Existence and uniqueness of the global solution for a class of nonlinear fractional integro-differential equations in a Banach space

Abstract

In this paper, by employing fixed point theory, we investigate the existence and uniqueness of solutions for a class of nonlinear fractional integro-differential equations on semi-infinite domains in a Banach space.

Introduction

Fractional calculus and fractional differential equations describe various phenomena in diverse areas of natural science such as physics, aerodynamics, biology, control theory, chemistry, and so on, see [1,2,3,4,5,6,7,8,9,10,11,12]. In the last few decades, fractional-order models have been found to be more adequate than integer order models for some real world problems as fractional derivatives provide an excellent tool for the description of memory and hereditary properties of various materials and processes; this is the main advantage of fractional differential equations in comparison with classical integer-order models. The study of fractional calculus and fractional differential equations is gaining more and more attention. Compared with classical integer-order models [13,14,15,16], fractional-order models can describe reality more accurately.

In the past decades, results on fractional differential equations with finite domain have been extensively investigated. Some recent results on fractional differential equations with finite domain, for instance, can be found in papers [17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38] and the references cited therein. Though much of the work on fractional calculus deals with finite domain, there is a considerable development on the topic involving unbounded domain [12, 39,40,41,42,43,44,45,46,47,48,49,50].

In , the authors considered the existence of solutions for the following fractional order initial value problems (IVPs):

$$\textstyle\begin{cases} ({}_{C}D_{0,t}^{\alpha }x)(t) =f(t,x(t)),\quad t\in (0,+\infty ), \\ x(0)=x_{0}, \end{cases}$$

where $$0<\alpha <1$$, $${} _{C}D_{0,t}^{\alpha }$$ is the Caputo derivative.

In , the authors studied the following fractional integro-differential equations on an infinite interval:

$$\textstyle\begin{cases} (D^{\alpha }u)(t)+f(t,u(t),(Tu)(t),(Su)(t))=\theta , \quad t\in (0, \infty ), \\ u(0)=u'(0)=u''(0)=\cdots =u^{(n-2)}=\theta ,\qquad D^{\alpha -1}u( \infty )=u_{\infty }, \end{cases}$$

where $$n-1<\alpha \leq n$$, $$n\in \mathbb{N}$$, $$n\geq 2, \ D^{\alpha }$$ is the Riemann–Liouville fractional derivative of order α, the existence results are obtained by using the Banach fixed point theorem.

In , the authors considered the fractional differential equation with the nonlinearity depending on fractional derivatives of lower order on an infinite interval:

$$\textstyle\begin{cases} (D_{0^{+}}^{\alpha }u)(t) +f(t,u(t),(D_{0^{+}}^{\alpha -2}u)(t),(D _{0^{+}}^{\alpha -1}u)(t))=0, \quad t\in (0,\infty ),\\ u(0)=u'(0)=0, \qquad (D_{0^{+}}^{\alpha -1}u)(+\infty )=\xi , \end{cases}$$

where $$2<\alpha \leq 3,\ D_{0+}^{\alpha },\ D_{0+}^{\alpha -1}$$ and $$D_{0+}^{\alpha -2}$$ denote the Riemann–Liouville fractional derivatives. The existence and uniqueness results of solutions were obtained by using the Schauder fixed point theorem and Banach contraction mapping principle.

Using the fixed point index theory, the authors  studied the existence and multiplicity of positive solutions of the following IVP:

$$\textstyle\begin{cases} (D^{\alpha }u)(t)=f(t,u(t),(D^{\beta }u)(t)),\quad t\in (0,1], \\ u^{(k)}(0)=\eta _{k},\quad k=0,1,\ldots ,n-1, \end{cases}$$

where $$n-1<\beta <\alpha <n$$, $$n\in \mathbb{N}$$, $$D^{\alpha }$$ and $$D^{\beta }$$ are the Caputo fractional derivatives.

Inspired by the works mentioned above, in this article we aim to investigate the existence of solutions for the following nonlinear fractional-order integro-differential equation on a semi-infinite interval:

$$\textstyle\begin{cases} (D_{a+}^{\alpha }u)(t) =f(t,u(t),(D_{a+}^{\beta _{1}}u)(t),\ldots ,(D _{a+}^{\beta _{k}}u)(t), \\ \hphantom{(D_{a+}^{\alpha }u)(t)=} (T_{0}u)(t),(T_{1}D_{a+}^{\gamma _{1}}u)(t),\ldots , (T_{m}D_{a+} ^{\gamma _{m}}u)(t) ), \\ (D_{a+}^{\alpha -i}u)(a+)=u_{i}, \quad i=1,2,\ldots ,n, \end{cases}$$
(1.1)

where $$n=-[-\alpha ]$$, $$t\in J=[a,+\infty )$$, $$f\in C(J\times E^{k+m+2},E)$$, $$u_{1},u_{2},\ldots ,u_{n}\in E$$, $$(E,\|\cdot \|)$$ is a real Banach space. $$0<\beta _{1}<\beta _{2}<\cdots <\beta _{k}<\alpha$$, $$0<\gamma _{1}<\gamma _{2}<\cdots <\gamma _{m}<\alpha$$, $$D_{a+}^{\alpha }$$, $$D_{a+} ^{\beta _{i}}$$, $$D_{a+}^{\gamma _{j}}$$ are the Riemann–Liouville fractional derivatives, and

$$(T_{j}u) (t)= \int _{a}^{t}k_{j}(t,s)u(s)\,ds ,\quad j=0,1,\ldots ,m,$$

where $$k_{j}(t,s)\in C[D,R]$$, $$D=\{(t,s)|a\leq s\leq t<\infty \}$$.

