma }\bigr). \end{aligned}$$

Thus, we get the desired result. □

Lemma 3.2

Let \(s,b,\alpha ,\lambda _{n}\in \mathbb{R} ^{+}\). We have

$$\begin{aligned} & \mathbb{L}^{-1} \biggl[ \frac{1}{s^{\gamma }+bs^{\alpha }+ \lambda _{n}}\mathbb{L}\bigl[ \widetilde{g}_{n}(t)\bigr](s) \biggr] (t)= \sum _{p=0}^{\infty }(-b)^{p} \bigl( \mathcal{E}_{0^{+};\gamma ,( \gamma -\alpha )p+\gamma }^{-\lambda _{n};p+1,1}\widetilde{g}_{n} \bigr) (t) , \\ & \biggl( 0< \frac{\lambda _{n}}{s^{\gamma }+bs^{\alpha }}< 1, 0< \frac{b}{s ^{\gamma -\alpha }}< 1 \biggr), \end{aligned}$$

where \(\mathcal{E}_{0^{+};\gamma ,(\gamma -\alpha )p+\gamma }^{- \lambda _{n};p+1,1}\) is given in (12) and \(\widetilde{g}_{n}(t)\) is a given function.

Proof

Let

$$ h(s)=\frac{1}{s^{\gamma }+bs^{\alpha }+\lambda _{n}}\mathbb{L}\bigl[\widetilde{g}_{n}(t)\bigr](s). $$
(15)

We rewrite relation (15) in the following form:

$$ h(s)=\frac{s^{-\alpha }}{s^{\gamma -\alpha }+b}.\frac{1}{1+\frac{ \lambda _{n}s^{-\alpha }}{s^{\gamma -\alpha }+b}}\mathbb{L}\bigl[ \widetilde{g}_{n}(t) \bigr](s). $$

Since \(0<\frac{\lambda _{n}}{s^{\gamma }+bs^{\alpha }}<1\), we have

$$ h(s)=\sum_{j=0}^{\infty }(-\lambda _{n})^{j}\frac{s^{-\alpha (j+1)}}{(s ^{\gamma -\alpha }+b)^{j+1}}\mathbb{L}\bigl[ \widetilde{g}_{n}(t)\bigr](s). $$

With the help of relation (8), we obtain

$$\begin{aligned} h(s) =&\mathbb{L} \Biggl[ \sum_{j=0}^{\infty }(- \lambda _{n})^{j}t^{ \gamma (j+1)-1}E_{\gamma -\alpha ,\gamma (j+1)}^{j+1} \bigl(-bt^{\gamma - \alpha }\bigr) \Biggr] (s)\mathbb{L}\bigl[\widetilde{g}_{n}(t) \bigr](s) \\ =&\mathbb{L} \Biggl[ \sum_{p=0}^{\infty }(-b)^{p}t^{(\gamma -\alpha )p+ \gamma -1}E_{\gamma ,(\gamma -\alpha )p+\gamma }^{p+1} \bigl(-\lambda _{n}t ^{\gamma }\bigr) \Biggr] (s)\mathbb{L}\bigl[ \widetilde{g}_{n}(t)\bigr](s). \end{aligned}$$

Applying the Parseval theorem for the Laplace transform (see [53])

$$ \mathbb{L} \biggl[ \int _{0}^{x}k(x-t)\varphi (t)\,dt \biggr] (s)= \mathbb{L} \bigl[ k(x) \bigr] (s)\mathbb{L} \bigl[ \varphi (x) \bigr] (s), $$

we have

$$ h(s)=\sum_{p=0}^{\infty }(-b)^{p} \mathbb{L} \biggl[ \int _{0}^{t}(t- \tau )^{(\gamma -\alpha )p+\gamma -1}E_{\gamma ,(\gamma -\alpha )p+ \gamma }^{p+1} \bigl(-\lambda _{n}[t-\tau ]^{\gamma }\bigr)\widetilde{g}_{n}( \tau ) \biggr] (s). $$
(16)

Taking the inverse Laplace transform on both sides of (16), we get

$$\begin{aligned} &\mathbb{L}^{-1}\bigl[g(s)\bigr](t) \\ &\quad =\mathbb{L}^{-1} \biggl[ \frac{1}{s^{\gamma }+bs^{\alpha }+\lambda _{n}}\mathbb{L}\bigl[ \widetilde{g}_{n}(t)\bigr](s) \biggr] (t)=\sum _{p=0} ^{\infty }(-b)^{p} \bigl( \mathcal{E}_{0^{+};\gamma ,(\gamma -\alpha )p+\gamma }^{-\lambda _{n};p+1,1}\widetilde{g}_{n} \bigr) (t), \end{aligned}$$

which is the desired result. □

The solution of the problem given by (1)–(3) is given in the following theorem.

