Skip to content

Advertisement

  • Research
  • Open Access

A class of dynamic integral inequalities with mixed nonlinearities and their applications in partial dynamic systems

Advances in Difference Equations20192019:12

https://doi.org/10.1186/s13662-018-1934-y

  • Received: 20 September 2018
  • Accepted: 13 December 2018
  • Published:

Abstract

This paper investigates a class of nonlinear dynamic integral inequalities with mixed nonlinearities in two independent variables. The obtained results can be utilized to study the boundedness of partial dynamic systems on time scales. At the end, an example is presented to illustrate the main results.

Keywords

  • Time scale
  • Integral inequality
  • Mixed nonlinearity

1 Introduction

The theory and application of time scales was introduced by Hilger [1] and Bohner et al. [2]. At present, there exist various research branches of time scales theory such as oscillation [36], stability [7], and boundedness [8]. For the study of time scales theory, integral inequalities are usually used to investigate the boundedness of dynamic systems. In recent years, different types of integral inequalities have been widely studied [926]. For example, the sublinear integral inequality
$$u(t,s)\leq a(t,s)+b(t,s) \int^{t}_{t_{0}} \int^{s}_{s_{0}} \bigl[f(\xi,\tau )u(\xi,\tau)+h(\xi, \tau)u^{\lambda_{1}}\bigl(\sigma(\xi),\tau\bigr) \bigr]\Delta\tau\Delta\xi,\quad 0< \lambda_{1}< 1, $$
was investigated in [11]. Later, Sun et al. [12] studied the integral inequality
$$u(t)\leq a(t)+b(t) \int^{t}_{t_{0}}\bigl[f(s)u(s)+h_{1}(s)u^{\lambda _{1}} \bigl(\sigma(s)\bigr)-h_{2}(s)u^{\lambda_{2}}\bigl(\sigma(s)\bigr) \bigr]\Delta s,\quad 0< \lambda_{1}< 1< \lambda_{2}, $$
which was generalized to the more general nonlinear case by Tian et al. [13]. The following integral inequality
$$\begin{aligned} u^{p}(t) \leq& a(t)+b(t) \int ^{t}_{t_{0}}\bigl[f(s)u^{p}(s)+h_{1}(s)u^{q}(s)-h_{2}(s)u^{r}(s) \bigr]\,ds \\ &{}+c(t)\sum_{t_{0}< t_{i}< t}\beta_{i}x^{m}(t_{i}-0), \quad 0< q< p< r \end{aligned}$$
was considered in [14], and the theoretical results can provide the bounds for a class of dynamic systems with mixed nonlinearities and impulsive effects. Very recently, Boudeliou [25] investigated a class of nonlinear integral inequalities in two independent variables and their applications. Up to now, two dimensional integral inequalities with mixed nonlinearities have received less attention.