In particular, if $$\alpha ,\beta _{1},\beta _{2},\ldots , \beta _{k}, \gamma _{1},\gamma _{2},\ldots ,\gamma _{m}$$ are natural numbers, then the problem in (1.1) is reduced to the usual Cauchy problem for the ordinary differential equation:

$$\textstyle\begin{cases} u^{(n)}(t) =f(t,u(t),u'(t),\ldots ,u^{(n-1)}(t), (T_{0}u)(t),(T_{1}u')(t), \ldots ,(T_{n-1}u^{(n-1)})(t) ), \\ u^{(i)}(0)=u_{i}, \quad i=1,2,\ldots ,n-1. \end{cases}$$
(1.2)

Thus, fractional differential equation (1.1) is the continuation and development of integer-order differential equations (1.2).

Preliminaries and some lemmas

In this section, we introduce notations, definitions, and some useful lemmas, which play an important role in obtaining the main results of this paper.

Suppose that $$\mu (t)$$ and $$f_{0}(t)=\|f(t,\theta ,\ldots ,\theta )\|$$ are nonnegative continuous functions on J, $$k_{j}(t,s)$$ are continuous on $$D=\{(t,s)|a\leq s\leq t<\infty \}$$. Set

\begin{aligned} & \beta =\min \{\beta _{1}, \gamma _{1}\}, \qquad p=\alpha +1, \qquad q= \frac{p}{p-1}, \qquad p_{0}=\beta +1, \qquad q_{0}= \frac{p_{0}}{p_{0}-1}, \\ & M=\max \bigl\{ \beta ^{-\frac{2}{p_{0}}},1\bigr\} , \qquad N=m+k+2, \\ & \lambda (t)=t-a+1,\qquad \mu _{*}(t)=\mu (t)+1, \\ & f_{0}(t)= \bigl\Vert f(t,\theta ,\ldots ,\theta ) \bigr\Vert , \qquad K(t)= \sup_{a\leq s\leq t, 0\leq j\leq m}\bigl\{ \bigl\vert k_{j}(t,s) \bigr\vert \bigr\} +1, \\ & \varphi (t)=\lambda ^{\frac{\alpha ^{2}}{p}}(t) \bigl[\mu _{*}(t)K(t)+f _{0}(t) \bigr], \qquad \varPhi (t)=\bigl(NM\varGamma (\alpha ) \bigr)^{q_{0}} \int _{a}^{t} \varphi ^{q_{0}}(s)\,ds , \\ & \Vert u \Vert _{\varPhi }=\sup_{t\in J} \bigl\{ \lambda ^{-\frac{\alpha ^{2}}{p}}(t)e ^{-2\varPhi (t)} \bigl\Vert u(t) \bigr\Vert \bigr\} , \\ & C_{\varPhi }=\bigl\{ \Vert u \Vert _{\varPhi }< \infty |u: J\to E \text{ is continuous}\bigr\} . \end{aligned}

Then $$C_{\varPhi }$$ is a Banach space with the norm $$\|\cdot \|_{\varPhi }$$.

Definition 2.1

The Riemann–Liouville fractional derivative of order α for a continuous function $$f:[a,\infty )\to R$$ is defined by

$$D_{a+}^{\alpha }f(t)=\frac{1}{\varGamma (n-\alpha )} \biggl(\frac{d}{dt} \biggr) ^{n} \int _{a}^{t}(t-s)^{n-\alpha -1}f(s)\,ds ,\quad n=[\alpha ]+1,$$

provided the right-hand side is defined pointwise on $$(a,\infty )$$.

A map $$u(t)\in C(J,E)$$ with its Riemann–Liouville derivative of order α existing on J is called a solution of (1.1) if it satisfies (1.1).

Lemma 2.2

(Hölder’s inequality)

Suppose that $$p>1$$, $$\frac{1}{p}+\frac{1}{q}=1$$, $$u\in L^{p}[a,b]$$, $$v \in L^{q}[a,b]$$, then

\begin{aligned} \int _{a}^{b}u(t)v(t)\,dt \leq \biggl( \int _{a}^{b} \bigl\vert u(t) \bigr\vert ^{p}\,dt \biggr) ^{\frac{1}{p}} \biggl( \int _{a}^{b} \bigl\vert v(t) \bigr\vert ^{q}\,dt \biggr)^{\frac{1}{q}}. \end{aligned}

Lemma 2.3

Suppose that $$c>1$$, $$\beta \leq \varrho <\alpha$$, $$p_{1}=\varrho +1$$, $$q_{1}=\frac{p_{1}}{p_{1}-1}$$, $$W\in L^{p}[a,b]$$, $$|W(t)|\leq \varphi (t)$$, then

\begin{aligned} \int _{a}^{t}(t-s)^{\varrho -1}W(s)e^{c\varPhi (s)} \,ds \leq c^{-\frac{1}{q _{0}}}\bigl(N\varGamma (\alpha )\bigr)^{-1}\lambda ^{\frac{\alpha ^{2}}{p}}(t)e^{c \varPhi (t)}. \end{aligned}

