Skip to main content

Theory and Modern Applications

Periodic solutions for quaternion-valued fuzzy cellular neural networks with time-varying delays

Abstract

In this paper, quaternion-valued fuzzy cellular neural networks (QVFCNNs) with time-varying delays are considered. First, we decompose QVFCNNs into their equivalent real-valued systems according to Hamilton’s multiplication rules. Then, we establish the existence and global exponential stability of periodic solutions of QVFCNNs by using the Schauder fixed point theorem and by constructing an appropriate Lyapunov function. Our results are completely new and supplementary to the known results. Finally, we give a numerical example to illustrate the effectiveness of our results.

1 Introduction

Quaternion was invented by the Irish mathematician W. R. Hamilton in 1843 [1]. The skew field of quaternion is denoted by

$$\mathbb{H}:=\{q=q_{0}+iq_{1}+jq_{2}+kq_{3} \}, $$

where \(q_{0}, q_{1}, q_{2}, q_{3}\) are real numbers and the elements \(i, j\), and k obey Hamilton’s multiplication rules:

$$ij=-ji=k,\qquad jk=-kj=i,\qquad ki=-ik=j,\qquad i^{2}=j^{2}=k^{2}=ijk=-1. $$

Quaternion multiplication does not conform to the law of commutation, so the study on quaternion is much more difficult than that on plurality. Fortunately, over the past 20 years, especially in algebra area, quaternion has been a hot topic for the effective applications in the real world. Also, a new class of differential equations, named quaternion differential equations, has been already applied successfully to the fields such as quantum mechanics [2, 3], robotic manipulation [4], fluid mechanics [5], differential geometry [6], communications problems, signal processing [7,8,9], and neural networks [10,11,12,13]. In particular, in recent years, the applications of quaternion-valued neural networks (QVNNs), which are described by quaternion-valued differential equations, have been widely investigated. One practical application by QVNNs is the 3D geometrical affine transformation, especially spatial rotation, which can be represented based on QVNNs efficiently and compactly [14, 15]. Other practical applications of QVNNs are image impression, color night vision [16], etc.

On the one hand, it is well known that neural networks have been extensively studied for their wide application in image processing, pattern recognition, optimization solvers, artificial intelligence, fixed point calculations, and other engineering fields [17,18,19,20]. These applications rely heavily on their dynamics. Many scholars tried to shed some light on the information about the dynamics of QVNNs. For example, authors of [21] studied the global μ-stability criteria for quaternion-valued neural networks with unbounded time-varying delays; from the view of matrix measure, based on Halanay inequality instead of Lyapunov function, authors of [22] derived some sufficient conditions to guarantee the global exponential stability for QVNNs; authors of [23] investigated the periodicity of QVNNs by a continuation theorem of coincidence degree theory; authors of [24] studied the existence of pseudo almost periodic solutions of QVNNs. However, as we all know, up to now, there have been few results about the dynamics of quaternion-valued neural networks.

On the other hand, fuzzy cellular neural networks (FCNNs) proposed by Yang and Yang in 1996 [25] have been successfully applied in many fields such as physics, chemistry, biology, economics, sociology, medicine, meteorology, and so on [26]. In recent years, many researchers have done a lot of research on the solutions of general fuzzy differential equations and the dynamics of FCNNs (see [27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47] and the references therein). As is known, periodic oscillations and almost periodic oscillations are important dynamical behaviors of non-autonomous neural networks. However, as far as we know, no scholars have studied the periodic solutions of quaternion-valued fuzzy cellular neural networks (QVFCNNs).

Considering the discussion above, in this paper, we are committed to studying the following QVFCNN with time-varying delays:

$$\begin{aligned} \dot{x}_{p}(t)={}&{-}a_{p}(t)x_{p}(t)+ \sum_{q=1}^{n}b_{pq}(t)f_{q} \bigl(x_{q}\bigl(t-\tau_{pq}(t)\bigr) \bigr)+ \sum _{q=1}^{n}d_{pq}(t)\mu_{q}(t) \\ &{}+\bigwedge_{q=1}^{n} \alpha_{pq}(t) \int_{t-\eta_{pq}(t)}^{t}g_{q} (s,x )\,ds +\bigvee _{q=1}^{n}\beta_{pq}(t) \int_{t-\xi_{pq}(t)}^{t}g_{q} (s,x )\,ds \\ &{}+\bigwedge_{q=1}^{n}T_{pq}(t) \mu_{q}(t)+ \bigvee_{q=1}^{n}S_{pq}(t) \mu_{q}(t)+I_{p}(t), \end{aligned}$$
(1)

where \(p=1,2,\ldots,n\), n is the number of neurons in layers; \(x_{p}(t)\in\mathbb{H}\) is the state of the pth neuron at time t, and \(\mu_{q}(t)\in\mathbb{H}\) is the deviations of the qth neuron at time t; \(a_{p}(t)>0\) represents the rate at which the pth neuron will reset its potential to the resting state in isolation when it is disconnected from the network and the external inputs at time t, \(\alpha_{pq}(t)\in\mathbb{H}\), \(\beta_{pq}(t)\in\mathbb{H}\), \(T_{pq}(t)\in\mathbb{H}\), and \(S_{pq}(t)\in\mathbb{H}\) are the elements of fuzzy feedback MIN template, fuzzy feedback MAX template, fuzzy feed forward MIN template, and fuzzy feed forward MAX template, respectively; \(b_{pq}(t)\in\mathbb{H}\) and \(d_{pq}(t)\in\mathbb{H}\) are the elements of feedback template and feed forward template, , denote the fuzzy AND and fuzzy OR operations, respectively; \(f_{q}(\cdot)\) and \(g_{q}(\cdot):\mathbb{H}\rightarrow \mathbb{H}\) are the activation functions; \(\tau_{pq}(t)\geq0\), \(\eta _{pq}(t)\geq0\), and \(\xi_{pq}(t)\geq0\) correspond to transmission delays at time t; \(I_{p}(t)\in\mathbb{H}\) denotes the input of the pth neuron at time t.

Our main purpose of this paper is by using the Schauder fixed point theorem and constructing an appropriate Lyapunov function to study the existence, the uniqueness, and the global exponential stability of periodic solutions of (1). Our results are completely new and when (1) degenerates into real-valued system, our results remain new and supplementary to the known results obtained in [23, 32, 45,46,47], and our method used in this paper is different from those used in [23, 32, 45,46,47].

The rest of this paper is organized as follows. In Sect. 2, we introduce some symbols and definitions and present some preliminary results needed later. In Sect. 3, we establish some sufficient conditions for the existence and global exponential stability of periodic solutions of (1). In Sect. 4, an example is given to illustrate the effectiveness of the results.

2 Preliminaries

In this section, we introduce some definitions, notions, lemmas and decompose (1) into an equivalent real-valued system.

Definition 1

Let \(h=h^{R}+ih^{I}+jh^{J}+h^{K}:\mathbb{R}\rightarrow\mathbb{H}\), where \(h^{l}: \mathbb{R}\rightarrow\mathbb{H}\), \(l\in\{R,I,J,K\}:=\varUpsilon\). h is said to be ω-anti-periodic if for every \(l\in\varUpsilon\), \(h^{l}:\mathbb{R}\rightarrow\mathbb{R}\) is ω-anti-periodic on \(\mathbb{R}\).

Lemma 1

([48] Schauder fixed point theorem)

Let E be a normed space, and let C be a convex, bounded, and closed subset of E. If \(T:C\rightarrow C\) is continuous with \(\overline{T(C)}\) compact, then T has at least one fixed point.

Throughout this paper, we assume the following.

\((H_{1})\) :

Let \(x_{p}=x_{p}^{R}+ix_{p}^{I}+jx_{p}^{J}+kx_{p}^{K}, x_{p}^{R},x_{p}^{I},x_{p}^{J},x_{p}^{K}:\mathbb{R}\rightarrow\mathbb{R}\) and assume \(f_{p}(x_{p})\) and \(g_{p}(x_{p})\) can be expressed as

$$\begin{aligned} f_{p}(x_{p})={}&f_{p}^{R} \bigl(x_{p}^{R},x_{p}^{I},x_{p}^{J},x_{p}^{K} \bigr)+if_{p}^{I}\bigl(x_{p}^{R},x_{p}^{I},x_{p}^{J},x_{p}^{K} \bigr) \\ &{}+jf_{p}^{J}\bigl(x_{p}^{R},x_{p}^{I},x_{p}^{J},x_{p}^{K} \bigr)+kf_{p}^{K}\bigl(x_{p}^{R},x_{p}^{I},x_{p}^{J},x_{p}^{K} \bigr), \\ g_{p}(x_{p})={}&g_{p}^{R} \bigl(x_{p}^{R},x_{p}^{I},x_{p}^{J},x_{p}^{K} \bigr)+ig_{p}^{I}\bigl(x_{p}^{R},x_{p}^{I},x_{p}^{J},x_{p}^{K} \bigr) \\ &{}+jg_{p}^{J}\bigl(x_{p}^{R},x_{p}^{I},x_{p}^{J},x_{p}^{K} \bigr)+kg_{p}^{K}\bigl(x_{p}^{R},x_{p}^{I},x_{p}^{J},x_{p}^{K} \bigr), \end{aligned}$$

where \(f_{p}^{l}\), \(g_{p}^{l}:\mathbb{R}^{4}\rightarrow\mathbb{R}, p=1,2,\ldots ,n, l\in\varUpsilon\).

\((H_{2})\) :

Functions \(a_{p}\), \(\tau_{pq}\), \(\eta_{pq}\), \(\xi _{pq}\in C(\mathbb{R},\mathbb{R}^{+})\), \(b_{pq}\), \(d_{pq}\), \(\alpha _{pq}\), \(\beta_{pq}\), \(T_{pq}\), \(S_{pq}, \mu_{q},I_{p}\in C(\mathbb {R},\mathbb{H})\) are ω-periodic functions, where \(x^{l}_{q}\in \mathbb{R}\), \(p,q=1,2,\ldots,n\).

\((H_{3})\) :

Functions \(f^{l}_{q}\), \(g^{l}_{q}\in C(\mathbb {R}^{4},\mathbb{R})\) and there exist positive constants \(L_{f}\), \(L_{g}\) such that, for all \(x_{q}^{l}\), \(y_{q}^{l}\in\mathbb{R}\),

$$\begin{aligned} &\bigl\vert f^{l}_{q}\bigl(x^{R}_{q},x^{I}_{q},x^{J}_{q},x^{K}_{q} \bigr)-f^{l}_{q}\bigl(y^{R}_{q},y^{I}_{q},y^{J}_{q},y^{K}_{q} \bigr) \bigr\vert \\ &\quad\leq L_{f} \bigl( \bigl\vert x^{R}_{q}-y^{R}_{q} \bigr\vert + \bigl\vert x^{I}_{q}-y^{I}_{q} \bigr\vert + \bigl\vert x^{J}_{q}-y^{J}_{q} \bigr\vert + \bigl\vert x^{K}_{q}-y^{K}_{q} \bigr\vert \bigr), \\ &\bigl\vert g^{l}_{h}\bigl(x^{R}_{q},x^{I}_{q},x^{J}_{q},x^{K}_{q} \bigr)-g^{l}_{q}\bigl(y^{R}_{q},y^{I}_{q},y^{J}_{q},y^{K}_{q} \bigr) \bigr\vert \\ &\quad\leq L_{g} \bigl( \bigl\vert x^{R}_{q}-y^{R}_{q} \bigr\vert + \bigl\vert x^{I}_{q}-y^{I}_{q} \bigr\vert + \bigl\vert x^{J}_{q}-y^{J}_{q} \bigr\vert + \bigl\vert x^{K}_{q}-y^{K}_{q} \bigr\vert \bigr) \end{aligned}$$

and \(f_{q}^{l}(0,0,0,0)=0, g_{q}^{l}(0,0,0,0)=0\), \(q=1,2,\ldots,n\), \(l\in\varUpsilon\).

For \(p,q=1,2,\ldots,n\), assume that

$$\begin{aligned} &b_{pq}=b_{pq}^{R}+ib_{pq}^{I}+jb_{pq}^{J}+kb_{pq}^{K},\qquad d_{pq}=d_{pq}^{R}+id_{pq}^{I}+jd_{pq}^{J}+kd_{pq}^{K}, \\ &\alpha_{pq}=\alpha_{pq}^{R}+i\alpha_{pq}^{I}+j \alpha_{pq}^{J}+k\alpha_{pq}^{K},\qquad \beta_{pq}=\beta_{pq}^{R}+i\beta_{pq}^{I}+j \beta_{pq}^{J}+k\beta_{pq}^{K}, \\ & T_{pq}=T_{pq}^{R}+iT_{pq}^{I}+jT_{pq}^{J}+kT_{pq}^{K},\qquad S_{pq}=S_{pq}^{R}+iS_{pq}^{I}+jS_{pq}^{J}+kS_{pq}^{K}, \\ &\mu_{q}=\mu_{q}^{R}+i\mu_{q}^{I}+j \mu_{q}^{J}+k\mu_{q}^{K},\qquad I_{p}=I_{p}^{R}+iI_{p}^{I}+jI_{p}^{J}+kI_{p}^{K}. \end{aligned}$$

We will adopt the following notations:

$$\begin{aligned} &b_{pq}=\sup_{t\in\mathbb{R}}\bigl\{ \bigl\vert b_{pq}^{R}(t) \bigr\vert , \bigl\vert b_{pq}^{I}(t) \bigr\vert , \bigl\vert b_{pq}^{J}(t) \bigr\vert , \bigl\vert b_{pq}^{K}(t) \bigr\vert \bigr\} , \\ &d_{pq}=\sup_{t\in\mathbb{R}}\bigl\{ \bigl\vert d_{pq}^{R}(t) \bigr\vert , \bigl\vert d_{pq}^{I}(t) \bigr\vert , \bigl\vert d_{pq}^{J}(t) \bigr\vert , \bigl\vert d_{pq}^{K}(t) \bigr\vert \bigr\} , \\ &\alpha_{pq}=\sup_{t\in\mathbb{R}}\bigl\{ \bigl\vert \alpha_{pq}^{R}(t) \bigr\vert , \bigl\vert \alpha _{pq}^{I}(t) \bigr\vert , \bigl\vert \alpha_{pq}^{J}(t) \bigr\vert , \bigl\vert \alpha_{pq}^{K}(t) \bigr\vert \bigr\} , \\ &\beta_{pq}=\sup_{t\in\mathbb{R}}\bigl\{ \bigl\vert \beta_{pq}^{R}(t) \bigr\vert , \bigl\vert \beta _{pq}^{I}(t) \bigr\vert , \bigl\vert \beta_{pq}^{J}(t) \bigr\vert , \bigl\vert \beta_{pq}^{K}(t) \bigr\vert \bigr\} , \\ &T_{pq}=\sup_{t\in\mathbb{R}}\bigl\{ \bigl\vert T_{pq}^{R}(t) \bigr\vert , \bigl\vert T_{pq}^{I}(t) \bigr\vert , \bigl\vert T_{pq}^{J}(t) \bigr\vert , \bigl\vert T_{pq}^{K}(t) \bigr\vert \bigr\} , \\ &S_{pq}=\sup_{t\in\mathbb{R}}\bigl\{ \bigl\vert S_{pq}^{R}(t) \bigr\vert , \bigl\vert S_{pq}^{I}(t) \bigr\vert , \bigl\vert S_{pq}^{J}(t) \bigr\vert , \bigl\vert S_{pq}^{K}(t) \bigr\vert \bigr\} , \\ &\mu_{q}=\sup_{t\in\mathbb{R}}\bigl\{ \bigl\vert \mu_{q}^{R}(t) \bigr\vert , \bigl\vert \mu_{q}^{I}(t) \bigr\vert , \bigl\vert \mu _{q}^{J}(t) \bigr\vert , \bigl\vert \mu_{q}^{K}(t) \bigr\vert \bigr\} , \\ &I_{p}=\sup_{t\in\mathbb{R}}\bigl\{ \bigl\vert I_{p}^{R}(t) \bigr\vert , \bigl\vert I_{p}^{I}(t) \bigr\vert , \bigl\vert I_{p}^{J}(t) \bigr\vert , \bigl\vert I_{p}^{K}(t) \bigr\vert \bigr\} , \\ &\bar{a}_{p}=\frac{1}{\omega} \int_{0}^{\omega}a_{p}(t)\,dt,\qquad a_{p}^{-}= \min_{t\in \mathbb{R}}\bigl\{ a_{p}(t)\bigr\} ,\\ & \tau_{pq}=\sup_{t\in\mathbb{R}}\bigl\{ \tau_{pq}(t)\bigr\} ,\qquad\eta_{pq}=\sup_{t\in \mathbb{R}}\bigl\{ \eta_{pq}(t) \bigr\} , \\ &\xi_{pq}=\sup_{t\in\mathbb{R}}\bigl\{ \xi_{pq}(t)\bigr\} ,\qquad \dot{\tau}_{pq}=\sup_{t\in\mathbb{R}}\bigl\{ \dot{ \tau}_{pq}(t)\bigr\} ,\\ & \rho^{+}=\mathop{\max_{ {1\leq q\leq n}}}_{l\in\varUpsilon}\{ \rho_{p_{l}}\},\qquad\rho ^{-}=\mathop{\min_{1\leq q\leq n}}_{l\in\varUpsilon}\{\rho_{p_{l}}\}. \end{aligned}$$

The initial value of system (1) is given by

$$\begin{aligned} &x_{p}(t)=\varphi_{p}(t)\in\mathbb{H},\quad t \in[t_{0}-\theta, t_{0}],\qquad \theta=\max_{1\leq p,q\leq n} \{\tau_{pq},\eta_{pq},\xi_{pq}\}, \\ &\varphi_{p}(t)=\varphi_{p}^{R}(t)+i \varphi_{p}^{I}(t)+j\varphi_{p}^{J}(t)+k \varphi_{p}^{K}(t), \end{aligned}$$

where \(\varphi_{p}^{l}\in C([t_{0}-\theta,t_{0}],\mathbb{R}),l\in\varUpsilon\).