In this paper, we investigate the integral inequalities with mixed nonlinearities and forward jump operators, which can be used to estimate the bounds of the solutions to a class of partial dynamic systems on time scales. Consider the integral inequalities
$$\begin{aligned}& \begin{aligned}[b] u^{p}(t,s)&\leq a(t,s)+b(t,s) \int^{t}_{t_{0}} \int^{s}_{s_{0}} \bigl[f(\xi,\tau )u^{q}(\xi, \tau)+h_{1}(\xi,\tau)u^{\lambda_{1}}\bigl(\sigma(\xi),\tau\bigr) \\ &\quad {}-h_{2}(\xi,\tau)u^{\lambda_{2}}\bigl(\sigma(\xi),\tau\bigr) \bigr]\Delta\tau\Delta\xi, \end{aligned} \end{aligned}$$
(1.1)
$$\begin{aligned}& \begin{aligned}[b] u^{p}(t,s)&\leq a(t,s)+b(t,s) \int^{t}_{t_{0}} \int^{s}_{s_{0}} \bigl[f(\xi,\tau )u^{q}(\xi, \tau)+h_{1}(\xi,\tau)u^{\lambda_{1}}\bigl(\sigma(\xi),\tau\bigr) \\ &\quad {}-h_{2}(\xi,\tau)u^{\lambda_{2}}\bigl(\sigma(\xi),\tau \bigr)+h_{3}(\xi ,\tau)u^{\lambda_{3}}\bigl(\xi,\sigma(\tau)\bigr) \\ &\quad {}-h_{4}(\xi,\tau)u^{\lambda_{4}}\bigl(\xi,\sigma(\tau)\bigr) \bigr]\Delta \tau\Delta\xi, \end{aligned} \end{aligned}$$
(1.2)
and
$$\begin{aligned} u^{p}(t,s)&\leq a(t,s)+b(t,s) \int^{t}_{t_{0}} \int^{s}_{s_{0}} \bigl[f(\xi,\tau )u^{q}(\xi, \tau)+h_{1}(\xi,\tau)u^{\lambda_{1}}\bigl(\sigma(\xi),\tau\bigr) \\ &\quad {}-h_{2}(\xi,\tau)u^{\lambda_{2}}\bigl(\sigma(\xi),\tau \bigr)+h_{3}(\xi ,\tau)u^{\lambda_{3}}\bigl(\xi,\sigma(\tau)\bigr) -h_{4}(\xi,\tau)u^{\lambda_{4}}\bigl(\xi,\sigma(\tau)\bigr) \\ &\quad {}+h_{5}(\xi ,\tau)u^{\lambda_{5}}\bigl(\sigma(\xi),\sigma( \tau)\bigr) -h_{6}(\xi,\tau)u^{\lambda_{6}}\bigl(\sigma(\xi),\sigma( \tau)\bigr) \bigr]\Delta\tau\Delta\xi, \end{aligned}$$
(1.3)
where \(p\geq q>0\) and \(0<\lambda_{i}<p<\lambda_{i+1}\) (\(i=1,3,5\)) are real constants, \(u, a, b, f, h_{i}\ (i=1,2,\ldots, 6):\mathbb{T}\times\mathbb{\tilde {T}} \rightarrow\mathbb{R}_{+}\) are rd-continuous functions.
Inequalities (1.1)–(1.3) can be applied to the following partial dynamic system:
$$ u^{\Delta_{t}\Delta_{s}}(t,s)=F \bigl(t,s,u(t,s),u\bigl(\sigma (t),s\bigr),u\bigl(t, \sigma(s)\bigr),u\bigl(\sigma(t),\sigma(s)\bigr) \bigr) $$
(1.4)
with boundary conditions \(u(t,s_{0})=\alpha(t)\), \(u(t_{0},s)=\beta (s)\), and \(u(t_{0},s_{0})=u_{0}\). Integrating (1.4) yields
$$\begin{aligned} u(t,s) =&\alpha(t)+\beta(s)-u_{0} \\ &{}+ \int^{t}_{t_{0}} \int ^{s}_{s_{0}}F \bigl(\xi,\tau,u(\xi,\tau),u\bigl( \sigma(\xi),\tau \bigr),u\bigl(\xi,\sigma(\tau)\bigr),u\bigl(\sigma(\xi),\sigma( \tau)\bigr) \bigr)\Delta \tau\Delta\xi. \end{aligned}$$
It is not difficult to apply the theoretical results to estimate the bounds of the above system.