Proof

\begin{aligned} \begin{aligned} & \int _{a}^{t}(t-s)^{\varrho -1}W(s)e^{c\varPhi (s)} \,ds \\ & \quad \leq \biggl[ \int _{a}^{t}(t-s)^{p_{1}(\varrho -1)}\,ds \biggr]^{\frac{1}{p _{1}}} \biggl[ \int _{a}^{t}\varphi ^{q_{1}}(s)e^{cq_{1}\varPhi (s)} \,ds \biggr] ^{\frac{1}{q_{1}}} \\ & \quad = \varrho ^{-\frac{2}{p_{1}}}(t-a)^{\frac{\varrho ^{2}}{p_{1}}} \biggl[ \int _{a}^{t}\varphi ^{q_{1}}(s)e^{cq_{1}\varPhi (s)} \,ds \biggr]^{\frac{1}{q _{1}}} \\ &\quad \leq \varrho ^{-\frac{2}{p_{1}}}(t-a)^{\frac{\varrho ^{2}}{p_{1}}} \biggl[ \int _{a}^{t}\varphi ^{q_{0}}(s)e^{cq_{1}\varPhi (s)} \,ds \biggr]^{\frac{1}{q _{1}}} \\ & \quad \leq \varrho ^{-\frac{2}{p_{1}}}(t-a)^{\frac{\varrho ^{2}}{p_{1}}} \biggl[ \int _{a}^{t}\bigl(NM\varGamma (\alpha ) \bigr)^{-q_{0}}e^{cq_{1}\varPhi (s)}d \varPhi (s) \biggr]^{\frac{1}{q_{1}}} \\ &\quad \leq \varrho ^{-\frac{2}{p_{1}}}(t-a)^{\frac{\varrho ^{2}}{p_{1}}} \cdot (cq_{1})^{-\frac{1}{q_{1}}} \bigl(NM\varGamma (\alpha )\bigr)^{-\frac{q_{0}}{q _{1}}}e^{c\varPhi (t)} \\ &\quad \leq c^{-\frac{1}{q_{1}}}\bigl(NM\varGamma (\alpha )\bigr)^{-1} \varrho ^{-\frac{2}{p_{1}}}\lambda ^{\frac{\alpha ^{2}}{p}}(t)e^{c\varPhi (t)} \\ &\quad \leq c^{-\frac{1}{q_{0}}}\bigl(N\varGamma (\alpha )\bigr)^{-1} \lambda ^{\frac{\alpha ^{2}}{p}}(t)e^{c\varPhi (t)}, \end{aligned} \end{aligned}

where $$M=\max \{\beta ^{-\frac{2}{p_{0}}},1\}$$. □

Lemma 2.4

Suppose that $$\beta \leq \varrho <\alpha$$, $$p _{1}=\varrho +1$$, $$q_{1}=\frac{p_{1}}{p_{1}-1}$$, $$u\in C_{\varPhi }$$, let

\begin{aligned} & (\sigma _{1} u) (t) = \int _{a}^{t}(t-s)^{\alpha -1}\mu (s) \bigl\Vert u(s) \bigr\Vert \,ds , \\ & (\sigma _{2} u) (t) = \int _{a}^{t}(t-s)^{\alpha -1}\mu (s) \int _{a} ^{s}k_{0}(s,\tau ) \bigl\Vert u(\tau ) \bigr\Vert \,d\tau \,ds , \\ & (\sigma _{3} u) (t) = \int _{a}^{t}(t-s)^{\alpha -1}\mu (s) \int _{a} ^{s}(s-\tau )^{\varrho -1} \bigl\Vert u(\tau ) \bigr\Vert \,d\tau \,ds , \\ & (\sigma _{4} u) (t) = \int _{a}^{t}(t-s)^{\alpha -1}\mu (s) \int _{a}^{s}K(s) \int _{a}^{\tau }(\tau -\eta )^{\varrho -1} \bigl\Vert u( \eta ) \bigr\Vert \,d\eta \,d\tau \,ds , \end{aligned}

then

\begin{aligned} & (\sigma _{1}u) (t)\leq 2^{-\frac{1}{q_{0}}}\bigl(N\varGamma (\alpha ) \bigr)^{-1} \Vert u \Vert _{\varPhi } \lambda ^{\frac{\alpha ^{2}}{p}}(t)e^{2\varPhi (t)}, \\ & (\sigma _{2}u) (t)\leq 2^{-\frac{1}{q_{0}}}\bigl(N\varGamma (\alpha ) \bigr)^{-1} \Vert u \Vert _{\varPhi } \lambda ^{\frac{\alpha ^{2}}{p}}(t)e^{2\varPhi (t)}, \\ & (\sigma _{3}u) (t)\leq 2^{-\frac{1}{q_{0}}}\bigl(N\varGamma (\alpha ) \bigr)^{-1} \Vert u \Vert _{\varPhi } \lambda ^{\frac{\alpha ^{2}}{p}}(t)e^{2\varPhi (t)}, \\ & (\sigma _{4}u) (t)\leq 2^{-\frac{1}{q_{0}}}\bigl(N\varGamma (\alpha ) \bigr)^{-1} \Vert u \Vert _{\varPhi } \lambda ^{\frac{\alpha ^{2}}{p}}(t)e^{2\varPhi (t)}. \end{aligned}