Based on \((H_{1})\) and Hamilton’s rules, one can obtain from (1) that

$$\begin{aligned} \dot{x}_{p}^{R}(t)={}&{-}a_{p}(t)x_{p}^{R}(t)+ \sum_{q=1}^{n} \bigl(b_{pq}^{R}(t) \tilde {f}_{q}^{R} [t,x,\tau ]-b_{pq}^{I}(t) \tilde{f}_{q}^{I} [t,x,\tau ] \\ &{}-b_{pq}^{J}(t)\tilde{f}_{q}^{J} [t,x, \tau ]-b_{pq}^{K}(t)\tilde {f}_{q}^{K} [t,x,\tau ] \bigr)+\sum_{q=1}^{n} \bigl(d_{pq}^{R}(t)\mu _{q}^{R}(t) \\ &{}-d_{pq}^{I}(t)\mu_{q}^{I}(t)-d_{pq}^{J}(t) \mu_{q}^{J}(t)-d_{pq}^{K}(t) \mu_{q}^{K}(t) \bigr) \\ &{} +\bigwedge_{q=1}^{n} \biggl( \alpha_{pq}^{R}(t) \int_{t-\eta _{pq}(t)}^{t}\tilde{g}_{q}^{R} [s,x ]\,ds \\ &{}-\alpha_{pq}^{I}(t) \int_{t-\eta_{pq}(t)}^{t}\tilde{g}_{q}^{I} [s,x ]\,ds-\alpha_{pq}^{J}(t) \int_{t-\eta_{pq}(t)}^{t}\tilde{g}_{q}^{J} [s,x ]\,ds \\ &{}-\alpha_{pq}^{K}(t) \int_{t-\eta_{pq}(t)}^{t}\tilde{g}_{q}^{K} [s,x ]\,ds \biggr) +\bigvee_{q=1}^{n} \biggl( \beta_{pq}^{R}(t) \int_{t-\xi_{pq}(t)}^{t}\tilde {g}_{q}^{R} [s,x ]\,ds \\ &{}-\beta_{pq}^{I}(t) \int_{t-\xi_{pq}(t)}^{t}\tilde{g}_{q}^{I} [s,x ]\,ds-\beta_{pq}^{J}(t) \int_{t-\xi_{pq}(t)}^{t}\tilde{g}_{q}^{J} [s,x ]\,ds \\ &{}-\beta_{pq}^{K}(t) \int_{t-\xi_{pq}(t)}^{t}\tilde{g}_{q}^{K} [s,x ]\,ds \biggr) +\bigwedge_{q=1}^{n} \bigl(T_{pq}^{R}(t)\mu_{q}^{R}(t)-T_{pq}^{I}(t) \mu_{q}^{I}(t) \\ &{}-T_{pq}^{J}(t)\mu_{q}^{J}(t)-T_{pq}^{K}(t) \mu_{q}^{K}(t) \bigr)+\bigvee_{q=1}^{n} \bigl(S_{pq}^{R}(t)\mu_{q}^{R}(t)-S_{pq}^{I}(t) \mu_{q}^{I}(t) \\ &{}-S_{pq}^{J}(t)\mu_{q}^{J}(t)-S_{pq}^{K}(t) \mu_{q}^{K}(t) \bigr)+I_{p}^{R}(t) \triangleq F_{pR} \bigl(t,x(t) \bigr),\quad p=1,2,\ldots,n, \\ \dot{x}_{p}^{I}(t)={}&{-}a_{p}(t)x_{p}^{I}(t)+ \sum_{q=1}^{n} \bigl(b_{pq}^{I}(t) \tilde {f}_{q}^{R} [t,x,\tau ]+b_{pq}^{R}(t) \tilde{f}_{q}^{I} [t,x,\tau ] \\ &{}-b_{pq}^{K}(t)\tilde{f}_{q}^{J} [t,x, \tau ]+b_{pq}^{J}(t)\tilde {f}_{q}^{K} [t,x,\tau ] \bigr)+\sum_{q=1}^{n} \bigl(d_{pq}^{I}(t)\mu _{q}^{R}(t) \\ &{}+d_{pq}^{R}(t)\mu_{q}^{I}(t)-d_{pq}^{K}(t) \mu_{q}^{J}(t)+d_{pq}^{J}(t) \mu_{q}^{K}(t) \bigr) \\ &{} +\bigwedge_{q=1}^{n} \biggl( \alpha_{pq}^{I}(t) \int_{t-\eta _{pq}(t)}^{t}\tilde{g}_{q}^{R} [s,x ]\,ds \\ &{}+\alpha_{pq}^{R}(t) \int_{t-\eta_{pq}(t)}^{t}\tilde{g}_{q}^{I} [s,x ]\,ds-\alpha_{pq}^{K}(t) \int_{t-\eta_{pq}(t)}^{t}\tilde{g}_{q}^{J} [s,x ]\,ds \\ &{}+\alpha_{pq}^{J}(t) \int_{t-\eta_{pq}(t)}^{t}\tilde{g}_{q}^{K} [s,x ]\,ds \biggr) +\bigvee_{q=1}^{n} \biggl( \beta_{pq}^{I}(t) \int_{t-\xi_{pq}(t)}^{t}\tilde {g}_{q}^{R} [s,x ]\,ds \\ &{}+\beta_{pq}^{R}(t) \int_{t-\xi_{pq}(t)}^{t}\tilde{g}_{q}^{I} [s,x ]\,ds-\beta_{pq}^{K}(t) \int_{t-\xi_{pq}(t)}^{t}\tilde{g}_{q}^{J} [s,x ]\,ds \\ &{}+\beta_{pq}^{J}(t) \int_{t-\xi_{pq}(t)}^{t}\tilde{g}_{q}^{K} [s,x ]\,ds \biggr) +\bigwedge_{q=1}^{n} \bigl(T_{pq}^{I}(t)\mu_{q}^{R}(t)+T_{pq}^{R}(t) \mu_{q}^{I}(t) \\ &{}-T_{pq}^{K}(t)\mu_{q}^{J}(t)+T_{pq}^{J}(t) \mu_{q}^{K}(t) \bigr)+\bigvee_{q=1}^{n} \bigl(S_{pq}^{I}(t)\mu_{q}^{R}(t)+S_{pq}^{R}(t) \mu_{q}^{I}(t) \\ &{}-S_{pq}^{K}(t)\mu_{q}^{J}(t)+S_{pq}^{J}(t) \mu_{q}^{K}(t) \bigr)+I_{p}^{I}(t) \triangleq F_{pI} \bigl(t,x(t) \bigr),\quad p=1,2,\ldots,n, \\ \dot{x}_{p}^{J}(t)={}&{-}a_{p}(t)x_{p}^{J}(t)+ \sum_{q=1}^{n} \bigl(b_{pq}^{J}(t) \tilde {f}_{q}^{R} [t,x,\tau ]+b_{pq}^{K}(t) \tilde{f}_{q}^{I} [t,x,\tau ] \\ &{}+b_{pq}^{R}(t)\tilde{f}_{q}^{J} [t,x, \tau ]-b_{pq}^{I}(t)\tilde {f}_{q}^{K} [t,x,\tau ] \bigr)+\sum_{q=1}^{n} \bigl(d_{pq}^{J}(t)\mu _{q}^{R}(t) \\ &{}+d_{pq}^{K}(t)\mu_{q}^{I}(t)+d_{pq}^{R}(t) \mu_{q}^{J}(t)-d_{pq}^{I}(t) \mu_{q}^{K}(t) \bigr) \\ &{}+\bigwedge_{q=1}^{n} \biggl( \alpha_{pq}^{J}(t) \int_{t-\eta _{pq}(t)}^{t}\tilde{g}_{q}^{R} [s,x ]\,ds \\ &{}+\alpha_{pq}^{K}(t) \int_{t-\eta_{pq}(t)}^{t}\tilde{g}_{q}^{I} [s,x ]\,ds+\alpha_{pq}^{R}(t) \int_{t-\eta_{pq}(t)}^{t}\tilde{g}_{q}^{J} [s,x ]\,ds \\ &{}-\alpha_{pq}^{I}(t) \int_{t-\eta_{pq}(t)}^{t}\tilde{g}_{q}^{K} [s,x ]\,ds \biggr) +\bigvee_{q=1}^{n} \biggl( \beta_{pq}^{J}(t) \int_{t-\xi_{pq}(t)}^{t}\tilde {g}_{q}^{R} [s,x ]\,ds \\ &{}+\beta_{pq}^{K}(t) \int_{t-\xi_{pq}(t)}^{t}\tilde{g}_{q}^{I} [s,x ]\,ds+\beta_{pq}^{R}(t) \int_{t-\xi_{pq}(t)}^{t}\tilde{g}_{q}^{J} [s,x ]\,ds \\ &{}-\beta_{pq}^{I}(t) \int_{t-\xi_{pq}(t)}^{t}\tilde{g}_{q}^{K} [s,x ]\,ds \biggr) +\bigwedge_{q=1}^{n} \bigl(T_{pq}^{J}(t)\mu_{q}^{R}(t)+T_{pq}^{K}(t) \mu_{q}^{I}(t) \\ &{}+T_{pq}^{R}(t)\mu_{q}^{J}(t)-T_{pq}^{I}(t) \mu_{q}^{K}(t) \bigr)+\bigvee_{q=1}^{n} \bigl(S_{pq}^{J}(t)\mu_{q}^{R}(t)+S_{pq}^{K}(t) \mu_{q}^{I}(t) \\ &{}+S_{pq}^{R}(t)\mu_{q}^{J}(t)-S_{pq}^{I}(t) \mu_{q}^{K}(t) \bigr)+I_{p}^{J}(t) \triangleq F_{pJ} \bigl(t,x(t) \bigr),\quad p=1,2,\ldots,n, \\ \dot{x}_{p}^{K}(t)={}&{-}a_{p}(t)x_{p}^{K}(t)+ \sum_{q=1}^{n} \bigl(b_{pq}^{K}(t) \tilde {f}_{q}^{R} [t,x,\tau ]-b_{pq}^{J}(t) \tilde{f}_{q}^{I} [t,x,\tau ] \\ &{}+b_{pq}^{I}(t)\tilde{f}_{q}^{J} [t,x, \tau ]+b_{pq}^{R}(t)\tilde {f}_{q}^{K} [t,x,\tau ] \bigr)+\sum_{q=1}^{n} \bigl(d_{pq}^{K}(t)\mu _{q}^{R}(t) \\ &{}-d_{pq}^{J}(t)\mu_{q}^{I}(t)+d_{pq}^{I}(t) \mu_{q}^{J}(t)+d_{pq}^{R}(t) \mu_{q}^{K}(t) \bigr) \\ &{} +\bigwedge_{q=1}^{n} \biggl( \alpha_{pq}^{K}(t) \int_{t-\eta _{pq}(t)}^{t}\tilde{g}_{q}^{R} [s,x ]\,ds \\ &{}-\alpha_{pq}^{J}(t) \int_{t-\eta_{pq}(t)}^{t}\tilde{g}_{q}^{I} [s,x ]\,ds+\alpha_{pq}^{I}(t) \int_{t-\eta_{pq}(t)}^{t}\tilde{g}_{q}^{J} [s,x ]\,ds \\ &{}+\alpha_{pq}^{R}(t) \int_{t-\eta_{pq}(t)}^{t}\tilde{g}_{q}^{K} [s,x ]\,ds \biggr) +\bigvee_{q=1}^{n} \biggl( \beta_{pq}^{K}(t) \int_{t-\xi_{pq}(t)}^{t}\tilde {g}_{q}^{R} [s,x ]\,ds \\ &{}-\beta_{pq}^{J}(t) \int_{t-\xi_{pq}(t)}^{t}\tilde{g}_{q}^{I} [s,x ]\,ds+\beta_{pq}^{I}(t) \int_{t-\xi_{pq}(t)}^{t}\tilde{g}_{q}^{J} [s,x ]\,ds \\ &{}+\beta_{pq}^{R}(t) \int_{t-\xi_{pq}(t)}^{t}\tilde{g}_{q}^{K} [s,x ]\,ds \biggr) +\bigwedge_{q=1}^{n} \bigl(T_{pq}^{K}(t)\mu_{q}^{R}(t)-T_{pq}^{J}(t) \mu_{q}^{I}(t) \\ &{}+T_{pq}^{I}(t)\mu_{q}^{J}(t)+T_{pq}^{R}(t) \mu_{q}^{K}(t) \bigr)+\bigvee_{q=1}^{n} \bigl(S_{pq}^{K}(t)\mu_{q}^{R}(t)-S_{pq}^{J}(t) \mu_{q}^{I}(t) \\ &{}+S_{pq}^{I}(t)\mu_{q}^{J}(t)+S_{pq}^{R}(t) \mu_{q}^{K}(t) \bigr)+I_{p}^{K}(t) \triangleq F_{pK} \bigl(t,x(t) \bigr),\quad p=1,2,\ldots,n, \end{aligned}$$

where \(x_{p}^{R}(t)+ix_{p}^{I}(t)+jx_{p}^{J}(t)+kx_{p}^{K}(t)= x_{p}(t)\), \(\tilde {f}_{q}^{l} [t,x,\tau ]\) and \(\tilde{g}_{q}^{l} [s,x ]\) denote \(f_{q}^{l}(x_{q}^{R}(t-\tau_{pq}(t)), x_{q}^{I}(t-\tau_{pq}(t)),x_{q}^{J}(t-\tau _{pq}(t)),x_{q}^{K}(t-\tau_{pq}(t)))\), and \(g_{q}^{l}(x_{q}^{R}(s),x_{q}^{I}(s), x_{q}^{J}(s),x_{q}^{K}(s))\), respectively, \(p,q=1,2,\dots,n,l\in\varUpsilon\). That is, (1) can be expressed in the following form:

$$\begin{aligned} \dot{x}_{p}^{l}(t)=F_{p_{l}} \bigl(t,x(t) \bigr),\quad p=1,2,\ldots,n, l\in\varUpsilon, \end{aligned}$$
(2)

with the initial value

$$x_{p}^{l}(s)=\varphi_{p}^{l}(s),\quad s \in[t_{0}-\theta,t_{0}], p=1,2,\ldots,n. $$

Remark 1

If \(x=(x_{1}^{R},\ldots,x_{n}^{R},x_{1}^{I},\ldots,x_{n}^{I},x_{1}^{J},\ldots ,x_{n}^{J},x_{1}^{K},\ldots,x_{n}^{K})^{T}\) is a solution to system (2), then \(u=(x_{1},x_{2},\ldots,x_{n})^{T}\), where \(x_{p}=x_{p}^{R}+ix_{p}^{I}+jx_{p}^{J}+kx_{p}^{K}, p=1,2,\ldots,n\), is a solution to (1). Thus, to study the existence and stability of solutions of (1), we just need to study the existence and stability of solutions of system (2).

