Skip to main content

Theory and Modern Applications

Table 1 Boundary conditions of the computational model

From: Curved beam elasticity theory based on the displacement function method using a finite difference scheme

Boundary

Boundary conditions

Normal component

Tangential component

Right Boundary \(\theta = \theta _{i}\)

\(u_{r}(r,\theta _{i}) = 0\)

\(u_{\theta } (r,\theta _{i}) = 0\)

Left Boundary \(\theta = \theta _{\max } = \theta _{i} + \theta _{e}\)

\(u_{r}(r,\theta _{\max } ) = 0\)

\(u_{\theta } (r,\theta _{\max } ) = 0\)

Inner Boundary \(r = r_{\mathrm{ib}}\)

\(\sigma _{r}(r_{\mathrm{ib}},\theta ) = 0\)

\(\tau _{r\theta } (r_{\mathrm{ib}},\theta ) = 0\)

Out Boundary \(r = r_{\mathrm{ob}}\), θ ≤ 90∘

\(\sigma _{r}(r_{\mathrm{ob}},\theta ) = - q(\lambda \cos \theta + \sin \theta )\)

\(\tau _{r\theta } (r_{\mathrm{ob}},\theta ) = - q(\cos \theta - \lambda \sin \theta )\)

Out Boundary \(r = r_{\mathrm{ob}}\), θ>90∘

\(\sigma _{r}(r_{\mathrm{ob}},\theta ) = - q( - \lambda \cos \theta + \sin \theta )\)

\(\tau _{r\theta } (r_{\mathrm{ob}},\theta ) = - q(\cos \theta + \lambda \sin \theta )\)