Proof

Notice that $$(\frac{p}{\alpha })^{\frac{2}{p}}>1$$, and $$\lambda (t)\geq 1$$, $$\mu _{*}(t)\geq 1$$, $$K(t)\geq 1$$, $$t\in J$$, direct calculations show that, for $$u\in C_{\varPhi }$$, by Lemma 2.3,

\begin{aligned} &\begin{aligned} (\sigma _{1}u) (t) & = \int _{a}^{t}(t-s)^{\alpha -1} \mu (s) \bigl\Vert u(s) \bigr\Vert \,ds \\ & \leq \Vert u \Vert _{\varPhi } \int _{a}^{t}(t-s)^{\alpha -1}\mu (s) \lambda ^{\frac{\alpha ^{2}}{p}}(s) e^{2\varPhi (s)} \,ds \\ & \leq 2^{-\frac{1}{q_{0}}}\bigl(N\varGamma (\alpha )\bigr)^{-1} \Vert u \Vert _{\varPhi } \lambda ^{\frac{\alpha ^{2}}{p}}(t) e^{2\varPhi (t)}, \end{aligned}\\ &\begin{aligned} (\sigma _{2}u) (t) & = \int _{a}^{t}(t-s)^{\alpha -1}\mu (s) \int _{a} ^{s}k_{0}(s,\tau ) \bigl\Vert u(\tau ) \bigr\Vert \,d\tau \,ds \\ & \leq \Vert u \Vert _{\varPhi } \int _{a}^{t}(t-s)^{\alpha -1}\mu (s)K(s) \int _{a}^{s}\lambda ^{\frac{\alpha ^{2}}{p}}(\tau )e^{2\varPhi (\tau )} \,d\tau \,ds \\ & \leq \Vert u \Vert _{\varPhi } \int _{a}^{t}(t-s)^{\alpha -1}\mu (s)K(s)e^{2 \varPhi (s)} \,ds \\ & \leq 2^{-\frac{1}{q_{0}}}\bigl(N\varGamma (\alpha )\bigr)^{-1} \Vert u \Vert _{\varPhi } \lambda ^{\frac{\alpha ^{2}}{p}}(t)e^{2\varPhi (t)}, \end{aligned}\\ &\begin{aligned} (\sigma _{3}u) (t) & = \int _{a}^{t}(t-s)^{\alpha -1}\mu (s) \int _{a}^{s}(s- \tau )^{\varrho -1} \bigl\Vert u(\tau ) \bigr\Vert \,d\tau \,ds \\ & \leq \Vert u \Vert _{\varPhi } \int _{a}^{t}(t-s)^{\alpha -1}\mu (s) \int _{a} ^{s}(s-\tau )^{\varrho -1} \lambda ^{\frac{\alpha ^{2}}{p}}(\tau )e^{2 \varPhi (\tau )} \,d\tau \,ds \\ & \leq \Vert u \Vert _{\varPhi } \int _{a}^{t}(t-s)^{\alpha -1}\mu (s) \lambda ^{\frac{\alpha ^{2}}{p}}(s)e^{2\varPhi (s)} \,ds \\ & \leq 2^{-\frac{1}{q_{0}}}\bigl(N\varGamma (\alpha )\bigr)^{-1} \Vert u \Vert _{\varPhi } \lambda ^{\frac{\alpha ^{2}}{p}}(t)e^{2\varPhi (t)}, \end{aligned}\\ &\begin{aligned} (\sigma _{4}u) (t) & = \int _{a}^{t}(t-s)^{\alpha -1}\mu (s) \int _{a}^{s}K(s) \int _{a}^{\tau }(\tau -\eta )^{\varrho -1} \bigl\Vert u(\eta ) \bigr\Vert \,d\eta \,d\tau \,ds \\ & \leq \Vert u \Vert _{\varPhi } \int _{a}^{t}(t-s)^{\alpha -1}\mu (s) \int _{a} ^{s}K(s) \int _{a}^{\tau }(\tau -\eta )^{\varrho -1} \lambda ^{\frac{\alpha ^{2}}{p}}(\eta )e^{2\varPhi (\eta )} \,d\eta \,d\tau \,ds \\ & \leq \Vert u \Vert _{\varPhi } \int _{a}^{t}(t-s)^{\alpha -1}\mu (s)K(s) \int _{a}^{s}\lambda ^{\frac{\alpha ^{2}}{p}}(\tau )e^{2\varPhi (\tau )} \,d\tau \,ds \\ & \leq \Vert u \Vert _{\varPhi } \int _{a}^{t}(t-s)^{\alpha -1}\mu (s)K(s)e^{2 \varPhi (s)} \,ds \\ & \leq 2^{-\frac{1}{q_{0}}}\bigl(N\varGamma (\alpha )\bigr)^{-1} \Vert u \Vert _{\varPhi } \lambda ^{\frac{\alpha ^{2}}{p}}(t)e^{2\varPhi (t)}. \end{aligned} \end{aligned}

□

Lemma 2.5

$$u(t)\in C_{\varPhi }$$ is a solution of problem (1.1) if and only if $$u(t)\in C_{\varPhi }$$ is a solution of the integral equation

\begin{aligned} u(t)= {}& \sum_{j=1}^{n} \frac{u_{j}}{\varGamma (\alpha -j+1)}(t-a)^{\alpha -j} \\ & {}+\frac{1}{\varGamma (\alpha )} \int _{a}^{t}(t-s)^{\alpha -1} f\bigl(s,u(s), \bigl(D _{a+}^{\beta _{1}}u\bigr) (s),\ldots , \bigl(D_{a+}^{\beta _{k}}u \bigr) (s), \\ & (T_{0}u) (s), \bigl(T_{1}D_{a+}^{\gamma _{1}}u\bigr) (s),\ldots , \bigl(T_{m}D_{a+} ^{\gamma _{m}}u\bigr) (s) \bigr)\,ds . \end{aligned}
(2.1)