Definition 2

Let \(x=(x_{1}^{R},\ldots,x_{n}^{R},x_{1}^{I},\ldots,x_{n}^{I},x_{1}^{J},\ldots ,x_{n}^{J},x_{1}^{K},\ldots,x_{n}^{K})^{T}\) be a solution of (2) with the initial value \(\varphi=(\varphi_{1}^{R},\ldots,\varphi_{n}^{R},\varphi _{1}^{I},\ldots,\varphi_{n}^{I},\varphi_{1}^{J},\ldots,\varphi_{n}^{J}, \varphi_{1}^{K},\ldots,\varphi_{n}^{K})^{T}\) and \(y=(y_{1}^{R},\ldots,y_{n}^{R},y_{1}^{I},\ldots, y_{n}^{I},y_{1}^{J},\ldots ,y_{n}^{J},y_{1}^{K},\ldots,y_{n}^{K})^{T}\) be an arbitrary solution of system (2) with the initial value \(\varphi=(\varphi_{1}^{R},\ldots,\varphi_{n}^{R},\varphi_{1}^{I}, \ldots,\varphi_{n}^{I},\varphi_{1}^{J},\ldots,\varphi_{n}^{J},\varphi_{1}^{K},\ldots ,\varphi_{n}^{K})^{T}\), respectively, where \(\varphi,\psi\in C([t_{0}-\theta,t_{0}],\mathbb{R}^{4n})\). If there exist constants \(\lambda>0\) and \(M>0\) such that

$$\bigl\Vert x(t)-y(t) \bigr\Vert \leq M \Vert \varphi-\psi \Vert e^{-\lambda(t-t_{0})},\quad t\geq t_{0}, $$

where

$$\Vert \varphi-\psi \Vert =\mathop{\max_{1\leq q\leq n}}_{l\in \varUpsilon} \Bigl\{ \sup _{s\in[t_{0}-\theta,t_{0}]}\rho_{p_{l}}^{-1} \bigl\vert \varphi _{p}^{l}(s)-\psi_{p}^{l}(s) \bigr\vert \Bigr\} . $$

Then the solution x of system (2) is said to be globally exponentially stable.

Lemma 2

([25])

Let \(\alpha_{pq}^{l},\beta _{pq}^{l},x_{q}^{R},x_{q}^{I},x_{q}^{J},x_{q}^{K},y_{q}^{R},y_{q}^{I},y_{q}^{J},y_{q}^{K}:\mathbb {R}\rightarrow\mathbb{R}\) and \(g_{q}^{r}:\mathbb{R}^{4}\rightarrow\mathbb {R}\) be continuous functions for \(p,q=1,2,\ldots,n\), \(l,r\in\varUpsilon\), then we have

$$\begin{aligned} &\Biggl\vert \bigwedge_{q=1}^{n} \alpha_{pq}^{l}g_{q}^{r} \bigl(x_{q}^{R},x_{q}^{I},x_{q}^{J},x_{q}^{K} \bigr) -\bigwedge_{q=1}^{n} \alpha_{pq}^{l}g_{q}^{r} \bigl(y_{q}^{R},y_{q}^{I},y_{q}^{J},y_{q}^{K} \bigr) \Biggr\vert \\ &\quad \leq\sum_{q=1}^{n} \bigl\vert \alpha_{pq}^{l}\Vert g_{q}^{r} \bigl(x_{q}^{R},x_{q}^{I},x_{q}^{J},x_{q}^{K} \bigr) -g_{q}^{r}\bigl(y_{q}^{R},y_{q}^{I},y_{q}^{J},y_{q}^{K} \bigr) \bigr\vert ,\\ &\qquad \Biggl\vert \bigvee_{q=1}^{n} \beta_{pq}^{l}g_{q}^{r} \bigl(x_{q}^{R},x_{q}^{I},x_{q}^{J},x_{q}^{K} \bigr) -\bigvee_{q=1}^{n} \beta_{pq}^{l}g_{q}^{r} \bigl(y_{q}^{R},y_{q}^{I},y_{q}^{J},y_{q}^{K} \bigr) \Biggr\vert \\ &\quad \leq\sum_{q=1}^{n} \bigl\vert \beta_{pq}^{l}\Vert g_{q}^{r} \bigl(x_{q}^{R},x_{q}^{I},x_{q}^{J},x_{q}^{K} \bigr) -g_{q}^{r}\bigl(y_{q}^{R},y_{q}^{I},y_{q}^{J},y_{q}^{K} \bigr) \bigr\vert . \end{aligned}$$

3 Main results

In this section, we establish some sufficient conditions for the existence and exponential stability of periodic solutions of (1).

Set

$$\begin{aligned} \mathbb{X}={}& \bigl\{ x=\bigl(x_{1}^{R},x_{1}^{I},x_{1}^{J},x_{1}^{K}, \ldots,x_{n}^{R},x_{n}^{I},x_{n}^{J},x_{n}^{K} \bigr)^{T} \in C\bigl(\mathbb{R},\mathbb{R}^{4n}\bigr), \\ & x(t+\omega)=x(t), t\in\mathbb{R} \bigr\} . \end{aligned}$$

For constant vector \(\rho=(\rho_{1_{R}},\rho_{1_{I}},\rho_{1_{J}},\rho _{1_{K}},\ldots,\rho_{n_{R}},\rho_{n_{I}},\rho_{n_{J}},\rho_{n_{K}})^{T}\in\mathbb {R}^{4n}\) with \(\rho_{p_{l}}>0\) for \(p=1,2,\ldots,n,l\in\varUpsilon\), we define the following norm:

$$\Vert x \Vert _{\mathbb{X}}=\mathop{\max_{1\leq p\leq n}}_{l\in \varUpsilon} \Bigl\{ \sup _{t\in[0,\omega]}\rho_{p_{l}}^{-1} \bigl\vert x_{p}^{l}(t) \bigr\vert \Bigr\} . $$

Then \(\mathbb{X}\) is a Banach space when it is endowed with the norm \(\Vert \cdot \Vert _{\mathbb{X}}\).

Obviously, if \(x= (x_{1}^{R},x_{1}^{I},x_{1}^{J},x_{1}^{K},\ldots ,x_{n}^{R},x_{n}^{I},x_{n}^{J},x_{n}^{K} )^{T}\in\mathbb{X}\) is a solution of system (2), then

$$\begin{aligned} \bigl(x_{p}^{l}(t)e^{\int_{t_{0}}^{t}a_{p}(s)\,ds} \bigr)'={}& \dot{x}_{p}^{l}(t)e^{\int _{t_{0}}^{t}a_{p}(s)\,ds}+a_{p}(t)x_{p}^{l}(t)e^{\int_{t_{0}}^{t}a_{p}(s)\,ds} \\ ={}&e^{\int_{t_{0}}^{t}a_{p}(s)\,ds} \bigl[F_{p_{l}}\bigl(t,x(t)\bigr)+a_{p}(t)x_{p}^{l}(t) \bigr] \end{aligned}$$
(3)

for \(p=1,2,\ldots,n, l\in\varUpsilon\). Integrating both sides of (3) over \([t,t+\omega]\), we can get

$$\begin{aligned} x_{p}^{l}(t)&= \int_{t}^{t+\omega}\frac{e^{\int_{t_{0}}^{s}a_{p}(u)\,du}}{e^{\int _{t_{0}}^{t+\omega}a_{p}(u)\,du}-e^{\int_{t_{0}}^{t}a_{p}(u)\,du}} \bigl[F_{p_{l}} \bigl(s,x(s) \bigr)+a_{p}(s)x_{p}^{l}(s) \bigr]\,ds \\ &= \int_{t}^{t+\omega}\frac{e^{-{\int_{s}^{t+\omega}a_{p}(u)\,du}}}{1-e^{-\omega \bar{a}_{p}}} \bigl[F_{p_{l}} \bigl(s,x(s) \bigr)+a_{p}(s)x_{p}^{l}(s) \bigr]\,ds \\ &= \int_{t}^{t+\omega}G_{p}(t,s) \bigl[F_{p_{l}} \bigl(s,x(s) \bigr)+a_{p}(s)x_{p}^{l}(s) \bigr]\,ds, \end{aligned}$$
(4)

where \(G_{p}(t,s)=\frac{e^{-{\int_{s}^{t+\omega}a_{p}(u)\,du}}}{1-e^{-\omega\bar {a}_{p}}}\), \(t\leq s\leq t+\omega\), \(p=1,2,\ldots,n, l\in\varUpsilon\).

Define an operator \(\varPhi:\mathbb{X}\rightarrow\mathbb{X}\) by

$$ \varPhi x= \bigl(\varPhi x_{1}^{R},\varPhi x_{1}^{I},\varPhi x_{1}^{J},\varPhi x_{1}^{K},\ldots,\varPhi _{n}^{R},\varPhi x_{n}^{I},\varPhi x_{n}^{J},\varPhi x_{n}^{K} \bigr)^{T}, $$
(5)

where for \(p=1,2,\ldots,n, l\in\varUpsilon\),

$$\begin{aligned} (\varPhi x)_{p}^{l}(t)= \int_{t}^{t+\omega}G_{p}(t,s) \bigl[F_{p_{l}} \bigl(s,x(s) \bigr)+a_{p}(s)x_{p}^{l}(s) \bigr]\,ds, \quad t\in\mathbb{R}. \end{aligned}$$
(6)

From (4), it is easy to verify that \(x\in\mathbb{X}\) is an ω-periodic solution of system (2) provided x is a fixed point of Φ in \(\mathbb{X}\).

It is easy to see that if there exist positive numbers \(\rho_{1_{R}},\rho _{1_{I}},\rho_{1_{J}},\rho_{1_{K}},\ldots, \rho_{n_{R}},\rho_{n_{I}},\rho_{n_{J}},\rho_{n_{K}}\) such that

$$\begin{aligned} \gamma={}&\mathop{\max_{1\leq p\leq n}}_{l,r\in\varUpsilon}\sup_{t\in \mathbb{R}} \Biggl\{ \rho_{p_{l}}^{-1} \int_{t}^{t+\omega}G_{p}(t,s) \Biggl(\sum _{q=1}^{n}\bigl( \bigl\vert b_{pq}^{R}(s) \bigr\vert + \bigl\vert b_{pq}^{I}(s) \bigr\vert + \bigl\vert b_{pq}^{J}(s) \bigr\vert \\ &{}+ \bigl\vert b_{pq}^{K}(s) \bigr\vert \bigr) \rho_{q_{r}}L_{f}+\sum_{q=1}^{n} \bigl( \bigl\vert \alpha_{pq}^{R}(s) \bigr\vert + \bigl\vert \alpha _{pq}^{I}(s) \bigr\vert + \bigl\vert \alpha_{pq}^{J}(s) \bigr\vert + \bigl\vert \alpha_{pq}^{K}(s) \bigr\vert \bigr)\rho_{q_{r}}L_{g} \theta \\ &{}+\sum_{q=1}^{n}\bigl( \bigl\vert \beta_{pq}^{R}(s) \bigr\vert + \bigl\vert \beta_{pq}^{I}(s) \bigr\vert + \bigl\vert \beta _{pq}^{J}(s) \bigr\vert + \bigl\vert \beta_{pq}^{K}(s) \bigr\vert \bigr)\rho_{q_{r}}L_{g} \theta \Biggr)\,ds \Biggr\} < \frac {1}{4}, \end{aligned}$$
(7)

then there exists a sufficiently large \(\kappa\geq1\) such that \(\gamma \leq\frac{1}{4}(1-\iota\kappa^{-1})\), where

$$\iota=\mathop{\max_{1\leq p\leq n}}_{l\in\varUpsilon} \biggl\{ \frac{\omega (\sum_{q=1}^{n} 4(d_{pq}\mu_{q}+T_{pq}\mu_{q}+S_{pq}\mu_{q})+I_{p} )}{\rho_{p_{l}}(1-e^{-\omega\bar{a}_{p}})} \biggr\} . $$

Lemma 3

Under hypotheses \((H_{1})\)\((H_{3})\), suppose that there exist positive numbers \(\rho_{1_{R}},\rho_{1_{I}}, \rho_{1_{J}}, \rho_{1_{K}},\ldots,\rho_{n_{R}},\rho_{n_{I}},\rho_{n_{J}},\rho_{n_{K}}\) such that inequality (7) holds, then the mapping Φ is a self-mapping in the region \(\mathbb{B}=\{ x=(x_{1}^{R},x_{1}^{I},x_{1}^{J},x_{1}^{K},\ldots,x_{n}^{R},x_{n}^{I},x_{n}^{J},x_{n}^{K})^{T}\in\mathbb {X}: \Vert x \Vert \leq\kappa\}\).