Theorem 3.3

The problem given in (1), (2), and (3) has a summable solution in \(L(0,\infty )\) with respect to t as follows:

$$\begin{aligned} w(x,t) =&\sum_{n=1}^{\infty }T_{n}(t) \sin \biggl( \frac{n\pi x}{l} \biggr) \\ &{}+\sum_{n=1}^{\infty }\sum _{p=0}^{\infty } ( -b ) ^{p} \bigl( \mathcal{E}_{0^{+};\gamma ,(\gamma -\alpha )p+\gamma }^{- \lambda _{n};p+1,1}\widetilde{g}_{n} \bigr) (t) \sin \biggl( \frac{n \pi x}{l} \biggr) +h_{1}(t)+\frac{x}{l} \bigl[h_{2}(t)-h_{1}(t)\bigr] \end{aligned}$$

for \(x\in {}[ 0,l]\), where

$$\begin{aligned}& \begin{aligned} T_{n}(t)&=T_{n}^{(0)}(0_{+}) \Biggl[ \sum_{p=0}^{\infty } ( -b ) ^{p}t^{(\gamma -\alpha )p}E_{\gamma ,(\gamma -\alpha )p+1} ^{(p+1)}\biggl(-\frac{n^{2}\pi ^{2}}{l^{2}}t^{\gamma }\biggr) \\ &\quad {} +b\sum_{p=0}^{\infty } ( -b ) ^{p}t^{(\gamma - \alpha )(p+1)}E_{\gamma ,(\gamma -\alpha )(p+1)+1}^{(p+1)}\biggl(- \frac{n ^{2}\pi ^{2}}{l^{2}}t^{\gamma }\biggr) \\ &\quad {} +\frac{T_{n}^{(1)}(0_{+})}{T_{n}^{(0)}(0_{+})} \sum_{p=0} ^{\infty } ( -b ) ^{p}t^{(\gamma -\alpha )p+1}E_{\gamma ,( \gamma -\alpha )+2}^{(p+1)} \biggl(-\frac{n^{2}\pi ^{2}}{l^{2}}t^{\gamma }\biggr) \Biggr] , \end{aligned} \\& \begin{aligned}[b] \widetilde{g}_{n}(t) &=\frac{2}{l} \int _{0}^{l} \biggl[ g(x,t)+\frac{ \partial ^{2} ( h_{1}(t)+\frac{x}{l}[h_{2}(t)-h_{1}(t)] ) }{ \partial x^{2}} \\ &\quad {} -C_{\ast }^{\gamma } \biggl( h_{1}(t)+ \frac{x}{l}\bigl[h_{2}(t)-h _{1}(t)\bigr] \biggr) -bC_{\ast }^{\alpha }w(x,t) \biggr] \sin \biggl( \frac{n \pi x}{l} \biggr)\,dx, \end{aligned} \\& T_{n}^{(0)}(0_{+})=\frac{2}{l} \int _{0}^{l} \biggl(\widetilde{\varTheta}(x)- \biggl( h_{1}(t)+\frac{x}{l}\bigl[h_{2}(t)-h_{1}(t) \bigr] \biggr)\bigg\vert _{t=0_{+}} \biggr) \sin \biggl( \frac{n\pi x}{l} \biggr) \,dx, \end{aligned}$$
(17)

and

$$ T_{n}^{(1)}(0_{+})=\frac{2}{l} \int _{0}^{l} \biggl(\widetilde{\varPhi}(x)- \frac{ \partial ( h_{1}(t)+\frac{x}{l}[h_{2}(t)-h_{1}(t)] )}{ \partial t}\bigg\vert _{t=0_{+}} \biggr) \sin \biggl( \frac{n\pi x}{l} \biggr) \,dx. $$

Proof

Suppose \(w(x,t)\) is given as

$$ w(x,t)=W(x,t)+\nu (x,t). $$
(18)

Clearly, conditions (2) satisfy \(\nu (x,t)\) where

$$ \nu (x,t)=h_{1}(t)+\frac{x}{l}\bigl[h_{2}(t)-h_{1}(t) \bigr]. $$
(19)

From relations (18) and (19), we get

$$ W(x,t)\vert_{x=0}=0, \qquad W(x,t)\vert_{x=l}=0. $$

By (3), we get

$$\begin{aligned}& W(x,t)\vert_{t=0_{+}}=\varTheta (x)-\nu (x,t)\vert_{t=0_{+}}= \widetilde{ \varTheta}(x), \\& \frac{\partial W(x,t)}{\partial t}\bigg\vert _{t=0_{+}}=\varPhi (x)-\frac{ \partial \nu (x,t)}{\partial x} \bigg\vert _{t=0_{+}}=\widetilde{\varPhi}(x). \end{aligned}$$

By representing

$$ W(x,t)=W_{1}(x,t)+W_{2}(x,t) $$

and by using (1) and (18), we get

$$ C_{\ast }^{\gamma }\bigl[W_{1}(x,t)+W_{2}(x,t) \bigr]=\frac{\partial ^{2}}{\partial x^{2}}\bigl[W_{1}(x,t)+W_{2}(x,t) \bigr]-bC_{\ast }^{\alpha }\bigl[W_{1}(x,t)+W_{2}(x,t) \bigr]+ \widetilde{g}(x,t), $$

where

$$ \widetilde{g}(x,t)=g(x,t)+\frac{\partial ^{2}\nu (x,t)}{\partial x^{2}} -C_{\ast }^{\gamma }\nu (x,t)-bC_{\ast }^{\alpha }w(x,t). $$
(20)