Proof

We only transform (1.1) to the integral equation (2.1) as the converse follows by direct computation. We know that the general solution of the fractional differential equation in (1.1) can be written as 

\begin{aligned} u(t)= {}& \sum_{j=1}^{n}v_{j}(t-a)^{\alpha -j} \\ & {}+\frac{1}{\varGamma (\alpha )} \int _{a}^{t}(t-s)^{\alpha -1} f\bigl(s,u(s), \bigl(D _{a+}^{\beta _{1}}u\bigr) (s),\ldots , \bigl(D_{a+}^{\beta _{k}}u \bigr) (s), \\ & (T_{0}u) (s), \bigl(T_{1}D_{a+}^{\gamma _{1}}u\bigr) (s),\ldots , \bigl(T_{m}D_{a+} ^{\gamma _{m}}u\bigr) (s) \bigr)\,ds , \end{aligned}
(2.2)

where $$v_{1},v_{2},\ldots ,v_{n}\in E$$ are arbitrary elements. For every $$i=1,2,\ldots ,n$$, by (2.2), we have

\begin{aligned} \bigl(D_{a+}^{\alpha -i}u\bigr) (a+)= {}& \sum _{j=1}^{i}v_{j}(t-a)^{i-j} \\ &{} +\frac{1}{(i-1)!} \int _{a}^{t}(t-s)^{i-1} f\bigl(s,u(s), \bigl(D_{a+}^{\beta _{1}}u\bigr) (s),\ldots , \\ & \bigl(D_{a+}^{\beta _{k}}u\bigr) (s), (T_{0}u) (s),\bigl(T_{1}D_{a+}^{\gamma _{1}}u \bigr) (s), \ldots , \bigl(T_{m}D_{a+}^{\gamma _{m}}u \bigr) (s) \bigr)\,ds . \end{aligned}

Clearly, the condition $$(D_{a+}^{\alpha -i}u)(a+)=u_{i}$$ implies that

$$v_{i}=\frac{u_{i}}{\varGamma (\alpha -i+1)}.$$

□

Main results

Theorem 3.1

Suppose that there exists $$\mu \in C[J,R^{+}]$$ such that, for any $$x_{1},x_{2},\ldots , x_{k+m+2}, y_{1}, y_{2},\ldots ,y_{k+m+2}\in E$$, we have

\begin{aligned} & \bigl\Vert f(t,x_{1},x_{2},\ldots ,x_{k+m+2}) -f(t,y_{1},y_{2},\ldots ,y_{k+m+2}) \bigr\Vert \\ & \quad \leq \mu (t)\sum_{j=1}^{k+m+2} \Vert x_{j}-y_{j} \Vert . \end{aligned}
(3.1)

Then IVP (1.1) has a unique solution in $$C_{\varPhi }$$.

Proof

Define an operator $$A:C(J,E)\to C(J,E)$$ by

\begin{aligned} (Au) (t)={} & \sum_{j=1}^{n}v_{j}(t-a)^{\alpha -j} \\ & {}+\frac{1}{\varGamma (\alpha )} \int _{a}^{t}(t-s)^{\alpha -1} f\bigl(s,u(s), \bigl(D _{a+}^{\mu _{1}}u\bigr) (s),\ldots , \bigl(D_{a+}^{\mu _{k}}u \bigr) (s), \\ & (T_{0}u) (s), \bigl(T_{1}D_{a+}^{\gamma _{1}}u\bigr) (s),\ldots , \bigl(T_{m}D_{a+} ^{\gamma _{m}}u\bigr) (s) \bigr)\,ds . \end{aligned}
(3.2)

It follows from (3.1) that

\begin{aligned} \begin{aligned}[b] & \bigl\Vert f(t,x_{1},x_{2},\ldots ,x_{k+m+2}) \bigr\Vert \leq f_{0}(t)+\mu (t)\sum _{j=1}^{k+m+2} \Vert x_{j} \Vert , \\ & \quad \forall t\in J, x_{1},x_{2},\ldots ,x_{k+m+2}\in E. \end{aligned} \end{aligned}
(3.3)