2 Preliminaries

Let \(\mathbb{R}=(-\infty,+\infty)\) and \(\mathbb{R}_{+}=[0,+\infty )\). Both \(\mathbb{T}\) and \(\mathbb{\tilde{T}}\) are arbitrary time scales. \(\mathbb{T}^{k}\) is defined as follows: if \(\mathbb{T}\) has a left-scattered maximum m, then \(\mathbb{T}^{k}=\mathbb{T}-\{ m\}\); otherwise, \(\mathbb{T}^{k}=\mathbb{T}\). \(C_{\mathrm{rd}}\) and \(C^{+}_{\mathrm{rd}}\) are the sets of all rd-continuous functions and positive rd-continuous functions, respectively. represents the set of all rd-continuous and regressive functions, and \(\Re^{+}=\{p\in\Re:1+\mu (t)p(t)>0, t\in\mathbb{T}\}\). \(\sigma(t)= \inf\{s\in\mathbb{T}:s > t\}\), \(\mu(t)=\sigma(t)-t\), and is defined as \((p\oplus q)(t)=p(t)+q(t)+\mu(t)p(t)q(t)\), \(t\in\mathbb{T}\).

Next, some lemmas are introduced.

Lemma 2.1

Let u be a nonnegative function, \(0<\lambda _{1}<p<\lambda_{2}\), \(h_{1}\geq0\), \(h_{2}> 0\), \(k_{1}>0\), and \(k_{2}\geq 0\). Then, for \(i=1,2\),
$$(-1)^{i+1}h_{i}u^{\lambda_{i}}+(-1)^{i}k_{i}u^{p} \leq\theta _{i}(\lambda_{i},h_{i},k_{i},p), $$
where
$$\theta_{i}(\lambda_{i},h_{i},k_{i},p)=(-1)^{i} \biggl(\frac{\lambda _{i}}{p}-1\biggr) \biggl(\frac{\lambda_{i}}{p}\biggr)^{\frac{\lambda_{i}}{p-\lambda_{i}}} h^{\frac{p}{p-\lambda_{i}}}_{i}k^{\frac{\lambda_{i}}{\lambda_{i}-p}}_{i}. $$

Proof

Define \(F_{i}(u)=(-1)^{i+1}h_{i}u^{\lambda _{i}}+(-1)^{i}k_{i}u^{p}\). Then \(F_{i}(u)\) reaches the maximum value at \(u=(\frac{\lambda_{i}h_{i}}{k_{i}p})^{\frac{1}{p-\lambda_{i}}}\) and
$$(F_{i})_{\max}=(-1)^{i}\biggl(\frac{\lambda_{i}}{p}-1 \biggr) \biggl(\frac{\lambda _{i}}{p}\biggr)^{\frac{\lambda_{i}}{p-\lambda_{i}}} h^{\frac{p}{p-\lambda_{i}}}_{i}k^{\frac{\lambda_{i}}{\lambda _{i}-p}}_{i} \quad \mbox{for } i=1,2. $$
This completes the proof. □

Lemma 2.2

([2])

Assume that \(u, b\in C_{\mathrm{rd}} \), \(a\in \Re^{+}\). Then
$$u^{\Delta}(t)\leq a(t)u(t)+b(t),\quad t\geq t_{0}, t\in \mathbb{T}^{k} $$
implies
$$u(t)\leq u(t_{0})e_{a}(t,t_{0})+ \int^{t}_{t_{0}}b(\tau)e_{a}\bigl(t,\sigma ( \tau)\bigr)\Delta\tau,\quad t\geq t_{0}, t\in\mathbb{T}^{k}. $$

Lemma 2.3

([10])

Let \(a\geq0\) and \(p\geq q>0\). Then, for any \(K>0\),
$$a^{q/p}\leq\frac{q}{p}K^{(q-p)/p}a+\frac{p-q}{p}K^{q/p}. $$