Proof

For \(x\in\mathbb{B}\), from (6), we have

$$\begin{aligned} & \bigl\vert \rho_{p_{R}}^{-1}(\varPhi x)_{p}^{R}(t) \bigr\vert \\ &\quad= \biggl\vert \rho_{p_{R}}^{-1} \int_{t}^{t+\omega}G_{p}(t,s) \bigl[F_{pR} \bigl(s,x(s) \bigr)+a_{p}(s)x_{p}^{R}(s) \bigr]\,ds \biggr\vert \\ &\quad= \Biggl\vert \rho_{p_{R}}^{-1} \int_{t}^{t+\omega}G_{p}(t,s) \Biggl\{ \sum _{q=1}^{n} \bigl(b_{pq}^{R}(s) \tilde{f}_{q}^{R} [s,x,\tau ]-b_{pq}^{I}(s) \tilde{f}_{q}^{I} [s,x,\tau ] \\ &\qquad{}-b_{pq}^{J}(s)\tilde{f}_{q}^{J} [s,x, \tau ]-b_{pq}^{K}(s)\tilde {f}_{q}^{K} [s,x,\tau ] \bigr)+\sum_{q=1}^{n} \bigl(d_{pq}^{R}(s)\mu _{q}^{R}(s) \\ &\qquad{}-d_{pq}^{I}(s)\mu_{q}^{I}(s)-d_{pq}^{J}(s) \mu_{q}^{J}(s)-d_{pq}^{K}(s) \mu_{q}^{K}(s) \bigr) \\ &\qquad{}+\bigwedge_{q=1}^{n} \biggl( \alpha_{pq}^{R}(s) \int_{s-\eta _{pq}(s)}^{s}\tilde{g}_{q}^{R} [u,x ]\,du -\alpha_{pq}^{I}(s) \int_{s-\eta_{pq}(s)}^{s}\tilde{g}_{q}^{I} [u,x ]\,du \\ &\qquad{}-\alpha_{pq}^{J}(s) \int_{s-\eta_{pq}(s)}^{s}\tilde{g}_{q}^{J} [u,x ]\,du-\alpha_{pq}^{K}(s) \int_{s-\eta_{pq}(s)}^{s}\tilde{g}_{q}^{K} [u,x ]\,du \biggr) \\ &\qquad{}+\bigvee_{q=1}^{n} \biggl( \beta_{pq}^{R}(s) \int_{s-\xi_{pq}(s)}^{s}\tilde {g}_{q}^{R} [u,x ]\,du -\beta_{pq}^{I}(s) \int_{s-\xi_{pq}(s)}^{s}\tilde{g}_{q}^{I} [u,x ]\,du \\ &\qquad{}-\beta_{pq}^{J}(s) \int_{s-\xi_{pq}(s)}^{s}\tilde{g}_{q}^{J} [u,x ]\,du-\beta_{pq}^{K}(s) \int_{s-\xi_{pq}(s)}^{s}\tilde{g}_{q}^{K} [u,x ]\,du \biggr) \\ &\qquad{}+\bigwedge_{q=1}^{n} \bigl(T_{pq}^{R}(s)\mu_{q}^{R}(s)-T_{pq}^{I}(s) \mu _{q}^{I}(s)-T_{pq}^{J}(s) \mu_{q}^{J}(s)-T_{pq}^{K}(s) \mu_{q}^{K}(s) \bigr) \\ &\qquad{}+\bigvee_{q=1}^{n} \bigl(S_{pq}^{R}(s) \mu_{q}^{R}(s)-S_{pq}^{I}(s)\mu _{q}^{I}(s)-S_{pq}^{J}(s) \mu_{q}^{J}(s)-S_{pq}^{K}(s) \mu_{q}^{K}(s) \bigr) +I_{p}^{R}(s) \Biggr\} \,ds \Biggr\vert \\ &\quad\leq \rho_{p_{R}}^{-1} \int_{t}^{t+\omega}G_{p}(t,s) \Biggl\{ \sum _{q=1}^{n} \bigl( \bigl\vert b_{pq}^{R}(s) \bigr\vert \bigl\vert \tilde{f}_{q}^{R} [s,x,\tau ]-\tilde {f}_{q}^{R}[0] \bigr\vert \\ &\qquad{}+ \bigl\vert b_{pq}^{I}(s) \bigr\vert \bigl\vert \tilde{f}_{q}^{I} [s,x,\tau ]-\tilde {f}_{q}^{I}[0] \bigr\vert + \bigl\vert b_{pq}^{J}(s) \bigr\vert \bigl\vert \tilde{f}_{q}^{J} [s,x,\tau ]-\tilde {f}_{q}^{J}[0] \bigr\vert \\ &\qquad{}+ \bigl\vert b_{pq}^{K}(s) \bigr\vert \bigl\vert \tilde{f}_{q}^{K} [s,x,\tau ]-\tilde {f}_{q}^{K}[0] \bigr\vert \bigr) \\ &\qquad{}+ \Biggl\vert \bigwedge_{q=1}^{n} \alpha_{pq}^{R}(s) \int_{s-\eta _{pq}(s)}^{s}\tilde{g}_{q}^{R} [u,x ]\,du -\bigwedge_{q=1}^{n} \alpha_{pq}^{R}(s) \int_{s-\eta_{pq}(s)}^{s}\tilde {g}_{q}^{R}[0]\,du \Biggr\vert \\ &\qquad{}+ \Biggl\vert \bigwedge_{q=1}^{n} \alpha_{pq}^{I}(s) \int_{s-\eta _{pq}(s)}^{s}\tilde{g}_{q}^{I} [u,x ]\,du -\bigwedge_{q=1}^{n} \alpha_{pq}^{I}(s) \int_{s-\eta_{pq}(s)}^{s}\tilde {g}_{q}^{I}[0]\,du \Biggr\vert \\ &\qquad{}+ \Biggl\vert \bigwedge_{q=1}^{n} \alpha_{pq}^{J}(s) \int_{s-\eta _{pq}(s)}^{s}\tilde{g}_{q}^{J} [u,x ]\,du -\bigwedge_{q=1}^{n} \alpha_{pq}^{J}(s) \int_{s-\eta_{pq}(t)}^{t}\tilde {g}_{q}^{J}[0]\,du \Biggr\vert \\ &\qquad{}+ \Biggl\vert \bigwedge_{q=1}^{n} \alpha_{pq}^{K}(s) \int_{s-\eta _{pq}(s)}^{s}\tilde{g}_{q}^{K} [u,x ]\,du -\bigwedge_{q=1}^{n} \alpha_{pq}^{K}(s) \int_{s-\eta_{pq}(s)}^{s}\tilde {g}_{q}^{K}[0]\,du \Biggr\vert \\ &\qquad{}+ \Biggl\vert \bigvee_{q=1}^{n} \beta_{pq}^{R}(s) \int_{s-\xi_{pq}(s)}^{s}\tilde {g}_{q}^{R} [u,x ]\,du -\bigvee_{q=1}^{n} \beta_{pq}^{R}(s) \int_{s-\xi_{pq}(s)}^{s}\tilde {g}_{q}^{R}[0]\,du \Biggr\vert \\ &\qquad{}+ \Biggl\vert \bigvee_{q=1}^{n} \beta_{pq}^{I}(s) \int_{s-\xi_{pq}(s)}^{s}\tilde {g}_{q}^{I} [u,x ]\,du -\bigvee_{q=1}^{n} \beta_{pq}^{I}(s) \int_{s-\xi_{pq}(s)}^{s}\tilde {g}_{q}^{I}[0]\,du \Biggr\vert \\ &\qquad{}+ \Biggl\vert \bigvee_{q=1}^{n} \beta_{pq}^{J}(s) \int_{s-\xi_{pq}(s)}^{s}\tilde {g}_{q}^{J} [u,x ]\,du -\bigvee_{q=1}^{n} \beta_{pq}^{J}(s) \int_{s-\xi_{pq}(s)}^{s}\tilde {g}_{q}^{J}[0]\,du \Biggr\vert \\ &\qquad{}+ \Biggl\vert \bigvee_{q=1}^{n} \beta_{pq}^{K}(s) \int_{s-\xi_{pq}(s)}^{s}\tilde {g}_{q}^{K} [u,x ]\,du -\bigvee_{q=1}^{n} \beta_{pq}^{K}(s) \int_{s-\xi_{pq}(s)}^{t}\tilde {g}_{q}^{K}[0]\,du \Biggr\vert \Biggr\} \,ds \\ &\qquad{}+\frac{\omega}{\rho_{p_{R}}(1-e^{-\omega\bar{a}_{p}})} \Biggl(\sum_{q=1}^{n} 4(d_{pq}\mu_{q}+T_{pq}\mu_{q}+S_{pq} \mu_{q})+I_{p} \Biggr) \\ &\quad\leq \rho_{p_{R}}^{-1} \int_{t}^{t+\omega}G_{p}(t,s) \Biggl\{ \sum _{q=1}^{n} \bigl( \bigl\vert b_{pq}^{R}(s) \bigr\vert + \bigl\vert b_{pq}^{I}(s) \bigr\vert + \bigl\vert b_{pq}^{J}(s) \bigr\vert + \bigl\vert b_{pq}^{K}(s) \bigr\vert \bigr)L_{f} \\ &\qquad{}\times \bigl( \bigl\vert x_{q}^{R}\bigl(s- \tau_{pq}(s)\bigr) \bigr\vert +x_{q}^{I}\bigl(s- \tau_{pq}(s)\bigr) \vert +x_{q}^{J}\bigl(s-\tau _{pq}(s)\bigr) \vert +x_{q}^{K}\bigl(s- \tau_{pq}(s)\bigr) \vert \bigr) \\ &\qquad{}+\sum_{q=1}^{n} \bigl( \bigl\vert \alpha_{pq}^{R}(s) \bigr\vert + \bigl\vert \alpha_{pq}^{I}(s) \bigr\vert + \bigl\vert \alpha _{pq}^{J}(s) \bigr\vert + \bigl\vert \alpha_{pq}^{K}(s) \bigr\vert \bigr)L_{g} \int_{s-\eta_{pq}(s)}^{s} \bigl( \bigl\vert x_{q}^{R}(u) \bigr\vert \\ &\qquad{}+x_{q}^{I}(u) \vert +x_{q}^{J}(u) \vert +x_{q}^{K}(u) \vert \bigr)\,du+\sum _{q=1}^{n} \bigl( \bigl\vert \beta _{pq}^{R}(s) \bigr\vert + \bigl\vert \beta_{pq}^{I}(s) \bigr\vert + \bigl\vert \beta_{pq}^{J}(s) \bigr\vert \\ &\qquad{}+ \bigl\vert \beta_{pq}^{K}(s) \bigr\vert \bigr)L_{g} \int_{s-\xi_{pq}(s)}^{s} \bigl( \bigl\vert x_{q}^{R}(u) \bigr\vert +x_{q}^{I}(u) \vert +x_{q}^{J}(u) \vert +x_{q}^{K}(u) \vert \bigr)\,du \Biggr\} \,ds \\ &\qquad{}+\frac{\omega (\sum_{q=1}^{n} 4(d_{pq}\mu_{q}+T_{pq}\mu_{q}+S_{pq}\mu _{q})+I_{p} )}{\rho_{p_{R}}(1-e^{-\omega\bar{a}_{p}})} \\ &\quad\leq \rho_{p_{R}}^{-1} \int_{t}^{t+\omega}G_{p}(t,s) \Biggl\{ \sum _{q=1}^{n}\bigl( \bigl\vert b_{pq}^{R}(s) \bigr\vert + \bigl\vert b_{pq}^{I}(s) \bigr\vert + \bigl\vert b_{pq}^{J}(s) \bigr\vert + \bigl\vert b_{pq}^{K}(s) \bigr\vert \bigr) (\rho_{q_{R}}+ \rho_{q_{I}} \\ &\qquad{}+\rho_{q_{J}}+\rho_{q_{K}})L_{f}+\sum _{q=1}^{n}\bigl( \bigl\vert \alpha_{pq}^{R}(s) \bigr\vert + \bigl\vert \alpha _{pq}^{I}(s) \bigr\vert + \bigl\vert \alpha_{pq}^{J}(s) \bigr\vert + \bigl\vert \alpha_{pq}^{K}(s) \bigr\vert \bigr) (\rho_{q_{R}}+ \rho _{q_{I}} \\ &\qquad{}+\rho_{q_{J}}+\rho_{q_{K}})L_{g}\theta+\sum _{q=1}^{n}\bigl( \bigl\vert \beta _{pq}^{R}(s) \bigr\vert + \bigl\vert \beta_{pq}^{I}(s) \bigr\vert + \bigl\vert \beta_{pq}^{J}(s) \bigr\vert + \bigl\vert \beta_{pq}^{K}(s) \bigr\vert \bigr) (\rho _{q_{R}}+ \rho_{q_{I}} \\ &\qquad{}+\rho_{q_{J}}+\rho_{q_{K}})L_{g}\theta \Biggr\} \Vert x \Vert \,ds+\frac{\omega (\sum_{q=1}^{n} 4(d_{pq}\mu_{q}+T_{pq}\mu_{q}+S_{pq}\mu _{q})+I_{p} )}{\rho_{p_{R}}(1-e^{-\omega\bar{a}_{p}})} \\ &\quad\leq 4\gamma\kappa+\iota\leq4\kappa\times\frac{1}{4}\bigl(1-\iota\kappa ^{-1}\bigr)+\iota=\kappa,\quad p=1,2,\ldots,n. \end{aligned}$$

Similarly, from (6), we can obtain

$$\begin{aligned} \bigl\vert \rho_{p_{l}}^{-1}(\varPhi x)_{p}^{l}(t) \bigr\vert \leq\kappa,\quad p=1,2,\ldots,n, l=I,J,K. \end{aligned}$$

Thus,

$$\Vert \varPhi x \Vert _{\mathbb{X}}=\mathop{\max_{1\leq p\leq n}}_{l\in\varUpsilon} \Bigl\{ \sup_{t\in\mathbb{R}}\rho_{p_{l}}^{-1} \bigl\vert (\varPhi x)_{p}^{l}(t) \bigr\vert \Bigr\} \leq\kappa. $$

The proof is complete. □

Lemma 4

Assume that \((H_{1})\)\((H_{3})\) hold and suppose further that there exist positive numbers \(\rho_{1_{R}},\rho_{1_{I}},\rho_{1_{J}}, \rho_{1_{K}},\ldots,\rho_{n_{R}},\rho_{n_{I}},\rho_{n_{J}},\rho_{n_{K}}\) such that inequality (7) holds, then the mapping \(\varPhi:\mathbb {B}\rightarrow\mathbb{B}\) defined by (5) is completely continuous.

Proof

It is obvious that Φ is continuous.

Next, we prove that Φ is compact. For any \(M>0\), let \(S=\{x\in \mathbb{X}: \Vert x \Vert _{\mathbb{X}}\leq M\}\). Then, for \(x\in S\), we have

$$\begin{aligned} &\bigl\vert f_{q}^{l}\bigl(x_{q}^{R}(s),x_{q}^{I}(s),x_{q}^{J}(s),x_{q}^{K}(s) \bigr) \bigr\vert \leq(\rho_{q_{R}}+\rho _{q_{I}}+ \rho_{q_{J}}+\rho_{q_{K}})L_{f}M, \\ &\bigl\vert g_{q}^{l}\bigl(x_{q}^{R}(s),x_{q}^{I}(s),x_{q}^{J}(s),x_{q}^{K}(s) \bigr) \bigr\vert \leq(\rho_{q_{R}}+\rho _{q_{I}}+ \rho_{q_{J}}+\rho_{q_{K}})L_{g}M. \end{aligned}$$

For \(\forall x\in S\), we have

$$\begin{aligned} & \bigl\vert \rho_{p_{l}}^{-1}(\varPhi x)_{p}^{l}(t) \bigr\vert \\ &\quad \leq \rho_{p_{l}}^{-1} \int_{t}^{t+\omega}G_{p}(t,s) \Biggl\{ \sum _{q=1}^{n}\bigl( \bigl\vert b_{pq}^{R}(s) \bigr\vert + \bigl\vert b_{pq}^{I}(s) \bigr\vert + \bigl\vert b_{pq}^{J}(s) \bigr\vert + \bigl\vert b_{pq}^{K}(s) \bigr\vert \bigr) (\rho _{q_{R}}+ \rho_{q_{I}} \\ &\qquad{}+\rho_{q_{J}}+\rho_{q_{K}})L_{f}M+\bigwedge _{q=1}^{n}\bigl( \bigl\vert \alpha _{pq}^{R}(s) \bigr\vert + \bigl\vert \alpha_{pq}^{I}(s) \bigr\vert + \bigl\vert \alpha_{pq}^{J}(s) \bigr\vert + \bigl\vert \alpha _{pq}^{K}(s) \bigr\vert \bigr) (\rho_{q_{R}}+ \rho_{q_{I}} \\ &\qquad{}+\rho_{q_{J}}+\rho_{q_{K}})L_{g}M\theta+\bigvee _{q=1}^{n}\bigl( \bigl\vert \beta _{pq}^{R}(s) \bigr\vert + \bigl\vert \beta_{pq}^{I}(s) \bigr\vert + \bigl\vert \beta_{pq}^{J}(s) \bigr\vert + \bigl\vert \beta_{pq}^{K}(s) \bigr\vert \bigr) (\rho _{q_{R}}+ \rho_{q_{I}} \\ &\qquad{}+\rho_{q_{J}}+\rho_{q_{K}})L_{g}M\theta \Biggr\} \,ds+ \frac{\omega (\sum_{q=1}^{n}4(d_{pq}\mu_{q}+T_{pq}\mu_{q} +S_{pq}\mu_{q})+I_{p} )}{\rho_{p_{l}}(1-e^{-\omega\bar{a}_{p}})} \\ &\quad\leq \rho_{p_{l}}^{-1} \int_{t}^{t+\omega}G_{p}(t,s) \Biggl\{ \sum _{q=1}^{n}\bigl( \bigl\vert b_{pq}^{R}(s) \bigr\vert + \bigl\vert b_{pq}^{I}(s) \bigr\vert + \bigl\vert b_{pq}^{J}(s) \bigr\vert + \bigl\vert b_{pq}^{K}(s) \bigr\vert \bigr) (\rho _{q_{R}}+ \rho_{q_{I}} \\ &\qquad{}+\rho_{q_{J}}+\rho_{q_{K}})L_{f}M+\sum _{q=1}^{n}\bigl( \bigl\vert \alpha_{pq}^{R}(s) \bigr\vert + \bigl\vert \alpha _{pq}^{I}(s) \bigr\vert + \bigl\vert \alpha_{pq}^{J}(s) \bigr\vert + \bigl\vert \alpha_{pq}^{K}(s) \bigr\vert \bigr) (\rho_{q_{R}}+ \rho _{q_{I}} \\ &\qquad{}+\rho_{q_{J}}+\rho_{q_{K}})L_{g}M\theta+\sum _{q=1}^{n}\bigl( \bigl\vert \beta _{pq}^{R}(s) \bigr\vert + \bigl\vert \beta_{pq}^{I}(s) \bigr\vert + \bigl\vert \beta_{pq}^{J}(s) \bigr\vert + \bigl\vert \beta_{pq}^{K}(s) \bigr\vert \bigr) (\rho _{q_{R}}+ \rho_{q_{I}} \\ &\qquad{}+\rho_{q_{J}}+\rho_{q_{K}})L_{g}M\theta \Biggr\} \,ds+ \frac{\omega (\sum_{q=1}^{n}4(d_{pq}\mu_{q}+T_{pq}\mu_{q} +S_{pq}\mu_{q})+I_{p} )}{\rho_{p_{l}}(1-e^{-\omega\bar{a}_{p}})} \\ &\quad\leq\frac{\omega}{\rho_{p_{l}}(1-e^{-\omega\bar{a}_{p}})}\sum_{q=1}^{n} \bigl[16\rho^{+} M(b_{pq}L_{f}+\alpha_{pq}L_{g} \theta+\beta _{pq}L_{g}\theta) \\ &\qquad{}+4\mu_{q}(d_{pq}+T_{pq}+S_{pq})+I_{p} \bigr]:= C_{pl},\quad p=1,2,\ldots,n, l\in \varUpsilon. \end{aligned}$$

Therefore,

$$\begin{aligned} \Vert \varPhi x \Vert _{\mathbb{X}}= \mathop{\max_{1\leq p\leq n}}_{l\in\varUpsilon} \Bigl\{ \sup_{t\in [0,\omega]}\rho_{p_{l}}^{-1} \bigl\vert ( \varPhi x)_{p}^{l}(t) \bigr\vert \Bigr\} \leq\mathop{\max _{1\leq p\leq n}}_{l\in\varUpsilon}\{C_{pl}\},\quad \forall x\in S, \end{aligned}$$

which implies that ΦS is uniformly bounded.