For any $$u\in C_{\varPhi }$$, by (3.1)–(3.3) and Lemma 2.4, we get

\begin{aligned} \bigl\Vert (Au) (t) \bigr\Vert \leq{}& \Biggl\Vert \sum _{j=1}^{n}v_{j}(t-a)^{\alpha -j} \Biggr\Vert \\ & {} +\frac{1}{\varGamma (\alpha )} \int _{0}^{t}(t-s)^{\alpha -1} \Biggl[ f_{0}(s) +\mu (s) \Biggl( \bigl\Vert u(s) \bigr\Vert +\sum _{j=1}^{k} \bigl\Vert \bigl(D_{a+}^{ \beta _{j}}u\bigr) (s) \bigr\Vert \\ & {} + \bigl\Vert (T_{0}u) (s) \bigr\Vert +\sum _{j=1}^{m} \bigl\Vert \bigl(T_{j}D_{a+}^{\gamma _{j}}u\bigr) (s) \bigr\Vert \Biggr) \Biggr] \,ds \\ \leq {}& \Biggl\Vert \sum_{j=1}^{n}v_{j}(t-a)^{\alpha -j} \Biggr\Vert +\frac{1}{ \varGamma (\alpha )}\varPhi (t) \\ & {} +(k+m+2)\cdot \frac{1}{\varGamma (\alpha )} 2^{-\frac{1}{q_{0}}}\bigl(N\varGamma (\alpha )\bigr)^{-1} \Vert u \Vert _{\varPhi } \lambda ^{\frac{\alpha ^{2}}{p}}(t) e^{2 \varPhi (t)} \\ = {}&\Biggl\Vert \sum_{j=1}^{n}v_{j}(t-a)^{\alpha -j} \Biggr\Vert +\frac{1}{ \varGamma (\alpha )}\varPhi (t) +2^{-\frac{1}{q_{0}}} \Vert u \Vert _{\varPhi } \lambda ^{\frac{\alpha ^{2}}{p}}(t) e^{2\varPhi (t)},\quad \forall t\in J, \end{aligned}

then $$Au\in C_{\varPhi }$$, so $$A:C_{\varPhi }\to C_{\varPhi }$$.

On the other hand, for any $$u,v\in C_{\varPhi }$$, by (3.1) and Lemma 2.4, we have

\begin{aligned} & \bigl\Vert (Au) (t)-(Av) (t) \bigr\Vert \\ & \quad \leq \int _{0}^{t} \frac{1}{\varGamma (\alpha )} \int _{0}^{t}(t-s)^{ \alpha -1} \Biggl[ \mu (s) \Biggl( \bigl\Vert u(s)-v(s) \bigr\Vert +\sum_{j=1}^{k} \bigl\Vert \bigl(D_{a+} ^{\beta _{j}}(u-v)\bigr) (s) \bigr\Vert \\ & \qquad {} + \bigl\Vert \bigl(T_{0}(u-v)\bigr) (s) \bigr\Vert +\sum_{j=1}^{m} \bigl\Vert \bigl(T_{j}D_{a+}^{\gamma _{j}}(u-v)\bigr) (s) \bigr\Vert \Biggr) \Biggr] \,ds \\ & \quad \leq (k+m+2)\cdot \frac{1}{\varGamma (\alpha )} 2^{-\frac{1}{q _{0}}}\bigl(N\varGamma ( \alpha )\bigr)^{-1} \bigl\Vert (u-v) \bigr\Vert _{\varPhi } \lambda ^{\frac{\alpha ^{2}}{p}}(t) e^{2\varPhi (t)} \\ & \quad =2^{-\frac{1}{q_{0}}} \bigl\Vert (u-v) \bigr\Vert _{\varPhi } \lambda ^{\frac{\alpha ^{2}}{p}}(t) e^{2\varPhi (t)},\quad \forall t\in J, \end{aligned}

then $$\|Au-Av\|_{\varPhi }\leq 2^{-\frac{1}{q_{0}}}\|u-v\|_{\varPhi }$$. Thus the Banach contraction mapping principle implies that A has a unique fixed point in $$C_{\varPhi }$$. This completes the proof. □

Example

Consider the problem

$$\textstyle\begin{cases} (D_{a+}^{\alpha }u)(t) =t^{2}\ln (u^{2}(t)+u(t)+1) +\sin (e^{t}(D_{a+} ^{\beta }u(t))+2t) \\ \hphantom{(D_{a+}^{\alpha }u)(t)=} {}+e^{t^{2}+1} \int _{a}^{t} \frac{(TD_{a+}^{\gamma }u)(s)+s^{3}}{s^{2}+1} \,ds , \quad t\in J, \\ (D_{a+}^{\alpha -i}u)(a+)=u_{i}, \quad i=1,2,\ldots ,n. \end{cases}$$
(4.1)

Let $$E=\mathbb{R}$$, then (4.1) can be considered as an IVP of the form (1.1) in E, where $$n=-[-\alpha ]$$, $$t\in J=[a,+\infty )$$, $$u_{1},u _{2}, \ldots ,u_{n}\in \mathbb{R}$$, $$0<\beta <\alpha$$, $$0<\gamma < \alpha$$, and

$$(Tu) (t)= \int _{a}^{t}k(t,s)u(s)\,ds ,$$

where $$k(t,s)\in C[D,R]$$, $$D=\{(t,s)|a\leq s\leq t<\infty \}$$.

Let

\begin{aligned} f\bigl(t,x_{1}(t),x_{2}(t),x_{3}(t) \bigr) ={}& t^{2}\ln \bigl(x_{1}^{2}(t)+x _{1}(t)+1\bigr) +\sin \bigl(e^{t}x_{2}(t)+2t \bigr) \\ & {} +e^{t^{2}+1} \int _{a}^{t}\frac{x_{3}(s)+s^{3}}{s^{2}+1} \,ds , \end{aligned}

then, for any $$x_{1},x_{2},x_{3}, y_{1},y_{2},y_{3}\in C[0,+\infty )$$, we have

\begin{aligned} \bigl\vert f(t,x_{1},x_{2},x_{3}) -f(t,y_{1},y_{2},y_{3}) \bigr\vert \leq \mu (t)\sum_{j=1} ^{3} \vert x_{j}-y_{j} \vert , \end{aligned}

here $$\mu (t)=2t^{2}+e^{t}+e^{t^{2}+1}(t-a)$$.