The problem now can be reduced as follows:

$$\begin{aligned}& C_{\ast }^{\gamma }W_{1}(x,t)=\frac{\partial ^{2}W_{1}(x,t)}{\partial x^{2}}-bW_{1}(x,t), \\& W_{1}(x,t)\vert_{x=0}=0, \qquad W_{1}(x,t) \vert_{x=l}=0, \\& W_{1}(x,t)\vert_{t=0_{+}}=\widetilde{\varTheta}(x), \qquad \frac{\partial W_{1}(x,t)}{\partial t}\bigg\vert _{t=0_{+}}= \widetilde{\varPhi}(x), \end{aligned}$$

and

$$\begin{aligned}& C_{\ast }^{\gamma }W_{2}(x,t)=\frac{\partial ^{2}W_{2}(x,t)}{\partial x^{2}}-bC_{\ast }^{\alpha }W_{2}(x,t)+ \widetilde{g}(x,t), \end{aligned}$$
(21)
$$\begin{aligned}& W_{2}(x,t)\vert_{x=0}=0, \qquad W_{2}(x,t) \vert_{x=l}=0, \end{aligned}$$
(22)
$$\begin{aligned}& W_{2}(x,t)\vert_{t=0_{+}}=0, \qquad \frac{\partial W_{2}(x,t)}{\partial t} \bigg\vert _{t=0_{+}}=0. \end{aligned}$$
(23)

Letting \(W_{1}(x,t)=X(x)T(t)\), the differential equations take the following forms:

$$\begin{aligned}& C_{\ast }^{\gamma }T(t)+bC_{\ast }^{\alpha }T(t)+\lambda T(t)=0, \end{aligned}$$
(24)
$$\begin{aligned}& \frac{d^{2}X(x)}{dx^{2}}+\lambda X(x)=0, \end{aligned}$$
(25)

where λ is called a separation constant. So, the solution of the Sturm–Liouville problem (25) deals with the function \(X(x)\) with boundary conditions:

$$ X(x)\vert_{x=0}=0, \qquad X(x)\vert_{x=l}=0. $$
(26)

The eigenfunctions of the problem are given in the form \(X_{n}(x)= \sin (\sqrt{\lambda _{n}}x)\) where \(\lambda _{n}=\frac{n^{2}\pi ^{2}}{l ^{2}}\), (\(0<\lambda _{1}<\lambda _{2}<\cdots <\lambda _{n}\cdots \)). The relation for the eigenfunctions is satisfied by

$$ \int _{0}^{l}X_{n}^{2}(x)\,dx= \Vert X_{n} \Vert ^{2}\delta _{nm}, $$

where \(\Vert X_{n} \Vert ^{2}=\frac{1}{2}\) is the norm of the eigenfunctions and \(\delta _{nm}\) is the Kronecker delta.

By using the Laplace transform, (24) is solved in the space \(L(0,\infty )\). So, we get

$$ \begin{aligned}[b] & s^{\gamma }\mathbb{L} \bigl[T_{n}(t)\bigr](s)-s^{\gamma -1}T_{n}^{(0)}(0_{+})-s ^{\gamma -2}T_{n}^{(1)}(0_{+}) \\ &\quad {} +b\bigl\{ s^{\alpha }\mathbb{L\bigl[}T_{n}(t) \bigr](s)-s^{\alpha -1}T_{n} ^{(0)}(0_{+})\bigr\} \\ &\quad {} +\lambda _{n}\mathbb{L\bigl[}T_{n}(t) \bigr](s)=0. \end{aligned} $$
(27)

From (27), we get

$$ \mathbb{L}\bigl[T_{n}(t)\bigr](s)=T_{n}^{(0)}(0_{+}) \biggl[ \frac{s^{\gamma -1}+bs ^{\alpha -1}+\frac{T_{n}^{(1)}(0_{+})}{T_{n}^{(0)}(0_{+})} s^{\gamma -2}}{s^{\gamma }+bs^{\alpha }+\lambda _{n}} \biggr] . $$
(28)

By using (14) and Lemma 3.1, the inverse Laplace transform of relation (28) yields

$$\begin{aligned}& T_{n}(t) \\& \quad = T_{n}^{(0)}(0_{+}) \Biggl[ \sum _{p=0}^{\infty }(-b)^{p}t^{(\gamma - \alpha )p}E_{\gamma ,(\gamma -\alpha )p+1}^{(p+1)} \bigl(-\lambda _{n}t^{ \gamma }\bigr) \\& \qquad {}+b\sum_{p=0}^{\infty }(-b)^{p}t^{(\gamma -\alpha )(p+1)}E _{\gamma ,(\gamma -\alpha ) ( p+1 ) +1}^{(p+1)}\bigl(-\lambda _{n}t^{\gamma } \bigr) \\& \qquad {}+\frac{T_{n}^{(1)}(0_{+})}{T_{n}^{(0)}(0_{+})} \sum_{p=0} ^{\infty } ( -b ) ^{p}t^{(\gamma -\alpha )p+1}E_{\gamma ,( \gamma -\alpha )p+2}^{(p+1)} \bigl(-\lambda _{n}t^{\gamma }\bigr) \Biggr] , \end{aligned}$$

so we obtain the solution of \(W_{1}(x,t)\) such that

$$ W_{1}(x,t)=\sum_{n=1}^{\infty }T_{n}(t) \sin \biggl( \frac{n\pi x}{l} \biggr). $$
(29)

By using the Fourier expansions, we find the solution of (21):

$$\begin{aligned}& W_{2}(x,t)=\sum_{n=1}^{\infty }w_{n}(t) \sin \biggl( \frac{n\pi x}{l} \biggr) , \end{aligned}$$
(30)
$$\begin{aligned}& \widetilde{g}(x,t)=\sum_{n=1}^{\infty } \widetilde{g}_{n}(t) \sin \biggl( \frac{n\pi x}{l} \biggr) , \end{aligned}$$
(31)

where \(\widetilde{g}_{n}(t)\) is represented in (17). From (30), (31), and (21), we get

$$ \sum_{n=1}^{\infty } \bigl[ C_{\ast }^{\gamma }w_{n}(t)+bC_{\ast } ^{\alpha }w_{n}(t)+\lambda _{n}w_{n}(t)- \widetilde{g}_{n}(t) \bigr] \sin \biggl( \frac{n\pi x}{l} \biggr) =0 $$

if

$$ C_{\ast }^{\gamma }w_{n}(t)+bC_{\ast }^{\alpha }w_{n}(t)+ \lambda _{n}w _{n}(t)-\widetilde{g}_{n}(t)=0, $$
(32)

where \(n\in \mathbb{N} \).

Using the Laplace transform method (11) to (32), we get

$$ \begin{aligned}[b] & s^{\gamma }\mathbb{L} \bigl[w_{n}(t)\bigr](s)-s^{\gamma -1}w_{n}^{(0)}(0_{+})-s ^{\alpha -2}w_{n}^{(1)}(0_{+})] \\ &\quad {} +b\bigl\{ s^{\alpha }\mathbb{L}\bigl[w_{n}(t) \bigr](s)-s^{\alpha -1}w_{n}(0_{+}) \bigr\} \\ &\quad {} +\lambda _{n}\mathbb{L}\bigl[w_{n}(t)\bigr](s)- \mathbb{L}\bigl[ \widetilde{g}_{n}(t)\bigr](s)=0. \end{aligned} $$
(33)

From conditions (23), it follows that \(\frac{\partial ^{p}w_{n}(x,t)}{ \partial t^{p}}\vert_{t=0^{+}}=0\) for \(p=0,1\). From (33), we get

$$ \mathbb{L}\bigl[w_{n}(t)\bigr](s)= \frac{1}{s^{\gamma }+bs^{\alpha }+\lambda _{n}}\mathbb{L}\bigl[ \widetilde{g}_{n}(t)\bigr](s). $$
(34)

Finally, we get the inverse Laplace transform of (34) and use Lemma 3.2 to obtain the following result:

$$ w_{n}(t)=\sum_{p=0}^{\infty }(-b)^{p} \bigl( \mathcal{E}_{0^{+}; \gamma ,(\gamma -\alpha )p+\gamma }^{-\lambda _{n};p+1,1} \widetilde{g}_{n} \bigr) (t). $$
(35)

Thus, the proof is completed. □

Some applications of the main problem

In this section, we give some applications for time fractional wave equation (1)–(3) by considering special cases of the external force, conditions given in (2) and (3).

Example 4.1

Let \(g(x,t)=0\), \(\varTheta (x)=x(1-x)\), \(\varPhi (x)=0\), \(h_{1}(t)=h_{2}(t)=0\), \(x\in {}[ 0,1]\) in the above theorem. The time fractional wave equation takes the form as follows:

$$ C_{\ast }^{\gamma }w(x,t)=\frac{\partial ^{2}w(x,t)}{\partial x^{2}}-bC _{\ast }^{\alpha }w(x,t), $$

where \(1<\gamma <2\) and \(0<\alpha <1\), with the conditions

$$ w(x,t) \vert_{x=0}=0,\qquad w(x,t) \vert_{x=1}=0 $$

and

$$ w(x,t)\vert_{t=0_{+}}=0,\qquad \frac{\partial w(x,t)}{ \partial t} \bigg\vert _{t=0_{+}}=0 $$

has the following solution

$$ w(x,t)=\sum_{n=1}^{\infty }T_{n}(t) \sin (n\pi x), $$
(36)

where

$$ \begin{aligned}[b] T_{n}(t) &=4\frac{1-(-1)^{n}}{n^{3}\pi ^{3}} \Biggl[ \sum _{p=0}^{ \infty } ( -b ) ^{p}t^{(\gamma -\alpha )p}E_{\gamma ,( \gamma -\alpha )p+1}^{(p+1)} \bigl(-n^{2}\pi ^{2}t^{\gamma }\bigr) \\ &\quad {} +b\sum_{p=0}^{\infty } ( -b ) ^{p}t^{(\gamma - \alpha )(p+1)}E_{\gamma ,(\gamma -\alpha )(p+1)+1}^{(p+1)} \bigl(-n^{2}\pi ^{2}t^{\gamma }\bigr) \\ &\quad {} +u \sum_{p=0}^{\infty } ( -b ) ^{p}t^{(\gamma - \alpha )p+1}E_{\gamma ,(\gamma -\alpha )p+2}^{(p+1)} \bigl(-n^{2}\pi ^{2}t ^{\gamma }\bigr) \Biggr] . \end{aligned} $$
(37)

When \(n=2r\) (\(r=1,2,\ldots \)), we have \(T_{2r}(t)=0\). Therefore, we have just the odd terms \(T_{2r-1}(t)\). Hence, the solution of (36) is \(w(x,t)=\sum_{r=1}^{\infty }T_{2r-1}(t)\sin [(2r-1)\pi x] \).

Example 4.2

Let \(g(x,t)=ct^{\kappa -1}E_{\alpha ,\kappa }^{\zeta } ( -t^{ \alpha } ) \), \(b=1\), \(\tau =1\), \(\varTheta (x)=x(1-x)\), \(\varPhi (x)=0\), \(h_{1}(t)=h_{2}(t)=0\), \(x\in {}[ 0,1]\) in the above theorem. The time fractional wave equation takes the following form:

$$ C_{\ast }^{\gamma }w(x,t)=\frac{\partial ^{2}w(x,t)}{\partial x^{2}}-bC _{\ast }^{\alpha }w(x,t)+ct^{\kappa -1}E_{\alpha ,\kappa }^{\zeta } \bigl( -t^{\alpha } \bigr) , $$

where \(1<\gamma <2\), \(1<\alpha <2\), c is any constant, with the conditions

$$ w(x,t)\vert_{x=0}=0,\qquad w(x,t) \vert_{x=1}=0 $$

and

$$ w(x,t) \vert_{t=0_{+}}=0,\qquad \frac{\partial w(x,t)}{ \partial t} \bigg\vert _{t=0_{+}}=0 $$

has the following solution

$$ w(x,t)=\sum_{n=1}^{\infty }T_{n}(t) \sin (n\pi x)+\sum_{n=1}^{\infty }w _{n}(t)\sin (n\pi x), $$

where \(T_{n}(t)\) is given by (37), and

$$ w_{n}(t)=2c\frac{ \{ 1-(-1)^{n} \} }{n\pi }\sum_{p=0}^{ \infty }(-b)^{p}t^{\mu +\kappa -1}E_{\rho ,\mu +\kappa }^{\gamma + \zeta } \bigl( -t^{\rho } \bigr) . $$

Note that only odd terms \(T_{2r-1}(t)\) and \(U_{2r-1}(t)\) are not equal to zero for \(r=1,2,\ldots \)

Concluding remark

For \(\gamma \rightarrow 2\), (1) becomes

$$ \frac{\partial ^{2}w(x,t)}{\partial t^{2}}=\frac{\partial ^{2}w(x,t)}{ \partial x^{2}}-bC_{\ast }^{\alpha }w(x,t)+g(x,t), $$
(38)

with conditions

$$ w(x,t)\vert_{x=0}=h_{1}(t), \qquad w(x,t) \vert_{x=l}=h_{2}(t), $$
(39)

and

$$ w(x,t)\vert_{t=0_{+}}=\varTheta (x), \qquad \frac{\partial w(x,t)}{\partial t} \bigg\vert _{t=0_{+}}=\varPhi (x) $$
(40)

which is considered in [43].

The above problem has the solution (see p. 1558, [43], (27)–(29)) \(w(x,t)=W_{1}(x,t)+W_{2}(x,t)+ \nu (x,t)\), with

$$\begin{aligned}& \begin{aligned}[b] W_{1}(x,t) &=\sum_{n=1}^{\infty } \Biggl\{ \sum_{p=0}^{\infty } ( -b ) ^{p}t^{(2-\alpha )p}E_{2,(2-\alpha )p+1}^{(p+1)}\bigl(-\lambda _{n}t ^{2}\bigr) \\ &\quad {} +b\sum_{p=0}^{\infty } ( -b ) ^{p}t^{(2-\alpha )(p+1)}E _{2,(2-\alpha )(p+1)+1}^{(p+1)}\bigl(-\lambda _{n}t^{2}\bigr) \\ &\quad {} +u \sum_{p=0}^{\infty } ( -b ) ^{p}t^{(2-\alpha )p+1}E_{2,(2-\alpha )p+2}^{(p+1)}\bigl(-\lambda _{n}t^{2}\bigr) \Biggr\} T_{n} ^{(0)}(0_{+})\sin \biggl( \frac{n\pi x}{l} \biggr) , \end{aligned} \end{aligned}$$
(41)
$$\begin{aligned}& W_{2}(x,t)=\sum_{n=1}^{\infty }\sum _{p=0}^{\infty } ( -b ) ^{p} \bigl( \mathcal{E}_{0^{+};2,(2-\alpha )p+2}^{-\lambda _{n};p+1,1} \widetilde{g}_{n} \bigr) (t) \sin \biggl( \frac{n\pi x}{l} \biggr) , \end{aligned}$$
(42)
$$\begin{aligned}& \nu (x,t)=h_{1}(t)+\frac{x}{l}\bigl[h_{2}(t)-h_{1}(t) \bigr]. \end{aligned}$$
(43)
$$\begin{aligned}& \widetilde{g}_{n}(t)=\frac{2}{l} \int _{0}^{l}\widetilde{g}(x,t) \sin \biggl( \frac{n\pi x}{l} \biggr) \,dx, \end{aligned}$$
(44)
$$\begin{aligned}& \widetilde{g}(x,t)=g(x,t)+\frac{\partial ^{2}\nu (x,t)}{\partial x^{2}}-\frac{\partial ^{2}\nu (x,t)}{\partial t^{2}}-bC_{\ast }^{ \alpha }w(x,t), \end{aligned}$$
(45)

where \(\lambda _{n}=\frac{n^{2}\pi ^{2}}{l^{2}}\) are eigenvalues of the problem, \(u =T_{n}^{(1)}(0_{+})/T_{n}^{(0)}(0_{+})\), \(T_{n}^{(0)}(0_{+})= [4] \frac{2}{l}\int _{0}^{l}\widetilde{\varTheta}(x)\sin ( \frac{n \pi x}{l} ) \,dx\), \(T_{n}^{(1)}(0_{+})=\frac{2}{l}\int _{0}^{l} \widetilde{\varPhi}(x)\sin ( \frac{n\pi x}{l} ) \,dx\) are Fourier coefficients, \(\widetilde{\varTheta}(x)=\varTheta (x)-\nu (x,t) \vert_{t=0_{+}}\), and \(\widetilde{\varPhi}(x)=\varPhi (x)-\frac{\partial \nu (x,t)}{\partial t}\vert_{t=0_{+}}\).

It is easily observed that for \(\gamma \rightarrow 2\), the solution which is given in Theorem 3.3 coincides with (41)–(43).

References

  1. 1.

    Agarwal, R.P., De Andrade, B., Cuevas, C.: Weighted pseudo-almost periodic solutions of a class of semilinear fractional differential equations. Nonlinear Anal. 11, 3532–3554 (2010)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Agarwal, R., Hristova, S., O’Regan, D.: Mittag-Leffler stability for impulsive Caputo fractional differential equations. Differ. Equ. Dyn. Syst. (2017). https://doi.org/10.1007/s12591-017-0384-4

    Article  MATH  Google Scholar 

  3. 3.

    Nashine, H.K., Arab, R., Agarwal, R.P., De la Sen, M.: Positive solutions of fractional integral equations by the technique of measure of noncompactness. J. Inequal. Appl. 2017, 225 (2017). https://doi.org/10.1186/s13660-017-1497-6

    MathSciNet  Article  MATH  Google Scholar 

  4. 4.

    Gorenflo, R., Mainardi, F.: Fractional calculus, integral and differential equations of fractional order. In: Carpinteri, A., Mainardi, F. (eds.) Fractals and Fractional Calculus in Continuum Mechanics, pp. 223–276. Springer, Wien (1997)

    Google Scholar 

  5. 5.

    Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, vol. 204. Elsevier, Amsterdam (2006)

    Google Scholar 

  6. 6.

    Baleanu, D., Agarwal, P., Parmar, R.K., Alqurashi, M.M., Salahshour, S.: Extension of the fractional derivative of the Riemann–Liouville. J. Nonlinear Sci. Appl. 10, 2914–2924 (2017)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Kıymaz, I.O., Çetinkaya, A., Agarwal, P.: An extension of Caputo fractional derivative operator and its applications. J. Nonlinear Sci. Appl. 9, 3611–3621 (2016)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Agarwal, P., Al-Mdallal, Q., Je Cho, Y., Jain, S.: Fractional differential equations for the generalized Mittag-Leffler function. Adv. Differ. Equ. 2018(1), 58 (2018)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Agarwal, P., El-Sayed, A.A.: Non-standard finite difference and Chebyshev collocation methods for solving fractional diffusion equation. Phys. A, Stat. Mech. Appl. 500, 40–49 (2018)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Baltaeva, U., Agarwal, P.: Boundary-value problems for the third-order loaded equation with noncharacteristic type-change boundaries. Math. Methods Appl. Sci. 500, 3307–3315 (2018)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Agarwal, P., Nieto, J.J., Luo, M.-J.: Extended Riemann–Liouville type fractional derivative operator with applications. Open Math. 15(1), 1667–1681 (2017)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Agarwal, P., Jain, S., Mansour, T.: Further extended Caputo fractional derivative operator and its applications. Russ. J. Math. Phys. 24(4), 415–425 (2017)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Jain, S., Agarwal, P., Kilicman, A.: Pathway fractional integral operator associated with 3m-parametric Mittag-Leffler functions. Int. J. Appl. Comput. Math. 4(5), 115 (2018)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Agarwal, P.: Some inequalities involving Hadamard-type k-fractional integral operators. Math. Methods Appl. Sci. 40(11), 3882–3891 (2017)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Ruzhansky, M.V., Je Cho, Y., Agarwal, P., Area, I.: Advances in Real and Complex Analysis with Applications. Springer, Singapore (2017)