On the other hand,

$$\begin{aligned} \bigl[(\varPhi x)_{p}^{l}(t) \bigr]'={}& \biggl[ \int_{t}^{t+\omega}G_{p}(t,s) \bigl[F_{p_{l}} \bigl(s,x(s) \bigr)+a_{p}(s)x_{p}^{l}(s) \bigr]\,ds \biggr]' \\ ={}& \int_{t}^{t+\omega}\frac{ \partial G_{p}(t,s)}{ \partial t} \bigl[F_{p_{l}} \bigl(s,x(s) \bigr)+a_{p}(s)x_{p}^{l}(s) \bigr]\,ds \\ &{}+G_{p}(t,t+\omega) \bigl[F_{p_{l}} \bigl(t+\omega,x(t+ \omega) \bigr)+a_{p}(t+\omega)x_{p}^{l}(t+\omega) \bigr] \\ &{}-G_{p}(t,t) \bigl[F_{p_{l}} \bigl(t,x(t) \bigr)+a_{p}(t)x_{p}^{l}(t) \bigr] \\ ={}&{-}a_{p}(t) (\varPhi x)_{p}^{l}(t)+F_{p_{l}} \bigl(t,x(t) \bigr)+a_{p}(t)x_{p}^{l}(t),\quad p=1,2, \ldots,n, l\in\varUpsilon. \end{aligned}$$

Hence, for \(x\in S\), we have

$$\begin{aligned} \bigl\vert \rho_{p_{l}}^{-1} \bigl[(\varPhi x)_{p}^{l}(t) \bigr]' \bigr\vert ={}&\rho _{p_{l}}^{-1} \bigl\vert -a_{p}(t) (\varPhi x)_{p}^{l}(t)+F_{p_{l}} \bigl(t,x(t) \bigr)+a_{p}(t)x_{p}^{l}(t) \bigr\vert \\ \leq{}&\rho_{p_{l}}^{-1} \bigl\vert -a_{p}(t) (\varPhi x)_{p}^{l}(t) \bigr\vert +\rho _{p_{l}}^{-1} \bigl\vert F_{p_{l}} \bigl(t,x(t) \bigr)+a_{p}(t)x_{p}^{l}(t) \bigr\vert \\ \leq{}&a_{p}(t)C+\rho_{p_{l}}^{-1}\sum _{q=1}^{n} \bigl[16\rho^{+} M(b_{pq}L_{f}+ \alpha_{pq}L_{g}+\beta_{pq}L_{g}) \\ &{}+4\mu_{q}(d_{pq}+T_{pq}+S_{pq})+I_{p} \bigr]:= H_{pl},\quad p=1,2,\ldots,n, l\in \varUpsilon. \end{aligned}$$

Therefore,

$$\begin{aligned} \bigl\vert (\varPhi x)'(t) \bigr\vert \leq \mathop{\max _{1\leq p\leq n}}_{l\in\varUpsilon} \Bigl\{ \sup_{t\in [0,\omega]}\rho_{p_{l}}^{-1} \bigl\vert \bigl[(\varPhi x)_{p}^{l}(t)\bigr]' \bigr\vert \Bigr\} \leq\mathop{\max_{1\leq p\leq n}}_{l\in\varUpsilon}\{H_{pl}\},\quad \forall x\in S, \end{aligned}$$

which implies that ΦS is equi-continuous.

Hence, by the Ascoli–Arzela theorem, we know that the operator Φ is compact, and so it is completely continuous. The proof is complete. □

According to Lemma 1 and Remark 1, from Lemma 3 and Lemma 4, we have the following theorem.

Theorem 1

Assume that \((H_{1})\)\((H_{3})\) hold. Suppose further that there exist positive numbers \(\rho_{1_{R}},\rho_{1_{I}},\rho_{1_{J}}, \rho_{1_{K}},\ldots,\rho_{n_{R}},\rho_{n_{I}},\rho_{n_{J}},\rho_{n_{K}}\) such that inequality (7) holds, then system (1) has at least one ω-periodic solution.

Next, we will show the exponential stability of periodic solutions.

Theorem 2

Assume that \((H_{1})\)\((H_{3})\) hold. Furthermore, assume the following.

\((H_{4})\) :

Functions \(\tau_{pq}(t)\) are continuous differential functions and \(\dot{\tau}_{pq}<1\), where \(p,q=1,2,\ldots,n\).

\((H_{5})\) :

There exists a positive constant \(\lambda>0\) satisfying

$$\max_{1\leq p\leq n} \Biggl\{ \lambda-a_{p}^{-}+\sum _{q=1}^{n} 16e^{\lambda \theta} \biggl( \frac{b_{qp}L_{f}}{1-\dot{\tau}_{qp}} + (\alpha_{qp}\eta_{qp}+ \beta_{qp}\xi_{qp} )L_{g} \biggr) \Biggr\} \leq0. $$

Then system (1) has a unique ω-periodic solution and it is globally exponentially stable.

Proof

From Theorem 1, we see that system (2) has an ω-periodic solution \(x(t)\). Suppose that the initial value of \(x(t)\) is \(\varphi(t)\). Let \(y(t)\) be an arbitrary solution of system (2) with the initial value \(\psi(t)\). Set \(z_{p}^{l}(t)=x_{p}^{l}(t)-y_{p}^{l}(t)\), by (2), for \(l=R, p=1,2,\ldots ,n\), we have

$$\begin{aligned} &D^{+}\bigl(e^{\lambda(t-t_{0})} \bigl\vert z_{p}^{R}(t) \bigr\vert \bigr) \\ &\quad=e^{\lambda(t-t_{0})}D^{+} \bigl\vert z_{p}^{R}(t) \bigr\vert +\lambda e^{\lambda (t-t_{0})} \bigl\vert z_{p}^{R}(t) \bigr\vert \\ &\quad=\lambda e^{\lambda(t-t_{0})} \bigl\vert z_{p}^{R}(t) \bigr\vert +e^{\lambda (t-t_{0})}sgn\bigl(z_{p}^{R}(t)\bigr) \dot{z}_{p}^{R}(t) \\ &\quad\leq \lambda e^{\lambda(t-t_{0})} \bigl\vert z_{p}^{R}(t) \bigr\vert +e^{\lambda(t-t_{0})} \Biggl\{ -a_{p}^{-} \bigl\vert z_{p}^{R}(t) \bigr\vert +\sum _{q=1}^{n}4b_{pq}L_{f} \bigl( \bigl\vert z_{p}^{R}\bigl(t-\tau_{pq}(t)\bigr) \bigr\vert \\ &\qquad{}+ \bigl\vert z_{p}^{I}\bigl(t-\tau_{pq}(t) \bigr) \bigr\vert + \bigl\vert z_{p}^{J}\bigl(t- \tau_{pq}(t)\bigr) \bigr\vert + \bigl\vert z_{p}^{K} \bigl(t-\tau _{pq}(t)\bigr) \bigr\vert \bigr) \\ &\qquad{}+\bigwedge_{q=1}^{n}4 \alpha_{pq}L_{g} \int_{t-\eta_{pq}(t)}^{t} \bigl( \bigl\vert z_{p}^{R}(s) \bigr\vert + \bigl\vert z_{p}^{I}(s) \bigr\vert + \bigl\vert z_{p}^{J}(s) \bigr\vert + \bigl\vert z_{p}^{K}(s) \bigr\vert \bigr)\,ds \\ &\qquad{}+\bigvee_{q=1}^{n}4\beta_{pq}L_{g} \int_{t-\xi_{pq}(t)}^{t} \bigl( \bigl\vert z_{p}^{R}(s) \bigr\vert + \bigl\vert z_{p}^{I}(s) \bigr\vert + \bigl\vert z_{p}^{J}(s) \bigr\vert + \bigl\vert z_{p}^{K}(s) \bigr\vert \bigr)\,ds \Biggr\} \\ &\quad\leq \lambda e^{\lambda(t-t_{0})} \bigl\vert z_{p}^{R}(t) \bigr\vert +e^{\lambda(t-t_{0})} \Biggl\{ -a_{p}^{-} \bigl\vert z_{p}^{R}(t) \bigr\vert +\sum _{q=1}^{n}4b_{pq}L_{f} \bigl( \bigl\vert z_{p}^{R}\bigl(t-\tau_{pq}(t)\bigr) \bigr\vert \\ &\qquad{}+ \bigl\vert z_{p}^{I}\bigl(t-\tau_{pq}(t) \bigr) \bigr\vert + \bigl\vert z_{p}^{J}\bigl(t- \tau_{pq}(t)\bigr) \bigr\vert + \bigl\vert z_{p}^{K} \bigl(t-\tau _{pq}(t)\bigr) \bigr\vert \bigr) \\ &\qquad{}+\sum_{q=1}^{n}4\alpha_{pq}L_{g} \int_{t-\eta_{pq}(t)}^{t} \bigl( \bigl\vert z_{p}^{R}(s) \bigr\vert + \bigl\vert z_{p}^{I}(s) \bigr\vert + \bigl\vert z_{p}^{J}(s) \bigr\vert + \bigl\vert z_{p}^{K}(s) \bigr\vert \bigr)\,ds \\ &\qquad{}+\sum_{q=1}^{n}4\beta_{pq}L_{g} \int_{t-\xi_{pq}(t)}^{t} \bigl( \bigl\vert z_{p}^{R}(s) \bigr\vert + \bigl\vert z_{p}^{I}(s) \bigr\vert + \bigl\vert z_{p}^{J}(s) \bigr\vert + \bigl\vert z_{p}^{K}(s) \bigr\vert \bigr)\,ds \Biggr\} . \end{aligned}$$

Repeating the above procession, for \(p= 1,2,\ldots,n,l = I,J,K\), we can obtain that

$$\begin{aligned} &D^{+}\bigl(e^{\lambda(t-t_{0})} \bigl\vert z_{p}^{l}(t) \bigr\vert \bigr) \\ &\quad\leq \lambda e^{\lambda(t-t_{0})} \bigl\vert z_{p}^{R}(t) \bigr\vert +e^{\lambda(t-t_{0})} \Biggl\{ -a_{p}^{-} \bigl\vert z_{p}^{R}(t) \bigr\vert +\sum _{q=1}^{n}4b_{pq}L_{f} \bigl( \bigl\vert z_{p}^{R}\bigl(t-\tau_{pq}(t)\bigr) \bigr\vert \\ &\qquad{}+ \bigl\vert z_{p}^{I}\bigl(t-\tau_{pq}(t) \bigr) \bigr\vert + \bigl\vert z_{p}^{J}\bigl(t- \tau_{pq}(t)\bigr) \bigr\vert + \bigl\vert z_{p}^{K} \bigl(t-\tau _{pq}(t)\bigr) \bigr\vert \bigr) \\ &\qquad{}+\sum_{q=1}^{n}4\alpha_{pq}L_{g} \int_{t-\eta_{pq}(t)}^{t} \bigl( \bigl\vert z_{p}^{R}(s) \bigr\vert + \bigl\vert z_{p}^{I}(s) \bigr\vert + \bigl\vert z_{p}^{J}(s) \bigr\vert + \bigl\vert z_{p}^{K}(s) \bigr\vert \bigr)\,ds \\ &\qquad{}+\sum_{q=1}^{n}4\beta_{pq}L_{g} \int_{t-\xi_{pq}(t)}^{t} \bigl( \bigl\vert z_{p}^{R}(s) \bigr\vert + \bigl\vert z_{p}^{I}(s) \bigr\vert + \bigl\vert z_{p}^{J}(s) \bigr\vert + \bigl\vert z_{p}^{K}(s) \bigr\vert \bigr)\,ds \Biggr\} . \end{aligned}$$

Define a Lyapunov function as follows:

$$V(t)=V_{R}(t)+V_{I}(t)+V_{J}(t)+V_{K}(t), $$

where, for \(l\in\varUpsilon\),

$$\begin{aligned} V_{l}(t)={}&\sum_{p=1}^{n} \Biggl\{ \rho_{p_{l}}^{-1}e^{\lambda(t-t_{0})} \bigl\vert z_{p}^{l}(t) \bigr\vert +\sum _{q=1}^{n}\frac{4b_{pq}L_{f}\rho_{p_{l}}^{-1}e^{\lambda(\theta -t_{0})}}{1-\dot{\tau}_{pq}} \\ &{}\times \int_{t-\tau_{pq}(t)}^{t} e^{\lambda s} \bigl( \bigl\vert z_{q}^{R}(s) \bigr\vert + \bigl\vert z_{q}^{I}(s) \bigr\vert + \bigl\vert z_{q}^{J}(s) \bigr\vert + \bigl\vert z_{q}^{K}(s) \bigr\vert \bigr)\,ds \\ &{}+\sum_{q=1}^{n}4\alpha_{pq}L_{g} \rho_{p_{l}}^{-1}e^{\lambda(\theta -t_{0})} \int_{-\eta_{pq}}^{0} \int_{t+u}^{t}e^{\lambda s} \bigl( \bigl\vert z_{q}^{R}(s) \bigr\vert + \bigl\vert z_{q}^{I}(s) \bigr\vert \\ &{}+ \bigl\vert z_{q}^{J}(s) \bigr\vert + \bigl\vert z_{q}^{K}(s) \bigr\vert \bigr)\,ds\,du+\sum _{q=1}^{n}4\beta_{pq}L_{g}\rho _{p_{l}}^{-1}e^{\lambda(\theta-t_{0})} \\ &{}\times \int_{-\xi_{pq}}^{0} \int_{t+u}^{t}e^{\lambda s} \bigl( \bigl\vert z_{q}^{R}(s) \bigr\vert + \bigl\vert z_{q}^{I}(s) \bigr\vert + \bigl\vert z_{q}^{J}(s) \bigr\vert + \bigl\vert z_{q}^{K}(s) \bigr\vert \bigr)\,ds\,du \Biggr\} . \end{aligned}$$