Obviously (3.1) holds, all the conditions of Theorem 3.1 are satisfied. Using Theorem 3.1 we can conclude that IVP (4.1) has a unique solution.

Concluding remarks

In this paper, we establish the conditions for the existence of a unique solution for problem (1.1), which is indeed an important and useful contribution to the existing literature on the topic. We emphasize that our method of proof is completely different from the ones used in [12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32].

References

1. 1.

Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

2. 2.

Zaslavsky, G.M.: Hamiltonian Chaos and Fractional Dynamics. Oxford University Press, Oxford (2005)

3. 3.

Magin, R.L.: Fractional Calculus in Bioengineering. Begell House Publisher, Danbury (2006)

4. 4.

Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, vol. 204. Elsevier, Amsterdam (2006)

5. 5.

Sabatier, J., Agrawal, O.P., Machado, J.A.T. (eds.): Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering. Springer, Dordrecht (2007)

6. 6.

Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J.J.: Fractional Calculus Models and Numerical Methods, Series on Complexity, Nonlinearity and Chaos. World Scientific, Boston (2012)

7. 7.

Purohit, S.D., Kalla, S.L.: On fractional partial differential equations related to quantum mechanics. J. Phys. A 44, 1–8 (2011)

8. 8.

Wang, Y., Liu, L., Zhang, X., Wu, Y.: Positive solutions of an abstract fractional semipositone differential system model for bioprocesses of HIV infection. Appl. Math. Comput. 258, 312–324 (2015)

9. 9.

Zhang, X., Liu, L., Wu, Y.: The uniqueness of positive solution for a fractional order model of turbulent flow in a porous medium. Appl. Math. Lett. 37, 26–33 (2014)

10. 10.

Yan, F., Zuo, M., Hao, X.: Positive solution for a fractional singular boundary value problem with p-Laplacian operator. Bound. Value Probl. 2018, 51 (2018)

11. 11.

Zuo, M., Hao, X., Liu, L., Cui, Y.: Existence results for impulsive fractional integro-differential equation of mixed type with constant coefficient and antiperiodic boundary conditions. Bound. Value Probl. 2017, Article ID 161 (2017)

12. 12.

Baleanu, D., Mustafa, O.G.: On the global existence of solutions to a class of fractional differential equations. Comput. Math. Appl. 59, 1835–1841 (2010)

13. 13.

Feng, M., Li, P., Sun, S.: Symmetric positive solutions for fourth-order n-dimensional m-Laplace systems. Bound. Value Probl. 2018, Article ID 63 (2018)

14. 14.

Zhang, X.: Exact interval of parameter and two infinite families of positive solutions for a nth order impulsive singular equation. J. Comput. Appl. Math. 330, 896–908 (2018)

15. 15.

Feng, M., Pang, H.: A class of three-point boundary-value problems for second-order impulsive integro-differential equations in Banach spaces. Nonlinear Anal. 70, 64–82 (2009)

16. 16.

Zhang, P., Hao, X.: Existence and uniqueness of solutions for a class of nonlinear integro-differential equations on unbounded domains in Banach spaces. Adv. Differ. Equ. 2018, Article ID 247 (2018)

17. 17.

Marasi, H., Piri, H., Aydi, H.: Existence and multiplicity of solutions for nonlinear fractional differential equations. J. Nonlinear Sci. Appl. 9, 4639–4646 (2016)

18. 18.

Souahi, A., Guezane-Lakoud, A., Khaldi, R.: On a fractional higher order initial value problem. J. Appl. Math. Comput. 56, 289–300 (2018)

19. 19.

Sik, C.S., Zheng, L.: Existence and uniqueness of global solutions of Caputo-type fractional differential equations. Fract. Calc. Appl. Anal. 19, 765–774 (2016)

20. 20.

Lu, Z., Zhu, Y.: Comparison principles for fractional differential equations with the Caputo derivatives. J. Differ. Equ. 2018, Article ID 237 (2018)

21. 21.

Almeida, R., Malinowska, A.B., Monteiro, M.T.T.: Fractional differential equations with a Caputo derivative with respect to a Kernel function and their applications. Math. Methods Appl. Sci. 41, 336–352 (2018)

22. 22.

Hao, X.: Positive solution for singular fractional differential equations involving derivatives. Adv. Differ. Equ. 2016, Article ID 139 (2016)

23. 23.

Denton, Z., Ramírez, J.D.: Existence of minimal and maximal solutions to RL fractional integro-differential initial value problems. Opusc. Math. 37, 705–724 (2017)

24. 24.

He, J., Zhang, X., Liu, L., Wu, Y., Cui, Y.: Existence and asymptotic analysis of positive solutions for a singular fractional differential equation with nonlocal boundary conditions. Bound. Value Probl. 2018, Article ID 189 (2018)

25. 25.

Wu, J., Zhang, X., Liu, L., Wu, Y., Cui, Y.: The convergence analysis and error estimation for unique solution of a p-Laplacian fractional differential equation with singular decreasing nonlinearity. Bound. Value Probl. 2018, Article ID 82 (2018)

26. 26.

Wu, J., Zhang, X., Liu, L., Wu, Y., Cui, Y.: Convergence analysis of iterative scheme and error estimation of positive solution for a fractional differential equation. Math. Model. Anal. 23, 611–626 (2018)

27. 27.

Zhang, X., Liu, L., Wu, Y., Wiwatanapataphee, B.: Nontrivial solutions for a fractional advection dispersion equation in anomalous diffusion. Appl. Math. Lett. 66, 1–8 (2017)

28. 28.