3 Main results

Theorem 3.1

Suppose \(k_{1}(t,s),k_{2}(t,s)\in C^{+}_{\mathrm{rd}}\) are defined on \(\mathbb{T}\times\mathbb{\tilde{T}}\) satisfying \(k_{12}(t,s)=k_{1}(t,s)-k_{2}(t,s)\geq0\) and
$$\mu(t) \int^{s}_{s_{0}}b\bigl(\sigma(t),\tau \bigr)k_{12}(t,\tau)\Delta\tau< 1. $$
Then inequality (1.1) yields
$$ u(t,s)\leq \biggl\{ a(t,s)+b(t,s) \int^{t}_{t_{0}} \bigl(1+\mu(\tau )B_{1}( \tau,s) \bigr)C_{1}(\tau,s)e_{(A_{1}\oplus B_{1})(\tau ,s)}\bigl(t,\sigma(\tau)\bigr) \Delta\tau \biggr\} ^{1/p} $$
(3.1)
for any \(K>0\), \((t,s)\in\mathbb {T}\times\mathbb{\tilde{T}} \), where
$$\begin{aligned}& A_{1}(t,s)=\frac{q}{p}K^{(q-p)/p} \int^{s}_{s_{0}}b(t,\tau )f(t,\tau)\Delta\tau, \\& B_{1}(t,s)=\frac{\int^{s}_{s_{0}}b(\sigma (t),\tau)k_{12}(t,\tau)\Delta\tau}{1-\mu(t)\int ^{s}_{s_{0}}b(\sigma(t),\tau)k_{12}(t,\tau)\Delta\tau}, \end{aligned}$$
and
$$\begin{aligned} C_{1}(t,s)&= \int^{s}_{s_{0}} \biggl[a\bigl(\sigma(t),\tau \bigr)k_{12}(t,\tau)+ \biggl(\frac{q}{p}K^{(q-p)/p}a(t,\tau)+ \frac {p-q}{p}K^{q/p} \biggr)f(t,\tau) \biggr]\Delta\tau \\ &\quad {}+\sum^{2}_{i=1} \int^{s}_{s_{0}}\theta_{i}\bigl( \lambda_{i},h_{i}(t,\tau ),k_{i}(t,\tau),p\bigr) \Delta\tau. \end{aligned}$$