Now we calculate the time derivative of \(V(t)\) along the trajectories of system (2), we get

$$\begin{aligned} D^{+}V_{l}(t)= {}&\sum_{p=1}^{n} \Biggl\{ \rho_{p_{l}}^{-1}D^{+}\bigl(e^{\lambda (t-t_{0})} \bigl\vert z_{p}^{l}(t) \bigr\vert \bigr) +\sum _{q=1}^{n}\frac{4b_{pq}L_{f}\rho_{p_{l}}^{-1}e^{\lambda(\theta -t_{0})}}{1-\dot{\tau}_{pq}} \\ &{}\times e^{\lambda t} \bigl( \bigl\vert z_{q}^{R}(t) \bigr\vert + \bigl\vert z_{q}^{I}(t) \bigr\vert + \bigl\vert z_{q}^{J}(t) \bigr\vert + \bigl\vert z_{q}^{J}(t) \bigr\vert \bigr) \\ &{}-\sum_{q=1}^{n}\frac{4b_{pq}L_{f}\rho_{p_{l}}^{-1}e^{\lambda(\theta -t_{0})}(1-\dot{\tau}_{pq}(t))}{1-\dot{\tau}_{pq}} e^{\lambda(t-\tau_{pq}(t))} \bigl( \bigl\vert z_{q}^{R}\bigl(t- \tau_{pq}(t)\bigr) \bigr\vert \\ &{}+ \bigl\vert z_{q}^{I}\bigl(t-\tau_{pq}(t) \bigr) \bigr\vert + \bigl\vert z_{q}^{J}\bigl(t- \tau_{pq}(t)\bigr) \bigr\vert + \bigl\vert z_{q}^{K} \bigl(t-\tau _{pq}(t)\bigr) \bigr\vert \bigr) \\ &{}+\sum_{q=1}^{n}4\alpha_{pq}L_{g} \rho_{p_{l}}^{-1}e^{\lambda(\theta -t_{0})} \int_{-\eta_{pq}}^{0}e^{\lambda t} \bigl( \bigl\vert z_{q}^{R}(t) \bigr\vert + \bigl\vert z_{q}^{I}(t) \bigr\vert + \bigl\vert z_{q}^{J}(t) \bigr\vert \\ &{}+ \bigl\vert z_{q}^{K}(t) \bigr\vert \bigr)\,du-\sum _{q=1}^{n}4\alpha_{pq}L_{g} \rho _{p_{l}}^{-1}e^{\lambda(\theta-t_{0})} \int_{-\eta_{pq}}^{0}e^{\lambda (t+u)} \bigl( \bigl\vert z_{q}^{R}(t+u) \bigr\vert \\ &{}+ \bigl\vert z_{q}^{I}(t+u) \bigr\vert + \bigl\vert z_{q}^{J}(t+u) \bigr\vert + \bigl\vert z_{q}^{K}(t+u) \bigr\vert \bigr)\,du \\ &{}+\sum_{q=1}^{n}4\beta_{pq}L_{g} \rho_{p_{l}}^{-1}e^{\lambda(\theta-t_{0})} \int _{-\xi_{pq}}^{0}e^{\lambda t} \bigl( \bigl\vert z_{q}^{R}(t) \bigr\vert + \bigl\vert z_{q}^{I}(t) \bigr\vert + \bigl\vert z_{q}^{J}(t) \bigr\vert \\ &{}+ \bigl\vert z_{q}^{K}(t) \bigr\vert \bigr)\,du-\sum _{q=1}^{n}4\beta_{pq}L_{g} \rho _{p_{l}}^{-1}e^{\lambda(\theta-t_{0})} \int_{-\xi_{pq}}^{0}e^{\lambda(t+u)} \bigl( \bigl\vert z_{q}^{R}(t+u) \bigr\vert \\ &{}+ \bigl\vert z_{q}^{I}(t+u) \bigr\vert + \bigl\vert z_{q}^{J}(t+u) \bigr\vert + \bigl\vert z_{q}^{K}(t+u) \bigr\vert \bigr)\,du \Biggr\} \\ \leq{}& \sum_{p=1}^{n} \Biggl\{ \lambda \rho_{p_{l}}^{-1}e^{\lambda (t-t_{0})} \bigl\vert z_{p}^{l}(t) \bigr\vert -a_{p}^{-} \rho_{p_{l}}^{-1}e^{\lambda(t-t_{0})} \bigl\vert z_{p}^{l}(t) \bigr\vert \\ &{}+\sum_{q=1}^{n}\frac{4b_{pq}L_{f}\rho_{p_{l}}^{-1}e^{\lambda(\theta -t_{0})}}{1-\dot{\tau}_{pq}}e^{\lambda t} \bigl( \bigl\vert z_{q}^{R}(t) \bigr\vert + \bigl\vert z_{q}^{I}(t) \bigr\vert + \bigl\vert z_{q}^{J}(t) \bigr\vert + \bigl\vert z_{q}^{J}(t) \bigr\vert \bigr) \\ &{}+\sum_{p=1}^{n}4b_{pq}L_{f} \rho_{p_{l}}^{-1}e^{\lambda(t-t_{0})} \biggl(1-\frac{e^{\lambda(\theta-\tau_{pq}(t))}(1-\dot{\tau}_{pq}(t))}{1-\dot {\tau}_{pq}} \biggr) \\ &{}\times \bigl( \bigl\vert z_{q}^{R}\bigl(t- \tau_{pq}(t)\bigr) \bigr\vert + \bigl\vert z_{q}^{I} \bigl(t-\tau _{pq}(t)\bigr) \bigr\vert + \bigl\vert z_{q}^{J}\bigl(t-\tau_{pq}(t)\bigr) \bigr\vert \\ &{}+ \bigl\vert z_{q}^{K}\bigl(t-\tau_{pq}(t) \bigr) \bigr\vert \bigr)+\sum_{q=1}^{n}4 \alpha_{pq}L_{g}\rho _{p_{l}}^{-1}e^{\lambda(\theta-t_{0})} \int_{-\eta_{pq}}^{0}e^{\lambda t} \bigl( \bigl\vert z_{q}^{R}(t) \bigr\vert \\ &{}+ \bigl\vert z_{q}^{I}(t) \bigr\vert + \bigl\vert z_{q}^{J}(t) \bigr\vert + \bigl\vert z_{q}^{K}(t) \bigr\vert \bigr)\,du+\sum _{q=1}^{n}4\alpha _{pq}L_{g} \rho_{pl}^{-1}e^{\lambda(t-t_{0})} \\ &{}\times \bigl(1-e^{\lambda(\theta-\eta_{pq})} \bigr) \int_{t-\eta _{pq}}^{t} \bigl( \bigl\vert z_{q}^{R}(s) \bigr\vert + \bigl\vert z_{q}^{I}(s) \bigr\vert + \bigl\vert z_{q}^{J}(s) \bigr\vert + \bigl\vert z_{q}^{K}(s) \bigr\vert \bigr)\,ds \\ &{}+\sum_{q=1}^{n}4\beta_{pq}L_{g} \rho_{p_{l}}^{-1}e^{\lambda(\theta-t_{0})} \int _{-\xi_{pq}}^{0}e^{\lambda t} \bigl( \bigl\vert z_{q}^{R}(t) \bigr\vert + \bigl\vert z_{q}^{I}(t) \bigr\vert + \bigl\vert z_{q}^{J}(t) \bigr\vert \\ &{}+ \bigl\vert z_{q}^{K}(t) \bigr\vert \bigr)\,du+\sum _{q=1}^{n}4\beta_{pq}L_{g} \rho_{pl}^{-1}e^{\lambda (t-t_{0})} \bigl(1-e^{\lambda(\theta-\xi_{pq})} \bigr) \\ &{}\times \int_{t-\xi_{pq}}^{t} \bigl( \bigl\vert z_{q}^{R}(s) \bigr\vert + \bigl\vert z_{q}^{I}(s) \bigr\vert + \bigl\vert z_{q}^{J}(s) \bigr\vert + \bigl\vert z_{q}^{K}(s) \bigr\vert \bigr)\,ds \Biggr\} \\ \leq{}& \sum_{p=1}^{n} \Biggl\{ \lambda \rho_{p_{l}}^{-1}e^{\lambda (t-t_{0})} \bigl\vert z_{p}^{l}(t) \bigr\vert -a_{p}^{-} \rho_{p_{l}}^{-1}e^{\lambda(t-t_{0})} \bigl\vert z_{p}^{l}(t) \bigr\vert \\ &{}+\sum_{q=1}^{n}\frac{4b_{pq}L_{f}\rho_{p_{l}}^{-1}e^{\lambda(\theta -t_{0})}}{1-\dot{\tau}_{pq}}e^{\lambda t} \bigl( \bigl\vert z_{q}^{R}(t) \bigr\vert + \bigl\vert z_{q}^{I}(t) \bigr\vert + \bigl\vert z_{q}^{J}(t) \bigr\vert + \bigl\vert z_{q}^{J}(t) \bigr\vert \bigr) \\ &{}+\sum_{q=1}^{n}4\alpha_{pq}L_{g} \rho_{p_{l}}^{-1}e^{\lambda(\theta -t_{0})}\eta_{pq}e^{\lambda t} \bigl( \bigl\vert z_{q}^{R}(t) \bigr\vert + \bigl\vert z_{q}^{I}(t) \bigr\vert + \bigl\vert z_{q}^{J}(t) \bigr\vert \\ &{}+ \bigl\vert z_{q}^{K}(t) \bigr\vert \bigr)\,du+\sum _{q=1}^{n}4\beta_{pq}L_{g} \rho _{p_{l}}^{-1}e^{\lambda(\theta-t_{0})}\xi_{pq}e^{\lambda t} \bigl( \bigl\vert z_{q}^{R}(t) \bigr\vert + \bigl\vert z_{q}^{I}(t) \bigr\vert \\ &{}+ \bigl\vert z_{q}^{J}(t) \bigr\vert + \bigl\vert z_{q}^{K}(t) \bigr\vert \bigr)\,du \Biggr\} \\ \leq{}& \sum_{p=1}^{n} \Biggl\{ \bigl( \lambda-a_{p}^{-}\bigr)\rho_{p_{l}}^{-1}e^{\lambda (t-t_{0})} \bigl\vert z_{p}^{l}(t) \bigr\vert +\sum _{q=1}^{n} \biggl(\frac{4b_{pq}L_{f}e^{\lambda\theta}}{1-\dot{\tau }_{pq}} \\ &{}+4\alpha_{pq}L_{g}e^{\lambda\theta}\eta_{pq}+4 \beta_{pq}L_{g}e^{\lambda \theta}\xi_{pq} \biggr) \\ &{}\times\rho_{p_{l}}^{-1}e^{\lambda (t-t_{0})}\bigl( \bigl\vert z_{q}^{R}(t) \bigr\vert + \bigl\vert z_{q}^{I}(t) \bigr\vert + \bigl\vert z_{q}^{J}(t) \bigr\vert + \bigl\vert z_{q}^{K}(t) \bigr\vert \bigr) \Biggr\} ,\quad l\in \varUpsilon. \end{aligned}$$

From this and \((H_{5})\), we have

$$\begin{aligned} &D^{+}V(t) \\ &\quad=D^{+}V_{R}(t)+D^{+}V_{I}(t)+D^{+}V_{J}(t)+D^{+}V_{K}(t) \\ &\quad\leq \sum_{p=1}^{n} \Biggl\{ \bigl( \lambda-a_{p}^{-}\bigr)e^{\lambda(t-t_{0})} \bigl(\rho _{p_{R}}^{-1} \bigl\vert z_{p}^{R}(t) \bigr\vert + \rho_{p_{I}}^{-1} \bigl\vert z_{p}^{I}(t) \bigr\vert +\rho_{p_{J}}^{-1} \bigl\vert z_{p}^{J}(t) \bigr\vert +\rho_{p_{K}}^{-1} \bigl\vert z_{p}^{K}(t) \bigr\vert \bigr) \\ &\qquad{}+\sum_{q=1}^{n} \biggl( \frac{4b_{pq}L_{f}e^{\lambda\theta}}{1-\dot{\tau }_{pq}}+4\alpha_{pq}L_{g}e^{\lambda\theta} \eta_{pq} +4\beta_{pq}L_{g}e^{\lambda\theta} \xi_{pq} \biggr)e^{\lambda(t-t_{0})}\bigl(\rho _{p_{R}}^{-1}+ \rho_{p_{I}}^{-1} \\ &\qquad{}+\rho_{p_{J}}^{-1}+\rho_{p_{K}}^{-1}\bigr) \bigl( \bigl\vert z_{q}^{R}(t) \bigr\vert + \bigl\vert z_{q}^{I}(t) \bigr\vert + \bigl\vert z_{q}^{J}(t) \bigr\vert + \bigl\vert z_{q}^{K}(t) \bigr\vert \bigr) \Biggr\} \\ &\quad\leq \sum_{p=1}^{n} \Biggl\{ \bigl( \lambda-a_{p}^{-}\bigr)\frac{1}{\rho^{-}}e^{\lambda (t-t_{0})}\bigl( \bigl\vert z_{p}^{R}(t) \bigr\vert + \bigl\vert z_{p}^{I}(t) \bigr\vert + \bigl\vert z_{p}^{J}(t) \bigr\vert + \bigl\vert z_{p}^{K}(t) \bigr\vert \bigr) \\ &\qquad{}+\sum_{q=1}^{n} \biggl( \frac{16b_{qp}L_{f}e^{\lambda\theta}}{1-\dot{\tau }_{qp}}+16\alpha_{qp}L_{g}e^{\lambda\theta} \eta_{qp} +16\beta_{qp}L_{g}e^{\lambda\theta} \xi_{qp} \biggr)\frac{1}{\rho ^{-}}e^{\lambda(t-t_{0})}( \bigl\vert z_{p}^{R}(t) \bigr\vert \\ &\qquad{}+ \bigl\vert z_{p}^{I}(t) \bigr\vert + \bigl\vert z_{p}^{J}(t) \bigr\vert + \bigl\vert z_{p}^{K}(t) \bigr\vert \Biggr\} \\ &\quad=\sum_{p=1}^{n} \Biggl\{ \lambda-a_{p}^{-}+\sum_{q=1}^{n} \biggl(\frac {16b_{qp}L_{f}e^{\lambda\theta}}{1-\dot{\tau}_{qp}} +16\alpha_{qp}L_{g}e^{\lambda\theta} \eta_{qp}+16\beta_{qp}L_{g}e^{\lambda \theta} \xi_{qp} \biggr) \Biggr\} \\ &\qquad{}\times\frac{1}{\rho^{-}}e^{\lambda(t-t_{0})} \bigl( \bigl\vert z_{p}^{R}(t) \bigr\vert + \bigl\vert z_{p}^{I}(t) \bigr\vert + \bigl\vert z_{p}^{J}(t) \bigr\vert + \bigl\vert z_{p}^{K}(t) \bigr\vert \bigr) \\ &\quad \leq 0. \end{aligned}$$