    Google Scholar 

  16. 16.

    Mehrez, K., Agarwal, P.: New Hermite–Hadamard type integral inequalities for convex functions and their applications. J. Comput. Appl. Math. 350, 274–285 (2019)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Mainardi, F.: Fractional relaxation-oscillation and fractional diffusion-wave phenomena. Chaos Solitons Fractals 7, 1461–1477 (1996)

    MathSciNet  Article  Google Scholar 

  18. 18.

    Mainardi, F.: The fundamental solutions for the fractional diffusion-wave equation. Appl. Math. Lett. 9, 23–28 (1996)

    MathSciNet  Article  Google Scholar 

  19. 19.

    Mainardi, F., Pagnini, G.: The Wright functions as solutions of the time-fractional diffusion equation. Appl. Math. Comput. 141, 51–62 (2003)

    MathSciNet  MATH  Google Scholar 

  20. 20.

    Mainardi, F., Pagnini, G., Gorenflo, R.: Some aspects fractional diffusion equations of single and distributed order. Appl. Math. Comput. 187, 295–305 (2007)

    MathSciNet  MATH  Google Scholar 

  21. 21.

    Mainardi, F., Paradisi, P.: Fractional diffusive waves. J. Comput. Acoust. 9, 1417 (2001)

    MathSciNet  Article  Google Scholar 

  22. 22.

    Agrawal, O.P.: Solutions for a fractional diffusion-wave equation defined in a bounded domain. Nonlinear Dyn. 29, 145–155 (2002)

    MathSciNet  Article  Google Scholar 

  23. 23.

    Camargo, R.F., Capelas de Oliveira, E., Vaz, J. Jr: On anomalous diffusion and the fractional generalized Langevin equation for a harmonic oscillator. J. Math. Phys. 50, Article ID 123518 (2009)

    MathSciNet  Article  Google Scholar 

  24. 24.

    Hahn, M., Umarov, S.: Fractional Fokker–Planck–Kolmogorov type equations and their associated stochastic differential equations. Fract. Calc. Appl. Anal. 14, 56–79 (2011)

    MathSciNet  Article  Google Scholar 

  25. 25.

    Heinsalu, E., Patriarca, M., Goychuk, I., Schmid, G., Hänggi, P.: Fractional Fokker–Planck dynamics: numerical algorithm and simulations. Phys. Rev. E 73, Article ID 046133 (2006)

    Article  Google Scholar 

  26. 26.

    Kou, S.C., Xie, X.S.: Generalized Langevin equation with fractional Gaussian noise: subdiffusion within a single protein molecule. Phys. Rev. Lett. 93, Article ID 180603 (2046)

    Article  Google Scholar 

  27. 27.

    Lutz, E.: Fractional Langevin equation. Phys. Rev. E 64, Article ID 051106 (2001)

    Article  Google Scholar 

  28. 28.

    Mainardi, F., Pironi, P.: The fractional Langevin equation: Brownian motion revisited. Extr. Math. 10, 140–154 (1996)

    MathSciNet  Google Scholar 

  29. 29.

    Metzler, R., Barkai, E., Klafter, J.: Anomalous diffusion and relaxation close to thermal equilibrium: a fractional Fokker–Planck equation approach. Phys. Rev. Lett. 82, Article ID 3563 (1999)

    Article  Google Scholar 

  30. 30.

    Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)

    MathSciNet  Article  Google Scholar 

  31. 31.

    Sandev, T., Tomovski, Z.: Wave equation for a vibrating string in presence of a fractional friction. In: Proceedings in the Symposium on Fractional Signals and Systems, Lisbon, 4–6 November 2009 (2009)

    Google Scholar 

  32. 32.

    Sandev, T., Tomovski, Z., Dubbeldam, J.L.A.: Generalized Langevin equation with a three parameter Mittag-Leffler noise. Physica A 390, Article ID 36273636 (2011)

    Article  Google Scholar 

  33. 33.

    Sandev, T., Tomovski, Z.: Asymptotic behavior of a harmonic oscillator driven by a generalized Mittag-Leffler noise. Phys. Scr. 82, Article ID 065001 (2010)

    Article  Google Scholar 

  34. 34.

    Diethelm, K., Weibeer, M.: Initial-boundary value problems for time-fractional diffusion-wave equations and their numerical solutions. In: Mehaute, A.L., Machado, J.A., Trigeasson, J.C., Sabatier, J. (eds.) Proceedings of the 1st IFAC Workshop on Fractional Differentiations and Its Applications. ENSEIRB, Bordeux (2004)

    Google Scholar 

  35. 35.

    Luchko, Y.: Maximum principle and its application for the time-fractional diffusion equations. Fract. Calc. Appl. Anal. 14, 110–124 (2011)

    MathSciNet  MATH  Google Scholar 

  36. 36.

    Luchko, Y.: Initial-boundary-value problems for the one-dimensional time-fractional diffusion equation. Fract. Calc. Appl. Anal. 15, 141–160 (2012)

    MathSciNet  Article  Google Scholar 

  37. 37.

    Momani, S.: General solutions for the space- and time-fractional diffusion-wave equation. J. Phys. Sci. 10, 30–43 (2006)

    Google Scholar 

  38. 38.

    Odibat, Z.M., Momani, S.: Approximate solutions for boundary value problems of time-fractional wave equation. Appl. Math. Comput. 181, 767–774 (2006)

    MathSciNet  MATH  Google Scholar 

  39. 39.

    Odibat, Z.M.: A reliable modification of the rectangular decomposition method. Appl. Math. Comput. 183, 1226–1234 (2006)

    MathSciNet  MATH  Google Scholar 

  40. 40.

    Sandev, T., Metzler, R., Tomovski, Z.: Fractional diffusion equation with a generalized Riemann–Liouville time fractional derivative. J. Phys. A, Math. Theor. 44, Article ID 255203 (2011)

    MathSciNet  Article  Google Scholar 

  41. 41.

    Chen, C.M., Lin, F., Turner, I., Anh, V.: A Fourier method for the fractional diffusion equation describing sub-diffusion. J. Comput. Phys. 227, 886–897 (2007)

    MathSciNet  Article  Google Scholar 

  42. 42.

    Sandev, T., Tomovski, Z.: The general time fractional wave equation for a vibrating string. J. Phys. A, Math. Theor. 43, Article ID 055204 (2010)

    MathSciNet  Article  Google Scholar 

  43. 43.

    Tomovski, Z., Sandev, T.: Effects of a fractional friction with power-law memory kernel on string vibrations. Comput. Math. Appl. 62, 1554–1561 (2011)

    MathSciNet  Article  Google Scholar 

  44. 44.

    Yuste, S.B.: Weighted average finite difference methods for fractional diffusion. J. Comput. Phys. 216, 264–274 (2006)

    MathSciNet  Article  Google Scholar 

  45. 45.

    Mittag-Leffler, G.M.: Sur la nouvelle function e(x). C. R. Acad. Sci. Paris 137, 554–558 (1903)

    MATH  Google Scholar 

  46. 46.

    Wiman, A.: Über den fundamentalsatz in der theorie der funktionen \(e_{\alpha }(x)\). Acta Math. 29, 191–201 (1095)

    Article  Google Scholar 

  47. 47.

    Prabhakar, T.R.: A singular integral equation with a generalized Mittag-Leffler function in the kernel. Yokohama Math. J. 19, 7–15 (1971)

    MathSciNet  MATH  Google Scholar 

  48. 48.

    Rainville, E.D.: Special Functions. Macmillan Co., New York (1960)

    Google Scholar 

  49. 49.

    Srivastava, H.M., Tomovski, Z.: Fractional calculus with an integral operator containing a generalized Mittag-Leffler function in the kernel. Appl. Math. Comput. 211, 198–210 (2009)

    MathSciNet  MATH  Google Scholar 

  50. 50.

    Tomovski, Z., Hilfer, R., Srivastava, H.M.: Fractional and operational calculus with generalized fractional derivative operators and Mittag-Leffler type functions. Integral Transforms Spec. Funct. 21, 797–814 (2010)

    MathSciNet  Article  Google Scholar 

  51. 51.

    Caputo, M.: Elasticita Dissipacione. Zanichelli, Bologna (1969)

    Google Scholar 

  52. 52.

    Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    Google Scholar 

  53. 53.

    Titchmarsh, E.C.: Introduction to the Theory of Fourier Integrals. Chelsea, New York (1937)

    Google Scholar 

Download references

Acknowledgements

Dedicated to Prof. Dr. Abdullah Altın for his seventieth birthday.

Availability of data and materials

Data sharing not applicable to this article as no data sets were generated or analysed during the current study.

Funding

No funding.

Author information

Affiliations

Authors

Contributions

Both authors contributed equally to the paper. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mehmet Ali Özarslan.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Özarslan, M.A., Kürt, C. Nonhomogeneous initial and boundary value problem for the Caputo-type fractional wave equation. Adv Differ Equ 2019, 199 (2019). https://doi.org/10.1186/s13662-019-2110-8

Download citation

MSC

  • 35L05
  • 26A33
  • 33E12
  • 44A10

Keywords

  • Fractional wave equation
  • Caputo time fractional derivative
  • Mittag-Leffler function
  • Laplace transform