Proof

Based on (1.1) and Lemma 2.1, we obtain
$$\begin{aligned} u^{p}(t,s) \leq& a(t,s)+b(t,s) \int^{t}_{t_{0}} \int^{s}_{s_{0}} \bigl[f(\xi,\tau )u^{q}(\xi, \tau)+h_{1}(\xi,\tau)u^{\lambda_{1}}\bigl(\sigma(\xi),\tau\bigr) \\ &{}-h_{2}(\xi,\tau)u^{\lambda_{2}}\bigl(\sigma(\xi),\tau\bigr) \bigr]\Delta \tau\Delta\xi \\ \leq& a(t,s)+b(t,s) \int^{t}_{t_{0}} \int ^{s}_{s_{0}} \Biggl[f(\xi,\tau)u^{q}(\xi, \tau)+k_{12}(\xi,\tau )u^{p}\bigl(\sigma(\xi),\tau\bigr) \\ &{}+\sum^{2}_{i=1}\theta_{i} \bigl(\lambda_{i},h_{i}(\xi,\tau),k_{i}(\xi , \tau),p\bigr) \Biggr]\Delta\tau\Delta\xi. \end{aligned}$$
Define \(v(t,s)\) by
$$\begin{aligned} v(t,s) =& \int^{t}_{t_{0}} \int^{s}_{s_{0}} \Biggl[f(\xi,\tau )u^{q}(\xi, \tau)+k_{12}(\xi,\tau)u^{p}\bigl(\sigma(\xi),\tau\bigr) \\ &{}+\sum^{2}_{i=1}\theta_{i} \bigl(\lambda_{i},h_{i}(\xi,\tau),k_{i}(\xi , \tau),p\bigr) \Biggr]\Delta\tau\Delta\xi. \end{aligned}$$
It is easy to obtain that \(v(t,s)\geq0\) for \((t,s)\in\mathbb {T}\times\mathbb{\tilde{T}}\), \(v(t,s)\) is nondecreasing with respect to t and s, and
$$ u(t,s)\leq\bigl(a(t,s)+b(t,s)v(t,s)\bigr)^{1/p}. $$
(3.2)
Taking the derivative of \(v(t,s)\) with respect to t, we get
$$\begin{aligned} v^{\Delta_{t}}(t,s) =& \int^{s}_{s_{0}} \Biggl[f(t,\tau )u^{q}(t, \tau)+k_{12}(t,\tau)u^{p}\bigl(\sigma(t),\tau\bigr) \\ &{}+\sum ^{2}_{i=1}\theta_{i}\bigl( \lambda_{i},h_{i}(t,\tau),k_{i}(t,\tau ),p\bigr) \Biggr]\Delta\tau. \end{aligned}$$
(3.3)
Based on Lemma 2.3, for any \(K >0\),
$$\begin{aligned} u^{q}(t,\tau) \leq&\bigl(a(t,\tau)+b(t,\tau)v(t,\tau) \bigr)^{q/p} \\ \leq&\frac {q}{p}K^{(q-p)/p}\bigl(a(t,\tau)+b(t, \tau)v(t,\tau)\bigr)+\frac {p-q}{p}K^{q/p}. \end{aligned}$$
(3.4)
Inequalities (3.2)–(3.4) yield
$$\begin{aligned} v^{\Delta_{t}}(t,s) \leq& \int^{s}_{s_{0}} \biggl[f(t,\tau ) \biggl( \frac{q}{p}K^{(q-p)/p} \bigl(a(t,\tau)+b(t,\tau)v(t,\tau ) \bigr)+ \frac{p-q}{p}K^{q/p} \biggr) \\ &{}+k_{12}(t,\tau) \bigl(a\bigl(\sigma (t),\tau\bigr) +b\bigl( \sigma(t),\tau\bigr)v\bigl(\sigma(t),\tau\bigr) \bigr) \biggr]\Delta\tau \\ &{}+\sum ^{2}_{i=1} \int^{s}_{s_{0}}\theta_{i}\bigl( \lambda_{i},h_{i}(t,\tau ),k_{i}(t,\tau),p\bigr) \Delta\tau \\ \leq& \biggl(\frac{q}{p}K^{(q-p)/p} \int^{s}_{s_{0}}b(t,\tau )f(t,\tau)\Delta\tau \biggr) v(t,s) \\ &{}+ \biggl( \int^{s}_{s_{0}}b\bigl(\sigma (t),\tau \bigr)k_{12}(t,\tau)\Delta\tau \biggr)v\bigl(\sigma(t),s\bigr) \\ &{}+ \int ^{s}_{s_{0}} \biggl[a\bigl(\sigma(t),\tau \bigr)k_{12}(t,\tau)+ \biggl(\frac{q}{p}K^{(q-p)/p}a(t,\tau)+ \frac{p-q}{p}K^{q/p} \biggr)f(t,\tau) \biggr]\Delta\tau \\ &{}+\sum^{2}_{i=1} \int ^{s}_{s_{0}}\theta_{i}\bigl( \lambda_{i},h_{i}(t,\tau),k_{i}(t,\tau ),p\bigr) \Delta\tau \\ =&A_{1}(t,s)v(t,s)+\frac{B_{1}(t,s)}{1+\mu(t)B_{1}(t,s)}v\bigl(\sigma (t),s \bigr)+C_{1}(t,s), \end{aligned}$$
which implies that
$$v^{\Delta_{t}}(t,s)\leq(A_{1}\oplus B_{1}) (t,s)v(t,s)+ \bigl(1+\mu (t)B_{1}(t,s)\bigr)C_{1}(t,s). $$
Based on Lemma 2.2 and \(v(t_{0},s)=0\), we can deduce that
$$v(t,s)\leq \int^{t}_{t_{0}}\bigl(1+\mu(\tau)B_{1}( \tau,s)\bigr)C_{1}(\tau ,s)e_{(A_{1}\oplus B_{1})(\tau,s)}\bigl(t,\sigma(\tau)\bigr) \Delta\tau. $$
This combined with (3.2) yields (3.1). The proof is completed. □

Remark 3.1

Letting \(p=q=1\) and \(h_{2}(t,s)\equiv0\), the inequality in Theorem 3.1 reduces to [11, Theorem 3.1].

Theorem 3.2

Assume \(k_{i}(t,s)\in C^{+}_{\mathrm{rd}}\), \(i=1,2,3,4\), are defined on \(\mathbb{T}\times\mathbb{\tilde{T}}\) satisfying \(k_{12}(t,s)=k_{1}(t,s)-k_{2}(t,s)\geq0\), \(k_{34}(t,s)=k_{3}(t,s)-k_{4}(t,s)\geq0\), and
$$\mu(t) \int^{s}_{s_{0}}b\bigl(\sigma(t),\tau \bigr)k_{12}(t,\tau)\Delta\tau< 1. $$
Then inequality (1.2) implies
$$ u(t,s)\leq \biggl\{ a(t,s)+b(t,s) \int^{t}_{t_{0}} \bigl(1+\mu(\tau )B_{2}( \tau,s) \bigr)C_{2}(\tau,s)e_{(A_{2}\oplus B_{2})(\tau ,s)}\bigl(t,\sigma(\tau)\bigr) \Delta\tau \biggr\} ^{1/p} $$
(3.5)
for any \(K>0\), \((t,s)\in\mathbb {T}\times\mathbb{\tilde{T}}\), where
$$\begin{aligned}& \bar{k}^{\Delta_{\tau}}_{34}(t,\tau)=\max\bigl\{ 0,k^{\Delta_{\tau }}_{34}(t, \tau)\bigr\} , \\& A_{2}(t,s)= \int^{s}_{s_{0}} \biggl(\frac {q}{p}K^{(q-p)/p}b(t, \tau)f(t,\tau)+\frac{k_{34}(t,\sigma(\tau ))b(t,\sigma(\tau))}{1+\mu(\tau)b(t,\sigma(\tau))} +\bar{k}^{\Delta_{\tau}}_{34}(t,\tau) \biggr)\Delta\tau +k_{34}(t,s), \\& B_{2}(t,s)=\frac{\int^{s}_{s_{0}}b(\sigma(t),\tau )k_{12}(t,\tau)\Delta\tau}{1-\mu(t)\int^{s}_{s_{0}}b(\sigma (t),\tau)k_{12}(t,\tau)\Delta\tau}, \end{aligned}$$
and
$$\begin{aligned} C_{2}(t,s) =& \int^{s}_{s_{0}} \biggl[a\bigl(\sigma(t),\tau \bigr)k_{12}(t,\tau)+\frac{a(t,\sigma(\tau))k_{34}(t,\sigma(\tau ))}{1+\mu(\tau)b(t,\sigma(\tau))} \\ &{}+ \biggl(\frac{q}{p}K^{(q-p)/p}a(t,\tau)+\frac {p-q}{p}K^{q/p} \biggr)f(t,\tau) \biggr]\Delta\tau \\ &{}+\sum^{2}_{i=1} \int^{s}_{s_{0}}\theta_{i}\bigl(\lambda _{i},h_{i}(t,\tau),k_{i}(t,\tau),p\bigr)\Delta \tau \\ &{}+\sum^{4}_{i=3} \int ^{s}_{s_{0}}\theta_{i} \biggl( \lambda_{i},h_{i}(t,\tau),\frac{k_{i}(t,\sigma(\tau ))}{1+\mu(\tau)b(t,\sigma(\tau))},p \biggr)\Delta \tau. \end{aligned}$$