Hence, \(V(t)\leq V(t_{0})\) for \(t\geq t_{0}\). By the expression of \(V(t)\), we can obtain

$$\begin{aligned} V(t)&\geq\sum_{p=1}^{n} e^{\lambda(t-t_{0})} \bigl(\rho _{p_{R}}^{-1} \bigl\vert z_{p}^{R}(t) \bigr\vert +\rho_{p_{I}}^{-1} \bigl\vert z_{p}^{I}(t) \bigr\vert +\rho _{p_{J}}^{-1} \bigl\vert z_{p}^{J}(t) \bigr\vert + \rho_{p_{K}}^{-1} \bigl\vert z_{p}^{K}(t) \bigr\vert \bigr) \\ &\geq 4ne^{\lambda(t-t_{0})} \bigl\Vert z(t) \bigr\Vert =4ne^{\lambda (t-t_{0})} \bigl\Vert x(t)-y(t) \bigr\Vert \end{aligned}$$

and

$$\begin{aligned} V_{l}(t_{0})={}&\sum_{p=1}^{n} \Biggl\{ \rho_{p_{l}}^{-1} \bigl\vert z_{p}^{l}(t_{0}) \bigr\vert +\sum_{q=1}^{n} \frac{4b_{pq}L_{f}\rho_{p_{l}}^{-1}e^{\lambda(\theta -t_{0})}}{1-\dot{\tau}_{pq}} \\ &{}\times \int_{t_{0}-\tau_{pq}(t_{0})}^{t_{0}} e^{\lambda s} \bigl( \bigl\vert z_{q}^{R}(s) \bigr\vert + \bigl\vert z_{q}^{I}(s) \bigr\vert + \bigl\vert z_{q}^{J}(s) \bigr\vert + \bigl\vert z_{q}^{K}(s) \bigr\vert \bigr)\,ds \\ &{}+\sum_{q=1}^{n}4\alpha_{pq}L_{g} \rho_{p_{l}}^{-1}e^{\lambda(\theta -t_{0})} \int_{-\eta_{pq}}^{0} \int_{t_{0}+u}^{t_{0}}e^{\lambda s} \bigl( \bigl\vert z_{q}^{R}(s) \bigr\vert + \bigl\vert z_{q}^{I}(s) \bigr\vert + \bigl\vert z_{q}^{J}(s) \bigr\vert \\ &{}+ \bigl\vert z_{q}^{K}(s) \bigr\vert \bigr)\,ds\,du+\sum _{q=1}^{n}4\beta_{pq}L_{g} \rho _{p_{l}}^{-1}e^{\lambda(\theta-t_{0})} \int_{-\xi_{pq}}^{0} \int _{t_{0}+u}^{t_{0}}e^{\lambda s} \bigl( \bigl\vert z_{q}^{R}(s) \bigr\vert \\ &{}+ \bigl\vert z_{q}^{I}(s) \bigr\vert + \bigl\vert z_{q}^{J}(s) \bigr\vert + \bigl\vert z_{q}^{K}(s) \bigr\vert \bigr)\,ds\,du \Biggr\} \\ ={}&\sum_{p=1}^{n} \Biggl\{ \rho_{p_{l}}^{-1} \bigl\vert z_{p}^{l}(t_{0}) \bigr\vert +\sum_{q=1}^{n} \frac {4b_{pq}L_{f}\rho_{p_{R}}\rho_{p_{l}}^{-1}e^{\lambda(\theta-t_{0})}}{ 1-\dot{\tau}_{pq}} \\ &{}\times \int_{t_{0}-\tau_{pq}(t_{0})}^{t_{0}}e^{\lambda s}\rho _{p_{R}}^{-1} \bigl\vert z_{q}^{R}(s) \bigr\vert \,ds \\ &{}+\sum_{q=1}^{n}\frac{4b_{pq}L_{f}\rho_{p_{I}}\rho_{p_{l}}^{-1}e^{\lambda (\theta-t_{0})}}{ 1-\dot{\tau}_{pq}} \int_{t_{0}-\tau_{pq}(t_{0})}^{t_{0}}e^{\lambda s}\rho _{p_{I}}^{-1} \bigl\vert z_{q}^{I}(s) \bigr\vert \,ds \\ &{}+\sum_{q=1}^{n}\frac{4b_{pq}L_{f}\rho_{p_{J}}\rho_{p_{l}}^{-1}e^{\lambda (\theta-t_{0})}}{ 1-\dot{\tau}_{pq}} \int_{t_{0}-\tau_{pq}(t_{0})}^{t_{0}}e^{\lambda s}\rho _{p_{J}}^{-1} \bigl\vert z_{q}^{J}(s) \bigr\vert \,ds \\ &{}+\sum_{q=1}^{n}\frac{4b_{pq}L_{f}\rho_{p_{K}}\rho_{p_{l}}^{-1}e^{\lambda (\theta-t_{0})}}{ 1-\dot{\tau}_{pq}} \int_{t_{0}-\tau_{pq}(t_{0})}^{t_{0}}e^{\lambda s}\rho _{p_{K}}^{-1} \bigl\vert z_{q}^{K}(s) \bigr\vert \,ds \\ &{}+\sum_{q=1}^{n}4\alpha_{pq}L_{g} \rho_{p_{R}}\rho_{p_{l}}^{-1}e^{\lambda (\theta-t_{0})} \int_{-\eta_{pq}}^{0} \int_{t_{0}+u}^{t_{0}}e^{\lambda s} \rho_{p_{R}}^{-1} \bigl\vert z_{q}^{R}(s) \bigr\vert \,ds\,du \\ &{}+\sum_{q=1}^{n}4\alpha_{pq}L_{g} \rho_{p_{I}}\rho_{p_{l}}^{-1}e^{\lambda (\theta-t_{0})} \int_{-\eta_{pq}}^{0} \int_{t_{0}+u}^{t_{0}}e^{\lambda s} \rho_{p_{I}}^{-1} \bigl\vert z_{q}^{I}(s) \bigr\vert \,ds\,du \\ &{}+\sum_{q=1}^{n}4\alpha_{pq}L_{g} \rho_{p_{J}}\rho_{p_{l}}^{-1}e^{\lambda (\theta-t_{0})} \int_{-\eta_{pq}}^{0} \int_{t_{0}+u}^{t_{0}}e^{\lambda s} \rho_{p_{J}}^{-1} \bigl\vert z_{q}^{J}(s) \bigr\vert \,ds\,du \\ &{}+\sum_{q=1}^{n}4\alpha_{pq}L_{g} \rho_{p_{K}}\rho_{p_{l}}^{-1}e^{\lambda (\theta-t_{0})} \int_{-\eta_{pq}}^{0} \int_{t_{0}+u}^{t_{0}}e^{\lambda s} \rho_{p_{K}}^{-1} \bigl\vert z_{q}^{K}(s) \bigr\vert \,ds\,du \\ &{}+\sum_{q=1}^{n}4\beta_{pq}L_{g} \rho_{p_{R}}\rho_{p_{l}}^{-1}e^{\lambda(\theta -t_{0})} \int_{-\xi_{pq}}^{0} \int_{t_{0}+u}^{t_{0}}e^{\lambda s} \rho_{p_{R}}^{-1} \bigl\vert z_{q}^{R}(s) \bigr\vert \,ds\,du \\ &{}+\sum_{q=1}^{n}4\beta_{pq}L_{g} \rho_{p_{I}}\rho_{p_{l}}^{-1}e^{\lambda(\theta -t_{0})} \int_{-\xi_{pq}}^{0} \int_{t_{0}+u}^{t_{0}}e^{\lambda s} \rho_{p_{I}}^{-1} \bigl\vert z_{q}^{I}(s) \bigr\vert \,ds\,du \\ &{}+\sum_{q=1}^{n}4\beta_{pq}L_{g} \rho_{p_{J}}\rho_{p_{l}}^{-1}e^{\lambda(\theta -t_{0})} \int_{-\xi_{pq}}^{0} \int_{t_{0}+u}^{t_{0}}e^{\lambda s} \rho_{p_{J}}^{-1} \bigl\vert z_{q}^{J}(s) \bigr\vert \,ds\,du \\ &{}+\sum_{q=1}^{n}4\beta_{pq}L_{g} \rho_{p_{K}}\rho_{p_{l}}^{-1}e^{\lambda(\theta -t_{0})} \int_{-\xi_{pq}}^{0} \int_{t_{0}+u}^{t_{0}}e^{\lambda s} \rho_{p_{K}}^{-1} \bigl\vert z_{q}^{K}(s) \bigr\vert \,ds\,du \Biggr\} \\ \leq{}& \sum_{p=1}^{n} \Biggl\{ 1+\sum _{q=1}^{n} \biggl(\frac{16\tau _{pq}b_{pq}L_{f}\rho_{p_{l}}^{-1}}{1-\dot{\tau}_{pq}} +8 \eta_{pq}^{2}\alpha_{pq}L_{g} \rho_{p_{l}}^{-1} \\ &{}+8\xi_{pq}^{2}\beta_{pq}L_{g} \rho_{p_{l}}^{-1} \biggr)\rho^{+}e^{\lambda\theta } \Biggr\} \Vert \varphi-\psi \Vert . \end{aligned}$$

Denote

$$\begin{aligned} M={}&\mathop{\max_{1\leq p \leq n}}_{l\in\varUpsilon} \Biggl\{ 1+\sum_{q=1}^{n} \biggl(\frac{16\tau_{pq}b_{pq}L_{f}\rho_{p_{l}}^{-1}}{1-\dot{\tau}_{pq}} +8\eta_{pq}^{2} \alpha_{pq}L_{g}\rho_{p_{l}}^{-1} \\ &{}+8\xi_{pq}^{2}\beta_{pq}L_{g} \rho_{p_{l}}^{-1} \biggr)\rho^{+}e^{\lambda\theta } \Biggr\} >0. \end{aligned}$$

Thus, we have

$$4ne^{\lambda(t-t_{0})} \bigl\Vert x(t)-y(t) \bigr\Vert \leq V(t_{0}) \leq V(t)\leq4nM \Vert \varphi-\psi \Vert ,\quad t\geq t_{0}, $$

that is,

$$\bigl\Vert x(t)-y(t) \bigr\Vert \leq M \Vert \varphi-\psi \Vert e^{-\lambda(t-t_{0})},\quad t\geq t_{0}. $$

Therefore, the ω-periodic solution \(x(t)\) of system (2) is globally exponentially stable. In view of Remark 1, we see that the ω-periodic solution of system (1) is also globally exponentially stable. The uniqueness of the ω-periodic solution follows from the global exponential stability. The proof is complete. □

4 An illustrative example

In this section, an example is given to illustrate the effectiveness of our results obtained in this paper.

Example 1

Consider the following QVFCNN:

$$\begin{aligned} \dot{x}_{p}(t)={}&{-}a_{p}(t)x_{p}(t)+ \sum_{q=1}^{n}b_{pq}(t)f_{q} \bigl(x_{q}\bigl(t-\tau_{pq}(t)\bigr) \bigr)+ \sum _{q=1}^{n}d_{pq}(t)\mu_{q}(t) \\ &{}+\bigwedge_{q=1}^{n} \alpha_{pq}(t) \int_{t-\eta_{pq}(t)}^{t}g_{q} (s,x )\,ds +\bigvee _{q=1}^{n}\beta_{pq}(t) \int_{t-\xi_{pq}(t)}^{t}g_{q} (s,x )\,ds \\ &{}+\bigwedge_{q=1}^{n}T_{pq}(t) \mu_{q}(t)+ \bigvee_{q=1}^{n}S_{pq}(t) \mu_{q}(t)+I_{p}(t), \end{aligned}$$
(8)

where

$$\begin{aligned} &\dot{x}_{p}(t)=\dot{x}_{p}^{R}(t)+i \dot{x}_{p}^{I}(t)+j\dot{x}_{p}^{J}(t)+k \dot {x}_{p}^{K}(t)\in\mathbb{Q},\quad p=1,2, \\ &f_{q}(x_{q})=\frac{1}{4}\sin\biggl(x_{q}^{R}+ \frac{1}{2}x_{q}^{I}\biggr)+\frac{1}{2}j\sin \bigl(x_{q}^{R}+x_{q}^{I}+x_{q}^{J}+x_{q}^{K} \bigr)+\frac{1}{4}kx_{q}^{J}, \\ &g_{q}(x_{q})=\frac{1}{4}j\bigl(x_{q}^{R}+x_{q}^{I}+x_{q}^{J}+x_{q}^{K} \bigr)+\frac{1}{4}k\sin\bigl(x_{q}^{R}+x_{q}^{K} \bigr), \\ & \begin{bmatrix} a_{1}(t)\\a_{2}(t) \end{bmatrix} = \begin{bmatrix} \sin^{2}(20t)+20\\-5\cos^{2}(20t)+25 \end{bmatrix} , \\ & \begin{bmatrix} I_{1}(t)\\I_{2}(t) \end{bmatrix} = \begin{bmatrix} \sin40t+i\sin40t+j\cos^{3}(40t)+\frac{1}{3}k\cos40t\\ \cos 40t+i\sin40t+j\cos40t+k\sin^{5}(40t) \end{bmatrix} , \\ & \begin{bmatrix} b_{11}(t)&b_{12}(t)\\b_{21}(t)&b_{22}(t) \end{bmatrix} \\ &\quad=\frac{1}{4} \begin{bmatrix} \cos40t+i\sin80t+j\sin^{2}(20t)&\sin40t+k\cos40t\\ i\cos40t+j\sin80t-k\cos^{3}(40t)&\cos^{2}(20t)+j\cos^{4}(20t)+k\sin40t \end{bmatrix} , \\ & \begin{bmatrix} d_{11}(t)&d_{12}(t)\\d_{21}(t)&d_{22}(t) \end{bmatrix} \\ &\quad= \begin{bmatrix} \sin40t+\frac{1}{2}i\cos40t+k\sin^{2}(20t)&\frac{2}{3}\sin 40t+j\cos^{3}(40t)-k\cos40t\\ \cos40t+j\cos^{3}(40t)+\frac{1}{2}k\sin40t&\sin^{3}(40t)-j\cos40t+k\sin40t \end{bmatrix} , \\ & \begin{bmatrix} \alpha_{11}(t)&\alpha_{12}(t)\\ \alpha_{21}(t)&\alpha_{22}(t) \end{bmatrix} \\ &\quad=\frac{1}{4} \begin{bmatrix} \cos^{5}(20t)+i\sin40t+k\cos40t&i\sin40t\\ i\sin40t+\frac{1}{2}k\cos^{2}(20t)&\sin40t+i\cos40t+j\sin^{3}(40t) \end{bmatrix} , \\ & \begin{bmatrix} \beta_{11}(t)&\beta_{12}(t)\\ \beta_{21}(t)&\beta_{22}(t) \end{bmatrix} \\ &\quad=\frac{1}{4} \begin{bmatrix} \cos^{5}(40t)+\frac{1}{2}i\sin40t+k\cos40t&i\sin^{2}(20t)\\ \frac{1}{\sqrt{2}}i\sin40t+k\cos40t&\sin40t+i\cos40t+j\sin^{3}(40t) \end{bmatrix} , \\ & \begin{bmatrix} T_{11}(t)&T_{12}(t)\\ T_{21}(t)&T_{22}(t) \end{bmatrix} = \begin{bmatrix} \frac{1}{3}\cos^{2}(20t)+i\cos40t+k\frac{1}{3}&\frac {1}{2}\sin^{2}(20t)+j\sin^{3}(40t)\\ \frac{1}{2}\sin40t+\frac{1}{4}k\cos40t&\frac{1}{4}+\frac{1}{4}k\sin40t \end{bmatrix} , \\ & \begin{bmatrix} S_{11}(t)&S_{12}(t)\\ S_{21}(t)&S_{22}(t) \end{bmatrix} = \begin{bmatrix} \frac{1}{5}\cos40t+k\sin^{2}(20t)&\frac{1}{2}\sin ^{2}(20t)+j\cos^{2}(20t)\\ \frac{1}{2}\sin^{4}(20t)+i\cos^{2}(20t)&\frac{1}{4}+k\sin40t \end{bmatrix} , \\ & \begin{bmatrix} \mu_{1}(t)\\ \mu_{2}(t) \end{bmatrix} = \begin{bmatrix} \frac{1}{3}\cos40t+i\sin40t+k\cos40t\\ \frac{1}{2}\sin40t+k\cos40t \end{bmatrix} , \\ & \begin{bmatrix} \tau_{11}(t)&\tau_{12}(t)\\ \tau_{21}(t)&\tau_{22}(t) \end{bmatrix} = \begin{bmatrix} \frac{1}{40}\cos^{2}(20t)&\frac{1}{40}\sin^{2}(20t)\\ \frac{1}{40}\sin^{2}(20t)&\frac{1}{4} \end{bmatrix} , \\ & \begin{bmatrix} \eta_{11}(t)&\eta_{12}(t)\\ \eta_{21}(t)&\eta_{22}(t) \end{bmatrix} = \begin{bmatrix} \frac{1}{2}\sin^{2}(20t)&\frac{1}{4}\cos^{2}(20t)\\ \frac{1}{4}\sin^{2}(20t)&\frac{1}{4}\sin^{2}(20t) \end{bmatrix} , \\ & \begin{bmatrix} \xi_{11}(t)&\xi_{12}(t)\\ \xi_{21}(t)&\xi_{22}(t) \end{bmatrix} = \begin{bmatrix} \frac{1}{4}&\frac{1}{3}\cos^{2}(20t)\\ \frac{1}{2}\cos^{2}(20t)&\frac{1}{2}\sin^{2}(20t) \end{bmatrix} . \end{aligned}$$

By computing, we have

$$a_{1}^{-}=a_{2}^{-}=20,\qquad L_{f}=\frac{1}{8},\qquad L_{g}= \frac{1}{4},\qquad \theta=\frac{1}{2},\qquad \omega =\frac{\pi}{20}, $$
$$\begin{aligned} & \begin{bmatrix} b_{11}&b_{12}\\b_{21}&b_{22} \end{bmatrix} = \begin{bmatrix} \alpha_{11}&\alpha_{12}\\ \alpha_{21}&\alpha_{22} \end{bmatrix} = \begin{bmatrix} \beta_{11}&\beta_{12}\\ \beta_{21}&\beta_{22} \end{bmatrix} = \begin{bmatrix} \frac{1}{4}&\frac{1}{4}\\ \frac{1}{4}&\frac{1}{4} \end{bmatrix} , \\ & \begin{bmatrix} \dot{\tau}_{11}(t)&\dot{\tau}_{12}(t)\\ \dot{\tau }_{21}(t)&\dot{\tau}_{22}(t) \end{bmatrix} = \begin{bmatrix} -\frac{1}{2}\sin40t&\frac{1}{2}\sin40t\\ \frac{1}{2}\sin40t&0 \end{bmatrix} , \\ & \begin{bmatrix} \tau_{11}&\tau_{12}\\ \tau_{21}&\tau_{22} \end{bmatrix} = \begin{bmatrix} \frac{1}{40}&\frac{1}{40}\\ \frac{1}{40}&\frac{1}{4} \end{bmatrix} ,\qquad \begin{bmatrix} \eta_{11}&\eta_{12}\\ \eta_{21}&\eta_{22} \end{bmatrix} = \begin{bmatrix} \frac{1}{2}&\frac{1}{4}\\ \frac{1}{4}&\frac{1}{4} \end{bmatrix} , \\ & \begin{bmatrix} \xi_{11}&\xi_{12}\\ \xi_{21}&\xi_{22} \end{bmatrix} = \begin{bmatrix} \frac{1}{4}&\frac{1}{3}\\ \frac{1}{2}&\frac{1}{2} \end{bmatrix} , \qquad \begin{bmatrix} \dot{\tau}_{11}&\dot{\tau}_{12}\\ \dot{\tau}_{21}&\dot {\tau}_{22} \end{bmatrix} = \begin{bmatrix} \frac{1}{2}&\frac{1}{2}\\ \frac{1}{2}&0 \end{bmatrix}. \end{aligned}$$

Take \(\lambda=1\), then we have

$$\max_{1\leq p\leq2} \Biggl\{ \frac{4\omega}{1-e^{-\omega\bar{a}_{p}}} \Biggl[\sum _{q=1}^{n} (b_{pq}L_{f} + \alpha_{pq}L_{g}\theta+\beta_{pq}L_{g} \theta ) \Biggr] \Biggr\} =0.246< \frac{1}{4} $$

and

$$\max_{1\leq p\leq2} \Biggl\{ \lambda-a_{p}^{-}+\sum _{q=1}^{n} 16e^{\lambda \theta} \biggl( \frac{b_{qp}L_{f}}{1-\dot{\tau}_{qp}} + (\alpha_{qp}\eta_{qp}+ \beta_{qp}\xi_{qp} )L_{g} \biggr) \Biggr\} =-17.28\leq0. $$

Therefore, all the conditions of Theorem 2 are satisfied. According to Theorem 2, system (8) has a unique \(\frac{\pi}{20}\)-periodic solution and it is globally exponentially stable (see Figs. 13).

Figure 1
figure 1

The states of four parts of \(x_{1}\) and \(x_{2}\)

Figure 2
figure 2

Curves of \(x_{1}\) in a 3-dimensional space for the stable case

Figure 3
figure 3

Curves of \(x_{2}\) in a 3-dimensional space for the stable case

Remark 2

Even when QVFCNN (8) degenerates into a real-valued system, papers [23, 32, 45,46,47] cannot be used to judge that (8) has a globally exponentially stable periodic solution.

5 Conclusions

In this paper, by using the Schauder fixed point theorem and constructing a suitable Lyapunov function, we investigated the existence and global exponential stability of periodic solutions for QVFCNNs with time-varying delays. To the best of our knowledge, this is the first paper to study the periodic solutions of QVFCNNs. Our results are new and supplement some previously known ones even when system (1) degenerates into a real-valued system. Our methods used in this paper can be used to study other types of quaternion-valued neural networks such as Hopfield neural networks, BAM neural networks, Cohen–Grossberg neural networks, and so on.

References

  1. Adler, S.: Quaternionic Quantum Mechanics and Quantum Fields. Oxford University Press, New York (1995)

    MATH  Google Scholar 

  2. Adler, S.: Quaternionic quantum field theory. Commun. Math. Phys. 104(4), 611–656 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  3. Leo, S., Ducati, G.: Delay time in quaternionic quantum mechanics. J. Math. Phys. 53(2), 022102 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Udwadia, F., Schttle, A.: An alternative derivation of the quaternion equations of motion for rigid-body rotational dynamics. J. Appl. Mech. 77(4), 044505 (2010)

    Article  Google Scholar 

  5. Gibbon, J.D., Holm, D.D., Kerr, R.M.: Quaternions and particle dynamics in the Euler fluid equations. Nonlinearity 19, 1969–1983 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Handson, A., Ma, H.: Quaternion frame approach to stream line visualization. IEEE Trans. Vis. Comput. Graph. 1(2), 164–172 (1995)

    Article  Google Scholar 

  7. Ell, T., Sangwine, S.J.: Hypercomplex Fourier transforms of color images. IEEE Trans. Image Process. 16(1), 22–35 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Miron, S., Bihan, N.L., Mars, J.I.: Quaternion-music for vector-sensor array processing. IEEE Trans. Signal Process. 54(4), 1218–1229 (2006)

    Article  MATH  Google Scholar 

  9. Took, C.C., Strbac, G., Aihara, K., Mandic, D.: Quaternion-valued short-term joint forecasting of three-dimensional wind and atmospheric parameters. Renew. Energy 36(6), 1754–1760 (2011)

    Article  Google Scholar 

  10. Isokawa, T., Kusakabe, T., Matsui, N., Peper, F.: Quaternion neural network and its application. In: Knowledge-Based Intelligent Information and Engineering Systems, pp. 318–324. Springer, Berlin (2003)

    Chapter  Google Scholar 

  11. Shu, H., Song, Q., Liu, Y., Zhao, Z., Alsaadi, F.E.: Global μ-stability of quaternion-valued neural networks with non-differentiable time-varying delays. Neurocomputing 247, 202–212 (2017)

    Article  Google Scholar 

  12. Song, Q., Chen, X.: Multistability analysis of quaternion-valued neural networks with time delays. IEEE Trans. Neural Netw. Learn. Syst. 29(11), 5430–5440 (2018)

    Article  MathSciNet  Google Scholar 

  13. Liu, Y., Zhang, D., Lu, J.: Global exponential stability for quaternion-valued recurrent neural networks with time-varying delays. Nonlinear Dyn. 87, 553–565 (2017)

    Article  MATH  Google Scholar 

  14. Isokawa, T., Matsui, N., Nishimura, H.: Quaternionic neural networks: fundamental properties and applications. In: Complex Valued Neural Networks: Util. High Dimens. Parameters (2009). https://doi.org/10.4018/978-1-60566-214-5.ch016

    Chapter  Google Scholar 

  15. Matsui, N., Isokawa, T., Kusamichi, H., Peper, F., Nishimura, H.: Quaternion neural network with geometrical operators. J. Intell. Fuzzy Syst. 15(3–4), 149–164 (2004)

    MATH  Google Scholar 

  16. Isokawa, T., Kusakabe, T., Matsui, N., Peper, F.: Quaternion neural network and its application. In: Knowledge-Based Intelligent Information and Engineering Systems. vol. 2774, pp. 318–324. Springer, Berlin (2003)

    Chapter  Google Scholar 

  17. Grossberg, S.: Neural Networks and Natural Intelligence. MIT Press, Boston (1992)

    MATH  Google Scholar 

  18. Borkar, V.S., Soumyanatha, K.: An analog scheme for fixed point computation—Part I: theory. IEEE Trans. Circuits Syst. I 44, 351–355 (1997)

    Article  Google Scholar 

  19. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)

    Article  Google Scholar 

  20. Pakdaman, M., Ahmadian, A., Effati, S., Salahshour, S., Baleanu, D.: Solving differential equations of fractional order using an optimization technique based on training artificial neural network. Appl. Math. Comput. 293, 81–95 (2017)

    MathSciNet  Google Scholar 

  21. Liu, Y., Zhang, D., Lu, J., Cao, J.: Global μ-stability criteria for quaternion-valued neural networks with unbounded time-varying delays. Inf. Sci. 360, 273–288 (2016)

    Article  Google Scholar 

  22. Liu, Y., Zhang, D., Lu, J.: Global exponential stability for quaternion-valued recurrent neural networks with time-varying delays. Nonlinear Dyn. 87, 553–565 (2017)

    Article  MATH  Google Scholar 

  23. Li, Y., Qin, J.: Existence and global exponential stability of periodic solutions for quaternion-valued cellular neural networks with time-varying delays. Neurocomputing 292, 91–103 (2018)

    Article  Google Scholar 

  24. Li, Y., Meng, X.: Existence and global exponential stability of pseudo almost periodic solutions for neutral type quaternion-valued neural networks with delays in the leakage term on time scales. Complexity 2017, Article ID 9878369 (2017)

    MATH  Google Scholar 

  25. Yang, T., Yang, L., Wu, C.W., Chua, L.O.: Fuzzy cellular neural networks: theory. In: Proceedings of the IEEE International Workshop on Cellular Neural Networks and Applications, pp. 181–186 (1996)

    Google Scholar 

  26. Yang, T., Yang, L., Wu, C.W., Chua, L.O.: Fuzzy cellular neural networks: applications. In: Proceedings of the IEEE International Work Shop on Cellular Neural Networks and Applications, pp. 225–230 (1996)

    Google Scholar 

  27. Ahmadian, A., Salahshour, S., Chan, C.S.: Fractional differential systems: a fuzzy solution based on operational matrix of shifted Chebyshev polynomials and its applications. IEEE Trans. Fuzzy Syst. 25(1), 218–236 (2017)

    Article  Google Scholar 

  28. Ahmadian, A., Salahshour, S., Chan, C.S., Baleanu, D.: Numerical solutions of fuzzy differential equations by an efficient Runge–Kutta method with generalized differentiability. Fuzzy Sets Syst. 331, 47–67 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  29. Salahshour, S., Ahmadian, A., Senu, N., Baleanu, D., Agarwal, P.: On analytical solutions of the fractional differential equation with uncertainty: application to the Basset problem. Entropy 17(2), 885–902 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Li, Y., Zhang, T.: Global exponential stability of fuzzy interval delayed neural networks with impulses on time scales. Int. J. Neural Syst. 19(06), 449–456 (2009)

    Article  Google Scholar 

  31. Yang, T., Yang, L.: The global stability of fuzzy cellular neural networks. IEEE Trans. Circuits Syst. 43(10), 880–883 (1996)

    Article  MathSciNet  Google Scholar 

  32. Yuan, K., Cao, J., Deng, J.: Exponential stability and periodic solutions of fuzzy cellular neural networks with time-varying delays. Neurocomputing 69(13), 1619–1627 (2006)

    Article  Google Scholar 

  33. Zhang, Q., Xiang, R.: Global asymptotic stability of fuzzy cellular neural networks with time-varying delays. Phys. Lett. A 372(22), 3971–3977 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  34. Zhou, L., Hu, G.: Global exponential periodicity and stability of cellular neural networks with variable and distributed delays. Appl. Math. Comput. 195(2), 402–411 (2008)

    MathSciNet  MATH  Google Scholar 

  35. Liu, Z., Zhang, H., Wang, Z.: Novel stability criterions of a new fuzzy cellular neural networks with time-varying delays. Neurocomputing 72(4–6), 1056–1064 (2009)

    Article  Google Scholar 

  36. Bao, H.: Existence and exponential stability of periodic solution for BAM fuzzy Cohen–Grossberg neural networks with mixed delays. Neural Process. Lett. 43(3), 871–885 (2016)

    Article  Google Scholar 

  37. Song, Q., Wang, Z.: Dynamical behaviors of fuzzy reaction-diffusion periodic cellular neural networks with variable coefficients and delays. Appl. Math. Model. 33(9), 3533–3545 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  38. Rakkiyappan, R., Balasubramaniam, P.: On exponential stability results for fuzzy impulsive neural networks. Fuzzy Sets Syst. 161(13), 1823–1835 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  39. Li, Y., Wang, C.: Existence and global exponential stability of equilibrium for discrete-time fuzzy BAM neural networks with variable delays and impulses. Fuzzy Sets Syst. 217, 62–79 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  40. Abdurahman, A., Jiang, H., Teng, Z.: Finite-time synchronization for fuzzy cellular neural networks with time-varying delays. Fuzzy Sets Syst. 297, 96–111 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  41. Jia, R.: Finite-time stability of a class of fuzzy cellular neural networks with multi-proportional delays. Fuzzy Sets Syst. 319, 70–80 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  42. Wang, W.: Finite-time synchronization for a class of fuzzy cellular neural networks with time-varying coefficients and proportional delays. Fuzzy Sets Syst. 338, 40–49 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  43. Huang, Z.D.: Almost periodic solutions for fuzzy cellular neural networks with time-varying delays. Neural Comput. Appl. 28, 2313–2320 (2017)

    Article  Google Scholar 

  44. Huang, Z.D.: Almost periodic solutions for fuzzy cellular neural networks with multi-proportional delays. Int. J. Mach. Learn. Cybern. 8(4), 1323–1331 (2017)

    Article  Google Scholar 

  45. Niu, S., Jiang, H., Teng, Z.: Exponential stability and periodic solutions of FCNNs with variable coefficients and time-varying delays. Neurocomputing 71(13–15), 2929–2936 (2008)

    Article  Google Scholar 

  46. Niu, S., Jiang, H., Teng, Z.: Periodic oscillation of FCNNs with distributed delays and variable coefficients. Nonlinear Anal., Real World Appl. 10(3), 1540–1554 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  47. Xu, C., Zhang, Q., Wu, Y.: Existence and exponential stability of periodic solution to fuzzy cellular neural networks with distributed delays. Int. J. Fuzzy Syst. 18(1), 41–51 (2016)

    Article  MathSciNet  Google Scholar 

  48. Amster, P.: Topological Methods in the Study of Boundary Value Problems. Springer, New York (2013)

    MATH  Google Scholar 

Download references

Acknowledgements

Not applicable.

Availability of data and materials

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Funding

This work is supported by the National Natural Sciences Foundation of People’s Republic of China under Grant 11861072.

Author information

Authors and Affiliations

Authors

Contributions

The three authors contributed equally to the manuscript and typed, read, and approved the final manuscript.

Corresponding author

Correspondence to Yongkun Li.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Consent for publication

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Qin, J. & Li, B. Periodic solutions for quaternion-valued fuzzy cellular neural networks with time-varying delays. Adv Differ Equ 2019, 63 (2019). https://doi.org/10.1186/s13662-019-2008-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13662-019-2008-5

Keywords