Skip to main content

Advertisement

TableĀ 2 Boundary conditions at four corners

From: Curved beam elasticity theory based on the displacement function method using a finite difference scheme

Angular point Given boundary conditions Used boundary conditions Boundary conditions of angular points
A \(\{ u_{r},u_{\theta },\sigma _{r},\tau _{r\theta } \}\) \(\{ u_{r},u_{\theta },\tau _{r\theta } \}\) \(u_{r} = 0\); \(u_{\theta } = 0\); \(\tau _{r\theta } = 0\)
B \(\{ u_{r},u_{\theta },\sigma _{r},\tau _{r\theta } \}\) \(\{ u_{r},u_{\theta },\tau _{r\theta } \}\) \(u_{r} = 0\); \(u_{\theta } = 0\); \(\tau _{r\theta } = 0\)
C \(\{ u_{r},u_{\theta },\sigma _{r},\tau _{r\theta } \}\) \(\{ u_{r},u_{\theta },\tau _{r\theta } \}\) \(u_{r} = 0\); \(u_{\theta } = 0\); \(\tau _{r\theta } = 0\)
D \(\{ u_{r},u_{\theta },\sigma _{r},\tau _{r\theta } \}\) \(\{ u_{r},u_{\theta },\tau _{r\theta } \}\) \(u_{r} = 0\); \(u_{\theta } = 0\); \(\tau _{r\theta } = 0\)