Zhang, X., Mao, C., Liu, L., Wu, Y.: Exact iterative solution for an abstract fractional dynamic system model for bioprocess. Qual. Theory Dyn. Syst. 16, 205–222 (2017)

29. 29.

Zhang, X., Liu, L., Wu, Y.: Variational structure and multiple solutions for a fractional advection-dispersion equation. Comput. Math. Appl. 68, 1794–1805 (2014)

30. 30.

Ahmad, B., Nieto, J.J.: Existence results for nonlinear boundary value problems of fractional integro differential equations with integral boundary conditions. Bound. Value Probl. 2009, Article ID 708576 (2009)

31. 31.

Li, P., Feng, M.: Denumerably many positive solutions for a n-dimensional higher-order singular fractional differential system. Adv. Differ. Equ. 2018, Article ID 145 (2018)

32. 32.

Feng, M., Zhang, X., Ge, W.: New existence results for higher-order nonlinear fractional differential equation with integral boundary conditions. Bound. Value Probl. 2011, Article ID 720702 (2011)

33. 33.

Zhang, X., Zhong, Q.: Uniqueness of solution for higher-order fractional differential equations with conjugate type integral conditions. Fract. Calc. Appl. Anal. 20, 1471–1484 (2017)

34. 34.

Zhang, X., Zhong, Q.: Triple positive solutions for nonlocal fractional differential equations with singularities both on time and space variables. Appl. Math. Lett. 80, 12–19 (2018)

35. 35.

Zhang, X., Shao, Z., Zhong, Q.: Positive solutions for semipositone $$(k, n-k)$$ conjugate boundary value problems with singularities on space variables. Appl. Math. Lett. 72, 50–57 (2017)

36. 36.

Hao, X., Zhang, L., Liu, L.: Positive solutions of higher order fractional integral boundary value problem with a parameter. Nonlinear Anal., Model. Control 24, 210–223 (2019)

37. 37.

Hao, X., Wang, H.: Positive solutions of semipositone singular fractional differential systems with a parameter and integral boundary conditions. Open Math. 16, 581–596 (2018)

38. 38.

Hao, X., Zhang, L.: Positive solutions of a fractional thermostat model with a parameter. Symmetry 11, Article ID 122 (2019)

39. 39.

Guezane-Lakoud, A., Khaldi, R.: Upper and lower solutions method for higher order fractional initial value problems. J. Dyn. Syst. Geom. Theories 15, 29–35 (2017)

40. 40.

Li, C., Sarwar, S.: Existence and continuation of solutions for Caputo type fractional differential equations. Electron. J. Differ. Equ. 2016, Article ID 207 (2016)

41. 41.

Wang, D., Wang, G.: Integro-differential fractional boundary value problem on an unbounded domain. Adv. Differ. Equ. 2016, Article ID 325 (2016)

42. 42.

Ye, H., Huang, R.: Initial value problem for nonlinear fractional differential equations with sequential fractional derivative. Adv. Differ. Equ. 2015, Article ID 291 (2015)

43. 43.

Benchohra, M., Berhoun, F., N’Guérékata, G.: Bounded solutions for fractional order differential equations on the half-line. Bull. Math. Anal. Appl. 4, 62–71 (2012)

44. 44.

Zhang, L., Ahmad, B., Wang, G., Agarwal, R.P.: Nonlinear fractional integrodifferential equations on unbounded domains in a Banach space. J. Comput. Appl. Math. 249, 51–56 (2013)

45. 45.

Hao, X., Sun, H., Liu, L.: Existence results for fractional integral boundary value problem involving fractional derivatives on an infinite interval. Math. Methods Appl. Sci. 41, 6984–6996 (2018)

46. 46.

Kassim, M.D., Furati, K.M., Tatar, N.E.: Asymptotic behavior of solutions to nonlinear initial-value fractional differential problems. Electron. J. Differ. Equ. 2016, Article ID 291 (2016)

47. 47.

Zhang, L., Ahmad, B., Wang, G.: Monotone iterative method for a class of nonlinear fractional differential equations on unbounded domains in Banach spaces. Filomat 31, 1331–1338 (2017)

48. 48.

Toumi, F., Zine El Abidine, Z.: Existence of multiple positive solutions for nonlinear fractional boundary value problems on the half-line. Mediterr. J. Math. 13, 2353–2364 (2016)

49. 49.

Maagli, H., Dhifli, A.: Positive solutions to a nonlinear fractional Dirichlet problem on the half-line. Electron. J. Differ. Equ. 2014, Article ID 50 (2014)

50. 50.

Hussain Shah, S.A., Rehman, M.: A note on terminal value problems for fractional differential equations on infinite interval. Appl. Math. Lett. 52, 118–125 (2016)

Acknowledgements

This paper was completed during the first author’s visit at the School of Mathematical Sciences, Peking University. We express our sincere gratitude to Professor Baoxiang Wang for valuable suggestions on the paper and the Fund of the Key Laboratory of Mathematics and Applied Mathematics, Peking University.

Not applicable.

Funding

The authors were supported financially by the National Natural Science Foundation of China (11501318, 11871302) and the Natural Science Foundation of Shandong Province of China (ZR2014AM032, ZR2014AM034).

Author information

All authors contributed equally to the writing of this paper. The authors read and approved the final manuscript.

Correspondence to Peiguo Zhang.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Not applicable.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions 