Skip to content

Advertisement

  • Research
  • Open Access

Ulam–Hyers–Mittag-Leffler stability for ψ-Hilfer fractional-order delay differential equations

Advances in Difference Equations20192019:50

https://doi.org/10.1186/s13662-019-1997-4

  • Received: 27 October 2018
  • Accepted: 29 January 2019
  • Published:

Abstract

In this paper, we present results on the existence, uniqueness, and Ulam–Hyers–Mittag-Leffler stability of solutions to a class of ψ-Hilfer fractional-order delay differential equations. We use the Picard operator method and a generalized Gronwall inequality involved in a ψ-Riemann–Liouville fractional integral. Finally, we give two examples to illustrate our main theorems.

Keywords

  • ψ-Hilfer fractional-order delay differential equations
  • Solutions
  • Existence
  • Stability

1 Introduction

Fractional-order differential equations are important since their nonlocal property is suitable to characterize memory phenomena in economic, control, and materials sciences. Existence, stability, and control theory to fractional differential equations was investigated in [121]. In particular, the Ulam-type stability of delay differential equations was investigated in [2230]. In [22], results for a delay differential equation were obtained using the Picard operator method, and in [23] the authors adopted a similar approach to establish the existence and uniqueness results for a Caputo-type fractional-order delay differential equation. In [31, 32], the authors gave stability and numerical schemes for two classes of fractional equations. Sousa and Oliveira [33] proposed the ψ-Hilfer fractional differentiation operator and established ψ-Hilfer fractional differential equations. In [24] the authors studied the Ulam–Hyers stability and the Ulam–Hyers–Rassias stability of ψ-Hilfer fractional integro-differential equations via the Banach fixed point method, and in [28] the author discussed the existence and uniqueness of solutions and Ulam–Hyers and Ulam–Hyers–Rassias stabilities for ψ-Hilfer nonlinear fractional differential equations via a generalized Gronwall inequality (see [34]).

Motivated by [23, 24, 28], we consider the ψ-Hilfer fractional differential equation
$$ \textstyle\begin{cases} {}^{H}\mathbb{D}^{{\alpha ,\beta }; \psi }_{0^{+}}x(\tau ) =f(\tau ,x(\tau ),x(g(\tau ))), \quad \tau \in I=(0,d], \\ I^{{1-\gamma };\psi }_{0^{+}}x(0^{+}) =x_{0}\in \mathbb {R}, \\ x( \tau )=\varphi (\tau ), \quad \tau \in [-h,0], \end{cases} $$
(1)
where \({}^{H}\mathbb{D}^{{\alpha , \beta };\psi }_{0^{+}}(\cdot )\) is the ψ-Hilfer fractional derivative (see Definition 2.1) of order \(0 <\alpha \leq 1\) and type \(0 \leq \beta \leq 1\), \(I^{{1-\gamma };\psi }_{0^{+}}(\cdot )\) is the Riemann–Liouville fractional integral of order \(1-\gamma \), \(\gamma =\alpha +\beta (1-\alpha )\) with respect to the function ψ (see [2]), and \(f:I \times \mathbb {R}\times \mathbb {R}\longrightarrow \mathbb {R}\) is a given function.

We establish the existence and uniqueness of solutions for (1) using the Picard operator approach in a weight function space. We also introduce and present Ulam–Hyers–Mittag-Leffler stability of solutions to (1).

2 Preliminaries

We collect the basic definitions of the ψ-Riemann–Liouville fractional integral, the ψ-Hilfer fractional derivative, and the standard Picard operator and an abstract Gronwall lemma.

Let \([c,d]\) (\(0< c< d<\infty \)) be a finite interval on \(\mathbb {R}^{+}\), and let \(C[c,d]\) be the space of continuous function \(g:[c,d]\to \mathbb {R}\) with norm
$$ \Vert g \Vert _{C[c,d]}=\max_{c\leq x\leq d} \bigl\vert g(x) \bigr\vert . $$
The weighted space \(C_{1-\gamma ;\psi }[c,d]\) of continuous g on \((c,d]\) is defined by (see [24])
$$ C_{1-\gamma ;\psi }[c,d]= \bigl\{ g:(c,d]\rightarrow \mathbb {R}; \bigl( \psi (x)- \psi (c) \bigr)^{1-\gamma }g(x)\in C[c,d] \bigr\} , \quad 0\leq \gamma < 1, $$
with norm
$$ \Vert g \Vert _{C_{1-\gamma ;\psi }[c,d]}=\max_{x\in [c,d]} \bigl\vert \bigl(\psi (x)- \psi (c) \bigr)^{1-\gamma }g(x) \bigr\vert $$
or
$$ \Vert g \Vert _{B}:=\max_{\tau \in [c,d]} \bigl\vert \bigl(\psi (\tau )-\psi (c) \bigr)^{1- \gamma }g(\tau ) \bigr\vert e^{-\theta (\psi (\tau )-\psi (c) )}, \quad \theta >0. $$

Definition 2.1

(see [33])

Let \((c,d)\) (\(-\infty \leq c< d\leq \infty \)) be a finite or infinite interval of the real line \(\mathbb {R}\), and let \(\alpha >0 \). In addition, let \(\psi (x)\) be an increasing and positive monotone function on \((c,d]\) having a continuous derivative \(\psi '(x)\) on \((c,d)\). The left- and right-sided fractional integrals of a function g with respect to a function ψ on \([c,d]\) are defined by
$$\begin{aligned} I^{{\alpha }:\psi }_{c^{+}} g(x)=\frac{1}{\varGamma (\alpha )} \int _{c} ^{x}\psi '(\tau ) \bigl(\psi (x)-\psi (\tau ) \bigr)^{\alpha -1}g(\tau )\,dt, \\ I^{{\alpha }:\psi }_{d^{-}} g(x)=\frac{1}{\varGamma (\alpha )} \int _{x} ^{d}\psi '(\tau ) \bigl(\psi (\tau )-\psi (x) \bigr)^{\alpha -1}g(\tau )\,dt, \end{aligned}$$
respectively; here Γ is the gamma function.

Definition 2.2

(see [33])

Let \(n-1<\alpha <n\) with \(n\in \mathbb {N}\), and let \(f, \psi \in C^{n}[c,d]\) be two functions such that ψ is increasing and \(\psi '(x)\neq 0\) for all \(x\in [c,d]\). The left-side ψ-Hilfer fractional derivative \({}^{H}\mathbb {D}^{{\alpha ,\beta }; \psi }_{c^{+}}(\cdot )\) of a function g of order α and type \(0\leq \beta \leq 1\) is defined by
$$\begin{aligned} {}^{H}\mathbb {D}^{{\alpha ,\beta };\psi }_{c^{+}}g(x)=I^{{\beta (n-\alpha )};\psi }_{c^{+}} \biggl(\frac{1}{\psi '(x)}\frac{d}{dx} \biggr)^{n}I^{{(1-\beta )(n- \alpha )};\psi }_{c^{+}}g(x). \end{aligned}$$
The right-sided ψ-Hilfer fractional derivative is defined in an analogous way.

Theorem 2.3

(see [33])

If \(g\in C^{1}[c,d]\), \(0< c<1\), and \(0\leq \beta \leq 1\), then
$$\begin{aligned} {}^{H}\mathbb {D}^{{\alpha ,\beta };\psi }_{c^{+}}I^{{\alpha };\psi }_{c ^{+}}g(x)=g(x). \end{aligned}$$

Theorem 2.4

(see [33])

If \(g\in C^{1}[c,d]\), \(0< c<1\), and \(0\leq \beta \leq 1\), then
$$\begin{aligned} I^{{\alpha };\psi }_{c^{+}}{}^{H}\mathbb {D}^{{\alpha ,\beta };\psi }_{c ^{+}}g(x)=g(x)-\frac{(\psi (x)-\psi (c))^{\gamma -1}}{\varGamma (\gamma )}I^{{(1-\beta )(1-\alpha )};\psi }_{c^{+}}g(c). \end{aligned}$$
Let \(I=[c,d]\). For \(f\in C(I\times \mathbb {R}^{2},\mathbb {R})\) and \(\varepsilon > 0\), we consider the equations
$$\begin{aligned}& {}^{H}\mathbb{D}^{{\alpha ,\beta }; \psi }_{0^{+}}x(\tau )=f \bigl(\tau ,x(\tau ),x \bigl(g(\tau ) \bigr) \bigr),\quad \tau \in (0,d], \end{aligned}$$
(2)
$$\begin{aligned}& I^{{1-\gamma };\psi }_{0^{+}}x \bigl(0^{+} \bigr) =x_{0}, \end{aligned}$$
(3)
$$\begin{aligned}& x(\tau )=\varphi (\tau ),\quad \tau \in [-h,0], \end{aligned}$$
(4)
and the inequality
$$ \bigl\vert {}^{H}\mathbb{D}^{{\alpha ,\beta }; \psi }_{0^{+}}x( \tau )-f \bigl(\tau ,x(\tau ),x \bigl(g(\tau ) \bigr) \bigr) \bigr\vert \leq \varepsilon \mathbb{ E}_{\alpha } \bigl(\psi (\tau )-\psi (0) \bigr)^{\alpha }, \quad \tau \in (0,d], $$
(5)
where \(\mathbb{E}_{\alpha }\) is the Mittag-Leffler function [2] defined by
$$ \mathbb{E}_{\alpha }(x):=\sum_{i=0}^{\infty } \frac{x^{i}}{\varGamma (i \alpha +1)}, \quad x\in \mathbb {C}, \Re (\alpha )>0. $$
(6)

Motivated by [23, Lemma 2.4], we introduce the following concept.

Definition 2.5

Equation (2) is Ulam–Hyers–Mittag-Leffler stable with respect to \(\mathbb{E}_{\alpha }((\psi (\tau )-\psi (0))^{\alpha })\) if there exists \(c_{\mathbb{E}_{\alpha }}>0\) such that, for each \(\varepsilon > 0\) and each solution \(y\in C([-h,d],\mathbb {R})\) to (5), there exists a solution \(x\in C([-h,d],\mathbb {R})\) to (2) with
$$ \bigl\vert y(\tau )-x(\tau ) \bigr\vert \leq c_{\mathbb{E}_{\alpha }}\varepsilon \mathbb{E}_{\alpha } \bigl( \bigl(\psi (\tau )-\psi (0) \bigr)^{\alpha } \bigr), \quad \tau \in [-h,d]. $$

Remark 2.6

A function \(x\in C([-h,d],\mathbb {R})\) is a solution of inequality (5) if and only if there exists a function \(\tilde{h}\in C([-h,d],\mathbb {R})\) (which depends on x) such that
  1. (i)

    \(\vert \tilde{h}(\tau ) \vert \leq \varepsilon \mathbb{E}_{\alpha } ( (\psi (\tau )- \psi (0) )^{\alpha } )\), \(\tau \in [-h,d]\),

     
  2. (ii)

    \({}^{H}\mathbb{D}^{{\alpha ,\beta }; \psi }_{0^{+}}x( \tau ) =f (\tau ,x(\tau ),x (g(\tau ) ) )+\tilde{h}( \tau )\), \(\tau \in (0,d]\).

     

Definition 2.7

(see Definition 3.1 of [23])

Let \((Y,\rho )\) be a metric space. Now \(T:Y\rightarrow Y\) is a Picard operator if there exists \(y^{\ast }\in Y\) such that
  1. (i)

    \(F_{T}=y^{\ast }\) where \(F_{T}=\{y\in Y:T(y)=y\} \) is the fixed point set of T;

     
  2. (ii)

    the sequence \((T^{n}(y_{0}))_{n\in \mathbb{N}} \) converges to \(y^{\ast }\) for all \(y_{0}\in Y\).

     

Lemma 2.8

(see Lemma 3.2 of [23])

Let \((Y,\rho ,\leq )\) be an ordered metric space, and let \(T:Y\rightarrow Y\) be an increasing Picard operator with \(F_{T}=\{y_{T}^{*}\}\). Then for \(y\in Y\), \(y\leq T(y)\) implies \(y\leq y_{T}^{*}\).

From Theorems 2.3 and 2.4 we have the following:

Lemma 2.9

(see [24])

Let \(f:I \times \mathbb {R}\times \mathbb {R}\rightarrow \mathbb {R}\) be a continuous function. Then (2) is equivalent to
$$ x(\tau )=\frac{(\psi (\tau )-\psi (0))^{\gamma -1}}{\varGamma (\gamma )}x _{0}+\frac{1}{\varGamma (\alpha )} \int _{0}^{\tau }\psi '(s) \bigl(\psi ( \tau )- \psi (s) \bigr)^{\alpha -1}f \bigl(s,x(s),x \bigl(g(s) \bigr) \bigr) \,ds. $$
(7)

Remark 2.10

Let \(y\in C(I,\mathbb {R})\) be a solution of inequality (5). Then y is a solution of the following integral inequality:
$$\begin{aligned}& \biggl\vert y(\tau )-\frac{(\psi (\tau )-\psi (0))^{\gamma -1}}{\varGamma (\gamma )}y_{0}-\frac{1}{\varGamma (\alpha )} \int _{0}^{\tau }\psi '(s) \bigl(\psi ( \tau )-\psi (s) \bigr)^{\alpha -1}f \bigl(s,y(s),y \bigl(g(s) \bigr) \bigr)\,ds \biggr\vert \\& \quad \leq \frac{\varepsilon }{\varGamma (\alpha )} \int _{0}^{\tau }\psi '(s) \bigl( \psi ( \tau )-\psi (s) \bigr)^{\alpha -1}\mathbb{E}_{\alpha } \bigl( \bigl(\psi (s)- \psi (0) \bigr)^{\alpha } \bigr)\,ds \\& \quad =\frac{\varepsilon }{\varGamma (\alpha )} \int _{0}^{\tau }\psi '(s) \bigl( \psi ( \tau )-\psi (s) \bigr)^{\alpha -1}\sum_{k=0}^{\infty } \frac{(\psi (s)- \psi (0))^{k\alpha }}{\varGamma (k\alpha +1)}\,ds \\& \quad =\frac{\varepsilon }{\varGamma (\alpha )}\sum_{k=0}^{\infty } \frac{1}{ \varGamma (k\alpha +1)} \int _{0}^{\tau } \bigl(\psi (\tau )-\psi (s) \bigr)^{\alpha -1} \bigl( \psi (s)-\psi (0) \bigr)^{k\alpha } \,d\psi (s) \\& \quad =\frac{\varepsilon }{\varGamma (\alpha )}\sum_{k=0}^{\infty } \frac{1}{ \varGamma (k\alpha +1)} \int _{0}^{\psi (\tau )-\psi (0)} \bigl(\psi (\tau )- \psi (0)-u \bigr)^{\alpha -1}u^{k\alpha } \,du \\& \quad \quad \bigl(\text{let } u=\psi (s)-\psi (0) \bigr) \\& \quad =\frac{\varepsilon }{\varGamma (\alpha )}\sum_{k=0}^{\infty } \frac{1}{ \varGamma (k\alpha +1)} \bigl(\psi (\tau )-\psi (0) \bigr)^{\alpha -1} \int _{0}^{ \psi (\tau )-\psi (0)} \biggl(1-\frac{u}{\psi (\tau )-\psi (0)} \biggr)^{\alpha -1}u ^{k\alpha }\,du \\& \quad =\frac{\varepsilon }{\varGamma (\alpha )}\sum_{k=0}^{\infty } \frac{1}{ \varGamma (k\alpha +1)} \bigl(\psi (\tau )-\psi (0) \bigr)^{(k+1)\alpha } \int _{0} ^{1}(1-v)^{\alpha -1}v^{k\alpha } \,dv \\& \quad \quad \biggl(\text{let } v=\frac{u}{\psi (\tau )-\psi (0)} \biggr) \\& \quad =\frac{\varepsilon }{\varGamma (\alpha )}\sum_{k=0}^{\infty } \frac{1}{ \varGamma (k\alpha +1)} \bigl(\psi (\tau )-\psi (0) \bigr)^{(k+1)\alpha } \frac{ \varGamma (k\alpha +1)\varGamma (\alpha )}{\varGamma ((k+1)\alpha +1)} \\& \quad \leq \varepsilon \sum_{n=0}^{\infty } \frac{(\psi (\tau )-\psi (0))^{n \alpha }}{\varGamma (n\alpha +1)} \\& \quad =\varepsilon \mathbb{E}_{\alpha } \bigl( \bigl(\psi (\tau )-\psi (0) \bigr)^{\alpha } \bigr). \end{aligned}$$

Lemma 2.11

(see [34])

Let \(\alpha >0\), and let \(\psi \in C^{1}((0, d], \mathbb {R})\) be a function such that ψ is increasing and \(\psi '(\tau )\neq 0\) for all \(\tau \in (0, d]\). Suppose that \(d \geq 0\), z is a nonnegative function locally integrable on \((0, d]\), and w is nonnegative and locally integrable on \((0, d]\) with
$$\begin{aligned} w(\tau )\leq z(\tau )+k \int _{0}^{\tau }\psi '(s) \bigl(\psi ( \tau )-\psi (s) \bigr)^{ \alpha -1}w(s)\,ds, \quad \tau \in (0,d]. \end{aligned}$$
Then
$$\begin{aligned} w(\tau )\leq z(\tau )+ \int _{0}^{\tau }\sum_{n=1}^{\infty } \frac{[k \varGamma (\alpha )]^{n}}{\varGamma (n\alpha )}\psi '(s) \bigl(\psi (\tau )- \psi (s) \bigr)^{\alpha -1}z(s)\,ds, \quad \tau \in (0,d]. \end{aligned}$$

Remark 2.12

(see [34])

Under the hypotheses of Lemma 2.11, let z be a nondecreasing function on \((0, d]\). Then we have
$$\begin{aligned} w(\tau )\leq z(\tau )\mathbb{E}_{\alpha } \bigl(k\varGamma (\alpha ) \bigl[ \psi ( \tau )-\psi (0) \bigr]^{\alpha } \bigr), \quad \tau \in (0,d], \end{aligned}$$
where \(\mathbb{E}_{\alpha }\) is the Mittag-Leffler function defined by (6).

3 Main results

In this section, we establish the existence, uniqueness, and Ulam–Hyers–Mittag-Leffler stability.

We impose the following conditions.
\((H_{1})\)

\(f\in C(I\times \mathbb {R}^{2},\mathbb {R})\), \(g\in C(I,[-h,d])\), \(g( \tau )\leq \tau \), \(h>0\).

\((H_{2})\)
There exists \(L_{f}>0\) such that
$$ \bigl\vert f(\tau ,u_{1},u_{2})-f(\tau ,v_{1},v_{2}) \bigr\vert \leq L_{f}\sum _{i=1}^{2} \vert u _{i}-v_{i} \vert \quad \text{for all }\tau \in I,u_{i},v_{i}\in \mathbb {R},i=1,2. $$
\((H_{3})\)
We have the inequality
$$ \frac{2L_{f}\varGamma (\gamma )(\psi (d)-\psi (0))^{\alpha }}{\varGamma (\gamma +\alpha )}< 1. $$

Theorem 3.1

Assume that \((H_{1})\), \((H_{2})\), and \((H_{3})\) are satisfied. Then
  1. (i)

    (2)(4) has a unique solution in \(C[-h,d] \cap C_{1-\gamma ;\psi }[c,d]\).

     
  2. (ii)

    (2) is Ulam–Hyers–Mittag-Leffler stable.

     

Proof

From Lemma 2.9 we get that (2)–(4) is equivalent to the following system:
$$ y(\tau )= \textstyle\begin{cases} \varphi (\tau ) , & \tau \in [-h,0],\\ \frac{(\psi (\tau )-\psi (0))^{ \gamma -1}}{\varGamma (\gamma )}y_{0} \\ \quad{} +\frac{1}{\varGamma (\alpha )}\int _{0} ^{\tau }\psi '(s)(\psi (\tau )-\psi (s))^{\alpha -1}f(s,y(s),y(g(s)))\,ds, & \tau \in (0,d]. \end{cases} $$
(8)
The existence of a solution for (8) can be turned into a fixed point problem in \(X:=C[-h,d]\) for the operator \(T_{f}\) defined by
$$ T_{f}(x) (\tau )= \textstyle\begin{cases} \varphi (\tau ) , & \tau \in [-h,0],\\ \frac{(\psi (\tau )-\psi (0))^{\gamma -1}}{\varGamma (\gamma )}y_{0} \\ \quad{} +\frac{1}{\varGamma (\alpha )}\int _{0}^{\tau }\psi '(s)( \psi (\tau )-\psi (s))^{\alpha -1}f(s,y(s),y(g(s)))\,ds, &\tau \in (0,d]. \end{cases} $$
(9)
Note that for any continuous function f, \(T_{f}\) is also continuous. Indeed,
$$\begin{aligned}& \bigl\vert T_{f}(x) (\tau )-T_{f}(x) (\tau _{0}) \bigr\vert \\& \quad = \biggl\vert \frac{(\psi (\tau )-\psi (0))^{ \gamma -1}}{\varGamma (\gamma )}y_{0}+ \frac{1}{\varGamma (\alpha )} \int _{0} ^{\tau }\psi '(s) \bigl(\psi ( \tau )-\psi (s) \bigr)^{\alpha -1}f \bigl(s,y(s),y \bigl(g(s) \bigr) \bigr)\,ds \\& \quad\quad {} -\frac{(\psi (\tau _{0})-\psi (0))^{\gamma -1}}{\varGamma (\gamma )}y _{0}-\frac{1}{\varGamma (\alpha )} \int _{0}^{\tau _{0}}\psi '(s) \bigl(\psi ( \tau _{0})-\psi (s) \bigr)^{\alpha -1}f \bigl(s,y(s),y \bigl(g(s) \bigr) \bigr)\,ds \biggr\vert \\& \quad \rightarrow 0 \end{aligned}$$
as \(\tau \rightarrow \tau _{0}\).
Next, we show \(T_{f}\) defined in (9) is a contraction mapping on \(X:=C[-h,d]\) with respect to \(\Vert \cdot \Vert _{C_{1-\gamma ;\psi }[0,d]}\). Consider \(T_{f}:X \rightarrow X\) defined in (9). For \(\tau \in [-h,0]\), we have
$$ \bigl\vert T_{f}(x) (\tau )-T_{f}(y) (\tau ) \bigr\vert =0, \quad x,y\in C \bigl([-h,0],\mathbb {R}\bigr). $$
For all \(\tau \in (0,d]\), we have
$$\begin{aligned}& \bigl\vert T_{f}(x) (\tau )-T_{f}(y) (\tau ) \bigr\vert \\& \quad \leq \frac{1}{\varGamma (\alpha )} \int _{0}^{\tau }\psi '(s) \bigl(\psi ( \tau )-\psi (s) \bigr)^{\alpha -1} \bigl\vert f \bigl(s,x(s),x \bigl(g(s) \bigr) \bigr)-f \bigl(s,y(s),y \bigl(g(s) \bigr) \bigr) \bigr\vert \,ds \\& \quad \leq \frac{L_{f}}{\varGamma (\alpha )} \int _{0}^{\tau }\psi '(s) \bigl(\psi ( \tau )-\psi (s) \bigr)^{\alpha -1} \bigl(\psi (s)-\psi (0) \bigr)^{\gamma -1} \bigl\{ \bigl(\psi (s)- \psi (0) \bigr)^{1-\gamma } \bigl[ \bigl\vert x(s)-y(s) \bigr\vert \\& \quad \quad {} + \bigl\vert x \bigl(g(s)-y \bigl(g(s) \bigr) \bigr) \bigr\vert \bigr] \bigr\} \,ds \\& \quad \leq \frac{L_{f}}{\varGamma (\alpha )} \int _{0}^{\tau }\psi '(s) \bigl(\psi ( \tau )-\psi (s) \bigr)^{\alpha -1} \bigl(\psi (s)-\psi (0) \bigr)^{\gamma -1} \\& \quad \quad {}\times \Bigl[\max_{s\in [0,d]} \bigl\vert \bigl(\psi (s)-\psi (0) \bigr)^{1-\gamma } \bigl(x(s)-y(s) \bigr) \bigr\vert \\& \quad \quad {} + \max_{s\in [0,d]} \bigl\vert \bigl(\psi (s)-\psi (0) \bigr)^{1-\gamma }x \bigl(g(s)-y \bigl(g(s) \bigr) \bigr) \bigr\vert \Bigr] \,ds \\& \quad \leq \frac{2L_{f}}{\varGamma (\alpha )} \Vert x-y \Vert _{C_{1-\gamma ;\psi }[0,d]} \int _{0}^{\tau }\psi '(s) \bigl(\psi ( \tau )-\psi (s) \bigr)^{\alpha -1} \bigl(\psi (s)- \psi (0) \bigr)^{\gamma -1} \,ds \\& \quad = \frac{2L_{f}(\psi (\tau )-\psi (0))^{\alpha +\gamma -1}}{\varGamma ( \alpha )}\frac{\varGamma (\gamma )\varGamma (\alpha )}{\varGamma (\gamma + \alpha )} \Vert x-y \Vert _{C_{1-\gamma ;\psi }[0,d]}, \end{aligned}$$
which implies that
$$ \bigl\Vert T_{f}(x)-T_{f}(y) \bigr\Vert _{C_{1-\gamma ;\psi }[0,d]}\leq \frac{2L_{f} \varGamma (\gamma )(\psi (d)-\psi (0))^{\alpha }}{\varGamma (\alpha +\gamma )} \Vert x-y \Vert _{C_{1-\gamma ;\psi }[0,d]}. $$
Thus \(T_{f}\) is a contraction (via the norm \(\Vert \cdot \Vert _{C_{1-\gamma ;\psi }[0,d]}\) on X). Now apply the Banach contraction principle to establish (i).
Now we prove (ii). Let \(y\in C[-h,0]\cap C_{1-\gamma ;\psi }[0,d]\) be a solution to (2). We denote by \(x\in C[-h,0]\cap C _{1-\gamma ;\psi }[0,d]\) the unique solution to problem (1). Now
$$ x(\tau )= \textstyle\begin{cases} \varphi (\tau ), &\tau \in [-h,0],\\ \frac{(\psi (\tau )-\psi (0))^{\gamma -1}}{\varGamma (\gamma )}y_{0} \\ \quad{} +\frac{1}{\varGamma (\alpha )}\int _{0}^{\tau }\psi '(s)( \psi (\tau )-\psi (s))^{\alpha -1}f(s,y(s),y(g(s)))\,ds, &\tau \in (0,d]. \end{cases} $$
From Remark 2.10 we have
$$\begin{aligned} \begin{aligned}[b] & \biggl\vert y(\tau )- \frac{(\psi (\tau )-\psi (0))^{\gamma -1}}{\varGamma (\gamma )}y_{0}- \frac{1}{ \varGamma (\alpha )} \int _{0}^{\tau }\psi '(s) \bigl(\psi ( \tau )-\psi (s) \bigr)^{ \alpha -1}f \bigl(s,y(s),y \bigl(g(s) \bigr) \bigr)\,ds \biggr\vert \\ &\quad \leq \varepsilon \mathbb{E}_{\alpha } \bigl( \bigl( \psi (\tau )- \psi (0) \bigr)^{\alpha } \bigr) \end{aligned} \end{aligned}$$
(10)
for \(\tau \in (0,d]\) and note that \(\vert y(\tau )-x(\tau )\vert =0\) for \(\tau \in [-h,0]\).
For all \(\tau \in (0,d]\), it follows from \((H_{2})\) and (10) that
$$\begin{aligned}& \bigl\vert y(\tau )-x(\tau ) \bigr\vert \\& \quad \leq \biggl\vert y(\tau )- \frac{(\psi (\tau )-\psi (0))^{ \gamma -1}}{\varGamma (\gamma )}y_{0}-\frac{1}{\varGamma (\alpha )} \int _{0} ^{\tau }\psi '(s) \bigl(\psi ( \tau )-\psi (s) \bigr)^{\alpha -1}f \bigl(s,y(s),y \bigl(g(s) \bigr) \bigr)\,ds \biggr\vert \\& \quad \quad {} + \biggl\vert \frac{1}{\varGamma (\alpha )} \int _{0}^{\tau }\psi '(s) \bigl(\psi ( \tau )- \psi (s) \bigr)^{\alpha -1}f \bigl(s,y(s),y \bigl(g(s) \bigr) \bigr) \,ds \\& \quad \quad {} -\frac{1}{\varGamma (\alpha )} \int _{0}^{\tau }\psi '(s) \bigl(\psi ( \tau )- \psi (s) \bigr)^{\alpha -1}f \bigl(s,x(s),x \bigl(g(s) \bigr) \bigr) \,ds \biggr\vert \\& \quad \leq \varepsilon \mathbb{E}_{\alpha } \bigl( \bigl(\psi (\tau )-\psi (0) \bigr)^{ \alpha } \bigr) \\& \quad \quad {} +\frac{L_{f}}{\varGamma (\alpha )} \int _{0}^{\tau }\psi '(s) \bigl(\psi ( \tau )-\psi (s) \bigr)^{\alpha -1} \bigl[ \bigl\vert y(s)-x(s) \bigr\vert + \bigl\vert y \bigl(g(s) \bigr)-x \bigl(g(s) \bigr) \bigr\vert \bigr]\,ds. \end{aligned}$$
(11)
For all \(w\in C([-h,d],\mathbb {R}_{+})\), consider the operator
$$ T_{1}: C \bigl([-h,d],\mathbb {R}_{+} \bigr)\rightarrow C \bigl([-h,d],\mathbb {R}_{+} \bigr) $$
defined by
$$ T_{1}(w) (\tau )= \textstyle\begin{cases} 0, &\tau \in [-h,0],\\ \varepsilon \mathbb{E}_{\alpha }((\psi (\tau )- \psi (0))^{\alpha }) \\ \quad{} +\frac{L_{f}}{\varGamma (\alpha )}(\int _{0}^{\tau } \psi '(s)(\psi (\tau )-\psi (s))^{\alpha -1}w(s)\,ds\\ \quad{} + \int _{0}^{ \tau }\psi '(s)(\psi (\tau )-\psi (s))^{\alpha -1}w(g(s))\,ds), & \tau \in (0,d]. \end{cases} $$
We prove that \(T_{1}\) is a Picard operator. For all \(\tau \in [0,d]\), it follows from \((H_{2})\) that
$$\begin{aligned} \bigl\vert T_{1}(w) (\tau )-T_{1} \bigl(z(\tau ) \bigr) \bigr\vert \leq &\frac{2L_{f}\varGamma (\gamma )( \psi (\tau )-\psi (0))^{\alpha +\gamma -1}}{\varGamma (\alpha +\gamma )} \Vert w-z \Vert _{C_{1-\gamma ;\psi }[0,d]} \end{aligned}$$
for all \(w,z\in C([-h,d],\mathbb {R})\). Then we obtain
$$ \bigl\Vert T_{1}(w)-T_{1}(z) \bigr\Vert _{C_{1-\gamma ;\psi }[0,d]}\leq \frac{2L_{f} \varGamma (\gamma )(\psi (d)-\psi (0))^{\alpha }}{\varGamma (\alpha +\gamma )} \Vert w-z \Vert _{C_{1-\gamma ;\psi }[0,d]} $$
for all \(w,z\in C([-h,d],\mathbb {R})\). Thus \(T_{1}\) is a contraction (via the norm \(\Vert \cdot \Vert _{C_{1-\gamma ;\psi }[0,d]}\) on \(C([-h,d],\mathbb {R})\)).
Applying the Banach contraction principle to \(T_{1}\), we see that \(T_{1}\) is a Picard operator and \(F_{T_{1}}={w^{*}}\). Then, for all \(\tau \in [0,d]\), we have
$$\begin{aligned} w^{*}(\tau ) \,{\big(} =&T_{1} w^{*}(\tau ) \big) \\ =&\varepsilon \mathbb{E}_{\alpha } \bigl( \bigl(\psi ( \tau )-\psi (0) \bigr)^{\alpha } \bigr) \\ & {} +\frac{L_{f}}{\varGamma (\alpha )} \biggl( \int _{0}^{\tau }\psi '(s) \bigl(\psi ( \tau )-\psi (s) \bigr)^{\alpha -1}w^{*}(s)\,ds \\ & {}+ \int _{0}^{\tau }\psi '(s) \bigl( \psi ( \tau )-\psi (s) \bigr)^{\alpha -1}w^{*} \bigl(g(s) \bigr)\,ds \biggr). \end{aligned}$$
Next, we show that the solution \(w^{*}\) is increasing. For all \(0\leq \tau _{1}< \tau _{2}\leq d\) (letting \(m:=\min_{s\in [0,d]}[w^{*}(s)+w^{*}(g(s))]\in \mathbb {R}_{+}\)), we have
$$\begin{aligned}& w^{*}(\tau _{2})-w^{*}(\tau _{1}) \\& \quad = \varepsilon \bigl[ \mathbb{E}_{\alpha } \bigl( \bigl( \psi (\tau _{2})-\psi (0) \bigr)^{\alpha } \bigr)-\mathbb{E}_{\alpha } \bigl( \bigl(\psi (\tau _{1})-\psi (0) \bigr)^{\alpha } \bigr) \bigr] \\& \quad \quad {} +\frac{L_{f}}{\varGamma (\alpha )} \int _{0}^{\tau _{1}}\psi '(s) \bigl[ \bigl( \psi ( \tau _{2})-\psi (s) \bigr)^{\alpha -1}- \bigl(\psi (\tau _{1})-\psi (s) \bigr)^{\alpha -1} \bigr](w ^{*}(s)+w^{*} \bigl(g(s) \bigr)\,ds \\& \quad \quad {} +\frac{L_{f}}{\varGamma (\alpha )} \int _{\tau _{1}}^{\tau _{2}}\psi '(s) \bigl( \psi ( \tau _{2})-\psi (s) \bigr)^{\alpha -1}(w^{*}(s)+w^{*} \bigl(g(s) \bigr)\,ds \\& \quad \geq \varepsilon \bigl[ \mathbb{E}_{\alpha } \bigl( \bigl(\psi (\tau _{2})-\psi (0) \bigr)^{ \alpha } \bigr)-\mathbb{E}_{\alpha } \bigl( \bigl(\psi (\tau _{1})-\psi (0) \bigr)^{\alpha } \bigr) \bigr] \\& \quad \quad {} +\frac{mL_{f}}{\varGamma (\alpha )} \int _{0}^{\tau _{1}}\psi '(s) \bigl[ \bigl( \psi (\tau _{2})-\psi (s) \bigr)^{\alpha -1}- \bigl(\psi (\tau _{1})-\psi (s) \bigr)^{ \alpha -1} \bigr]\,ds \\& \quad \quad {} +\frac{mL_{f}}{\varGamma (\alpha )} \int _{\tau _{1}}^{\tau _{2}}\psi '(s) \bigl( \psi ( \tau _{2})-\psi (s) \bigr)^{\alpha -1}\,ds \\& \quad = \varepsilon \bigl[ \mathbb{E}_{\alpha } \bigl( \bigl(\psi (\tau _{2})-\psi (0) \bigr)^{ \alpha } \bigr)-\mathbb{E}_{\alpha } \bigl( \bigl(\psi (\tau _{1})-\psi (0) \bigr)^{\alpha } \bigr) \bigr] \\& \quad \quad {} +\frac{mL_{f}}{\varGamma (\alpha +1)} \bigl[ \bigl(\psi (\tau _{2})-\psi (0) \bigr)^{ \alpha })- \bigl(\psi (\tau _{1})-\psi (0) \bigr)^{\alpha }) \bigr] \\& \quad > 0. \end{aligned}$$
Thus \(w^{*}\) is increasing, so \(w^{*}(g(\tau ))\leq w^{*}(\tau )\) since \(g(\tau )\leq \tau \) and
$$ w^{*}(\tau )\leq \varepsilon \mathbb{E}_{\alpha } \bigl( \bigl( \psi (\tau )- \psi (0) \bigr)^{\alpha } \bigr)+\frac{2L_{f}}{\varGamma (\alpha )} \int _{0}^{\tau } \psi '(s) \bigl(\psi ( \tau )-\psi (s) \bigr)^{\alpha -1}w^{*}(s)\,ds. $$
Using Lemma 2.11 and Remark 2.12, we obtain
$$\begin{aligned} w^{*}(\tau ) \leq &\varepsilon \mathbb{E}_{\alpha } \bigl( \bigl( \psi (\tau )- \psi (0) \bigr)^{\alpha } \bigr)\mathbb{E}_{\alpha } \bigl(2L_{f} \bigl(\psi (\tau )-\psi (0) \bigr)^{ \alpha } \bigr) \quad \bigl(\tau \in [0,d] \bigr) \\ \leq & \varepsilon \mathbb{E}_{\alpha } \bigl( \bigl(\psi (\tau )-\psi (0) \bigr)^{ \alpha } \bigr)\mathbb{E}_{\alpha } \bigl(2L_{f} \bigl( \psi (d)-\psi (0) \bigr)^{\alpha } \bigr) \\ =&c_{\mathbb{E}_{\alpha }}\varepsilon \mathbb{E}_{\alpha } \bigl( \bigl(\psi (\tau )-\psi (0) \bigr)^{\alpha } \bigr), \end{aligned}$$
where \(c_{\mathbb{E}_{\alpha }}:= \mathbb{E}_{\alpha }(2L_{f}(\psi (d)-\psi (0))^{\alpha })\).
In particular, if \(w=\vert y-x\vert \), from (11), \(w\leq T_{1}w\) by Lemma 2.8 we obtain \(w\leq w^{*}\), where \(T_{1}\) is an increasing Picard operator. As a result, we get
$$ \bigl\vert y(\tau )-x(\tau ) \bigr\vert \leq c_{E_{\alpha }}\varepsilon \mathbb{E}_{\alpha } \bigl( \bigl(\psi (\tau )-\psi (0) \bigr)^{\alpha } \bigr), \quad \tau \in [-h,d], $$
and thus (2) is Ulam–Hyers–Mittag-Leffler stable. □
Now we change \((H_{3})\) to
\((H_{4})\)
We have the inequality
$$ \frac{2L_{f}\varGamma (\gamma )e^{\theta (\psi (d)-\psi (0))}(\psi (d)-\psi (0))^{\alpha }}{\varGamma (\alpha +\gamma )}< 1 , \quad \theta >0. $$

Theorem 3.2

Assume that \((H_{1})\), \((H_{2})\), and \((H_{4})\) are satisfied. Then
  1. (i)

    (2)(4) has a unique solution in \(C[-h,d]\cap C_{1-\gamma ;\psi }[0,d]\).

     
  2. (ii)

    (2) is Ulam–Hyers–Mittag-Leffler stable.

     

Proof

As in Theorem 3.1, we need only prove that \(T_{f}\) defined as before is a contraction on X (via the norm \(\Vert \cdot \Vert _{B}\)). Since the process is standard, we only give the main difference in the proof as follows: For all \(\tau \in (0,d]\), we have
$$\begin{aligned}& \bigl\vert T_{f}(x) (\tau )-T_{f}(y) (\tau ) \bigr\vert \\& \quad \leq \frac{1}{\varGamma (\alpha )} \int _{0}^{\tau }\psi '(s) \bigl(\psi ( \tau )-\psi (s) \bigr)^{\alpha -1} \bigl\vert f \bigl(s,x(s),x \bigl(g(s) \bigr) \bigr)-f \bigl(s,y(s),y \bigl(g(s) \bigr) \bigr) \bigr\vert \,ds \\& \quad \leq \frac{L_{f}}{\varGamma (\alpha )} \int _{0}^{\tau }\psi '(s) \bigl(\psi ( \tau )-\psi (s) \bigr)^{\alpha -1} \bigl( \bigl\vert x(s)-y(s) \bigr\vert + \bigl\vert x \bigl(g(s) \bigr)-y \bigl(g(s) \bigr) \bigr\vert \bigr) \\& \quad \leq \frac{L_{f}}{\varGamma (\alpha )} \int _{0}^{\tau }\psi '(s) \bigl(\psi ( \tau )-\psi (s) \bigr)^{\alpha -1} \bigl(\psi (s)-\psi (0) \bigr)^{\gamma -1}e^{\theta (\psi (s)-\psi (0))} \\& \quad \quad {}\times\Bigl\{ \max_{0\leq s\leq d} \bigl(\psi (s)-\psi (0) \bigr)^{1-\gamma }e^{- \theta (\psi (s)-\psi (0))} \bigl( \bigl\vert x(s)-y(s) \bigr\vert + \bigl\vert x \bigl(g(s) \bigr)-y \bigl(g(s) \bigr) \bigr\vert \bigr) \Bigr\} \,ds \\& \quad \leq \frac{2L_{f}}{\varGamma (\alpha )} \Vert x-y \Vert _{B} \int _{0}^{\tau } \psi '(s) \bigl(\psi ( \tau )-\psi (s) \bigr)^{\alpha -1} \bigl(\psi (s)-\psi (0) \bigr)^{ \gamma -1}e^{\theta (\psi (s)-\psi (0))} \,ds \\& \quad \leq \frac{2L_{f}}{\varGamma (\alpha )} \Vert x-y \Vert _{B}e^{\theta (\psi (d)- \psi (0))} \int _{0}^{\tau }\psi '(s) \bigl(\psi ( \tau )-\psi (s) \bigr)^{\alpha -1} \bigl( \psi (s)-\psi (0) \bigr)^{\gamma -1} \,ds \\& \quad \leq \frac{2L_{f}\varGamma (\gamma )e^{\theta (\psi (d)-\psi (0))}( \psi (d)-\psi (0))^{\alpha +\gamma -1}}{\varGamma (\alpha +\gamma )} \Vert x-y \Vert _{B}. \end{aligned}$$
Then
$$ \bigl\Vert T_{f}(x)-T_{f}(y) \bigr\Vert _{B}\leq \frac{2L_{f}\varGamma (\gamma )e^{\theta (\psi (d)-\psi (0))}(\psi (d)-\psi (0))^{\alpha }}{\varGamma (\alpha + \gamma )} \Vert x-y \Vert _{B}. $$
Thus \(T_{f}\) is a contraction (via the norm \(\Vert \cdot \Vert _{B}\) on X). □

4 Examples

In this section, we give two examples illustrating our main results.

Example 4.1

Consider the fractional-order system
$$ \textstyle\begin{cases} {}^{H}\mathbb{D}^{{\frac{1}{2}, \frac{1}{2}};e^{\tau }}_{0^{+}}x(\tau ) =\frac{1}{4}\frac{x^{2}( \tau -1)}{1+x^{2}(\tau -1)}+\frac{1}{4}\arctan (x(\tau )), \quad \tau \in (0,1],\\ I^{{1-\gamma };e^{\tau }}_{0^{+}}x(0^{+}) =x_{0},\\ x( \tau )=0,\quad \tau \in [-h,0], \end{cases} $$
(12)
and the following inequality
$$ \bigl\vert {}^{H}\mathbb{D}^{{\frac{1}{2}, \frac{1}{2}};e^{\tau }}_{0^{+}}x(\tau )-f \bigl(\tau ,y(\tau ),y(\tau -1) \bigr) \bigr\vert \leq \varepsilon E_{\frac{1}{2}} \bigl( \bigl(e^{\tau }-1 \bigr)^{\frac{1}{2}} \bigr). $$
Let \(\alpha =\frac{1}{2}\), \(\beta =\frac{1}{2}\). Then \(\gamma = \alpha +\beta (1-\alpha )=\frac{3}{4}\), \(d=1\), \(\psi (\cdot )=e^{ \cdot }\), \(g(\cdot )=\cdot -1\), \(f(\cdot ,x(\cdot ),g(x(\cdot )))= \frac{1}{4}\frac{x^{2}(\cdot -1)}{1+x^{2}(\cdot -1)}+\frac{1}{4} \arctan (x(\cdot ))\), and \(L_{f}=\frac{1}{4}\). Thus,
$$ \frac{2L_{f}\varGamma (\gamma )(\psi (d)-\psi (0))^{\alpha }}{\varGamma ( \alpha +\gamma )}\approx 0.8861< 1. $$
Now all the assumptions in Theorem 3.1 are satisfied, so problem (12) has a unique solution, and the first equation in (12) is Ulam–Hyers–Mittag-Leffler stable with
$$ \bigl\vert y(\tau )-x(\tau ) \bigr\vert \leq c_{ \mathbb{E}_{\frac{1}{2}}}\varepsilon \mathbb{E}_{\frac{1}{2}} \bigl( \bigl(e^{\tau }-1 \bigr)^{\frac{1}{2}} \bigr), \quad \tau \in [-1,1], $$
where \(c_{\mathbb{E}_{\frac{1}{2}}}= \mathbb{E}_{\frac{1}{2}}(\frac{\sqrt{e-1}}{2})\).

Example 4.2

Consider the fractional-order system
$$ \textstyle\begin{cases} {}^{H}\mathbb{D}^{{\frac{1}{3}, \frac{1}{4}};\tau ^{2}}_{0^{+}}x(\tau -2) =\frac{1}{5}\frac{x^{2}( \tau -2)}{1+x^{2}(\tau -2)}+\frac{1}{5}\sin (x(\tau -2)), \quad \tau \in I=(0,1],\\ I^{{1-\gamma };\tau ^{2}}_{0^{+}}x(0^{+}) =x_{0},\\ x( \tau )=0,\quad \tau \in [-1,0], \end{cases} $$
(13)
and the inequality
$$ \bigl\vert {}^{H}\mathbb{D}^{{\frac{1}{3}, \frac{1}{4}};\tau ^{2}}_{0^{+}}x(\tau )-f \bigl(\tau ,y(\tau ),y(\tau -1) \bigr) \bigr\vert \leq \varepsilon \mathbb{E}_{\frac{1}{3}} \bigl(\tau ^{\frac{2}{3}} \bigr). $$
Following Theorem 3.2, let \(\alpha =\frac{1}{3}\) and \(\beta =\frac{1}{4}\). Then \(\gamma =\alpha +\beta (1-\alpha )= \frac{1}{2}\). Let \(d=1\), \(\theta =\frac{1}{3}\), \(\psi (\cdot )=\cdot ^{2}\), and \(L_{f}=\frac{1}{5}\). Thus
$$ \frac{2L_{f}\varGamma (\gamma )e^{\theta (\psi (d)-\psi (0))}(\psi (d)- \psi (0))^{\alpha }}{\varGamma (\alpha +\gamma )} \approx 0.8766< 1. $$
Now all the assumptions in Theorem 3.2 are satisfied, so (13) has a unique solution, and the first equation in (13) is Ulam–Hyers–Mittag-Leffler stable with
$$ \bigl\vert y(\tau )-x(\tau ) \bigr\vert \leq c_{ {\mathbb{E}}_{\frac{1}{3}}}\varepsilon \mathbb{E}_{\frac{1}{3}} \bigl(\tau ^{\frac{2}{3}} \bigr), \quad \tau \in [-1,1], $$
where \(c_{{\mathbb{E}}_{\frac{1}{3}}}= \mathbb{E}_{\frac{1}{3}}(\frac{2}{5})\).

Declarations

Funding

This work is partially supported by Training Object of High Level and Innovative Talents of Guizhou Province ((2016)4006), Science and Technology Program of Guizhou Province ([2017]5788-10), and Major Research Project of Innovative Group in Guizhou Education Department ([2018]012).

Authors’ contributions

All authors read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors’ Affiliations

(1)
College of Science, Guizhou Institute of Technology, Guiyang, China
(2)
Department of Mathematics, Guizhou University, Guiyang, China
(3)
School of Mathematical Sciences, Qufu Normal University, Qufu, China
(4)
School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, Ireland

References

  1. Podlubny, I.: Fractional Differential Equations. Mathematics in Science and Engineering, vol. 198. Academic Press, San Diego (1999) MATHGoogle Scholar
  2. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006) MATHGoogle Scholar
  3. Abbas, S., Benchohra, M., Darwish, M.A.: New stability results for partial fractional differential inclusions with not instantaneous impulses. Fract. Calc. Appl. Anal. 18, 172–191 (2015) MathSciNetView ArticleGoogle Scholar
  4. Abbas, S., Benchohra, M.: Uniqueness and Ulam stabilities results for partial fractional differential equations with not instantaneous impulses. Appl. Math. Comput. 257, 190–198 (2015) MathSciNetMATHGoogle Scholar
  5. Li, M., Wang, J.: Exploring delayed Mittag-Leffler type matrix functions to study finite time stability of fractional delay differential equations. Appl. Math. Comput. 324, 254–265 (2018) MathSciNetGoogle Scholar
  6. Liu, S., Wang, J., Zhou, Y., Feckan, M.: Iterative learning control with pulse compensation for fractional differential equations. Math. Slovaca 68, 563–574 (2018) MathSciNetView ArticleGoogle Scholar
  7. Wang, J., Ibrahim, A.G., O’Regan, D.: Topological structure of the solution set for fractional non-instantaneous impulsive evolution inclusions. J. Fixed Point Theory Appl. 20, Article ID 59 (2018) MathSciNetView ArticleGoogle Scholar
  8. Shah, K., Wang, J., Khalil, H., Khan, R.A.: Existence and numerical solutions of a coupled system of integral BVP for fractional differential equations. Adv. Differ. Equ. 2018, 149 (2018) MathSciNetView ArticleGoogle Scholar
  9. Luo, D., Wang, J., Shen, D.: Learning formation control for fractional-order multi-agent systems. Math. Methods Appl. Sci. 41, 5003–5014 (2018) MathSciNetView ArticleGoogle Scholar
  10. Peng, S., Wang, J., Yu, X.: Stable manifolds for some fractional differential equations. Nonlinear Anal., Model. Control 23, 642–663 (2018) MathSciNetView ArticleGoogle Scholar
  11. Zhang, J., Wang, J.: Numerical analysis for a class of Navier–Stokes equations with time fractional derivatives. Appl. Math. Comput. 336, 481–489 (2018) MathSciNetView ArticleGoogle Scholar
  12. Zhu, B., Liu, L., Wu, Y.: Local and global existence of mild solutions for a class of nonlinear fractional reaction–diffusion equation with delay. Appl. Math. Lett. 61, 73–79 (2016) MathSciNetView ArticleGoogle Scholar
  13. Wang, Y., Liu, L., Wu, Y.: Positive solutions for a nonlocal fractional differential equation. Nonlinear Anal. 74, 3599–3605 (2011) MathSciNetView ArticleGoogle Scholar
  14. Zhang, X., Liu, L., Wu, Y.: Existence results for multiple positive solutions of nonlinear higher-order perturbed fractional differential equations with derivatives. Appl. Math. Comput. 219, 1420–1433 (2012) MathSciNetMATHGoogle Scholar
  15. Wang, Y., Liu, L., Zhang, X., Wu, Y.: Positive solutions of a fractional semipositone differential system arising from the study of HIV infection models. Appl. Math. Comput. 258, 312–324 (2015) MathSciNetMATHGoogle Scholar
  16. Zhang, X., Liu, L., Wu, Y.: Variational structure and multiple solutions for a fractional advection-dispersion equation. Comput. Math. Appl. 68, 1794–1805 (2014) MathSciNetView ArticleGoogle Scholar
  17. Zhang, X., Mao, C., Liu, L., Wu, Y.: Exact iterative solution for an abstract fractional dynamic system model for bioprocess. Qual. Theory Dyn. Syst. 16, 205–222 (2017) MathSciNetView ArticleGoogle Scholar
  18. Zhang, X., Liu, L., Wu, Y., Wiwatanapataphee, B.: Nontrivial solutions for a fractional advection dispersion equation in anomalous diffusion. Appl. Math. Lett. 66, 1–8 (2017) MathSciNetView ArticleGoogle Scholar
  19. Jiang, J., Liu, L., Wu, Y.: Multiple positive solutions of singular fractional differential system involving Stieltjes integral conditions. Electron. J. Qual. Theory Differ. Equ. 2012, 43 (2012) MathSciNetView ArticleGoogle Scholar
  20. Wang, J., Zhou, Y., Fečkan, M.: Nonlinear impulsive problems for fractional differential equations and Ulam stability. Comput. Math. Appl. 64, 3389–3405 (2012) MathSciNetView ArticleGoogle Scholar
  21. Abbas, S., Benchohra, M., Graef, J.R., Henderson, J.: Implicit Fractional Differential and Integral Equations: Existence and Stability, vol. 26. de Gruyter, London (2018) View ArticleGoogle Scholar
  22. Otrocol, D., Ilea, V.: Ulam stability for a delay differential equation. Cent. Eur. J. Math. 11, 1296–1303 (2013) MathSciNetMATHGoogle Scholar
  23. Wang, J., Zhang, Y.: Ulam–Hyers–Mittag-Leffler stability of fractional-order delay differential equations. Optimization 63, 1181–1190 (2014) MathSciNetView ArticleGoogle Scholar
  24. Capelas de Oliveira, E., Vanterler da C. Sousa, J.: Ulam–Hyers–Rassias stability for a class of fractional integro-differential equations. Results Math. 73, 111 (2018) MathSciNetView ArticleGoogle Scholar
  25. Vanterler da C. Sousa, J., Capelas de Oliveira, E.: Ulam–Hyers stability of a nonlinear fractional Volterra integro-differential equation. Appl. Math. Lett. 81, 50–56 (2018) MathSciNetView ArticleGoogle Scholar
  26. Vanterler da C. Sousa, J., Kucche, K.D., Capelas de Oliveira, E.: Stability of ψ-Hilfer impulsive fractional differential equations. Appl. Math. Lett. 88, 73–80 (2018) MathSciNetView ArticleGoogle Scholar
  27. Wang, J., Zhou, Y., Fečkan, M.: Nonlinear impulsive problems for fractional differential equations and Ulam stability. Comput. Math. Appl. 64, 3389–3405 (2012) MathSciNetView ArticleGoogle Scholar
  28. Vanterler da C. Sousa, J., Capelas de Oliveira, E.: On the Ulam–Hyers–Rassias stability for nonlinear fractional differential equations using the ψ-Hilfer operator. J. Fixed Point Theory Appl. 20, Article ID 96 (2018) MathSciNetView ArticleGoogle Scholar
  29. Shah, K., Ali, A., Bushnaq, S.: Hyers–Ulam stability analysis to implicit Cauchy problem of fractional differential equations with impulsive conditions. Math. Methods Appl. Sci. 41, 8329–8343 (2018) View ArticleGoogle Scholar
  30. Ali, Z., Zada, A., Shah, K.: Ulam stability to a toppled systems of nonlinear implicit fractional order boundary value problem. Bound. Value Probl. 2018, Article ID 175 (2018) MathSciNetView ArticleGoogle Scholar
  31. Khan, H., Khan, A., Chen, W., Shah, K.: Stability analysis and a numerical scheme for fractional Klein–Gordon equations. Math. Methods Appl. Sci. (2018). https://doi.org/10.1002/mma.5375 View ArticleGoogle Scholar
  32. Ali, S., Shah, K., Jarad, F.: On stable iterative solutions for a class of boundary value problem of nonlinear fractional order differential equations. Math. Methods Appl. Sci. (2018). https://doi.org/10.1002/mma.5407 View ArticleGoogle Scholar
  33. Vanterler da C. Sousa, J., Capelas de Oliveira, E.: On the ψ-Hilfer fractional derivative. Commun. Nonlinear Sci. Numer. Simul. 60, 72–91 (2018) MathSciNetView ArticleGoogle Scholar
  34. Vanterler da C. Sousa, J., Capelas de Oliveira, E.: A Gronwall inequality and the Cauchy-type problem by means of ψ-Hilfer operator (2017). arXiv:1709.03634

Copyright

© The Author(s) 2019

Advertisement