Proof

Based on (1.2) and Lemma 2.1, we obtain
$$\begin{aligned} u^{p}(t,s) \leq& a(t,s)+b(t,s) \int^{t}_{t_{0}} \int^{s}_{s_{0}} \bigl[f(\xi,\tau )u^{q}(\xi, \tau)+h_{1}(\xi,\tau)u^{\lambda_{1}}\bigl(\sigma(\xi),\tau\bigr) \\ &{}-h_{2}(\xi,\tau)u^{\lambda_{2}}\bigl(\sigma(\xi),\tau\bigr)+h_{3}(\xi ,\tau)u^{\lambda_{3}}\bigl(\xi,\sigma(\tau)\bigr) -h_{4}(\xi,\tau)u^{\lambda_{4}}\bigl(\xi,\sigma(\tau)\bigr) \bigr] \Delta \tau\Delta\xi \\ \leq& a(t,s)+b(t,s) \int^{t}_{t_{0}} \int^{s}_{s_{0}} \Biggl[f(\xi ,\tau)u^{q}(\xi, \tau)+k_{12}(\xi,\tau)u^{p}\bigl(\sigma(\xi),\tau\bigr) \\ &{}+\frac{k_{34}(\xi,\sigma(\tau))}{1+\mu(\tau)b(\xi,\sigma (\tau))}u^{p}\bigl(\xi,\sigma(\tau)\bigr) +\sum ^{2}_{i=1}\theta_{i}\bigl( \lambda_{i},h_{i}(\xi,\tau),k_{i}(\xi ,\tau),p \bigr) \\ &{}+\sum^{4}_{i=3}\theta_{i} \biggl(\lambda_{i},h_{i}(\xi,\tau), \frac{k_{i}(\xi,\sigma(\tau))}{1+\mu(\tau)b(\xi,\sigma(\tau ))},p \biggr) \Biggr]\Delta\tau\Delta\xi. \end{aligned}$$
Define \(\omega(t,s)\) by
$$\begin{aligned} \omega(t,s) =& \int^{t}_{t_{0}} \int^{s}_{s_{0}} \Biggl[f(\xi ,\tau)u^{q}(\xi, \tau)+k_{12}(\xi,\tau)u^{p}\bigl(\sigma(\xi),\tau\bigr) + \frac{k_{34}(\xi,\sigma(\tau))}{1+\mu(\tau)b(\xi,\sigma(\tau ))}u^{p}\bigl(\xi,\sigma(\tau)\bigr) \\ &{}+\sum^{2}_{i=1}\theta_{i} \bigl(\lambda_{i},h_{i}(\xi,\tau),k_{i}(\xi , \tau),p\bigr) \\ &{}+\sum^{4}_{i=3} \theta_{i} \biggl(\lambda_{i},h_{i}(\xi ,\tau), \frac{k_{i}(\xi,\sigma(\tau))}{1+\mu(\tau)b(t,\sigma(\tau ))},p \biggr) \Biggr]\Delta\tau\Delta\xi. \end{aligned}$$
Then \(\omega(t,s)\geq0\) is nondecreasing with respect to t and s, and
$$ u(t,s)\leq\bigl(a(t,s)+b(t,s)\omega(t,s)\bigr)^{1/p}. $$
(3.6)
Taking the derivative of \(\omega(t,s)\) with respect to t, we have
$$\begin{aligned} \omega^{\Delta_{t}}(t,s) =& \int^{s}_{s_{0}} \Biggl[f(t,\tau )u^{q}(t, \tau)+k_{12}(t,\tau)u^{p}\bigl(\sigma(t),\tau\bigr) + \frac{k_{34}(t,\sigma(\tau))}{1+\mu(\tau)b(t,\sigma(\tau ))}u^{p}\bigl(t,\sigma(\tau)\bigr) \\ &{}+\sum^{2}_{i=1}\theta_{i} \bigl(\lambda_{i},h_{i}(t,\tau),k_{i}(t,\tau),p \bigr) \\ &{}+\sum^{4}_{i=3}\theta_{i} \biggl(\lambda_{i},h_{i}(t,\tau),\frac {k_{i}(t,\sigma(\tau))}{1+\mu(\tau)b(t,\sigma(\tau))},p \biggr) \Biggr]\Delta\tau. \end{aligned}$$
(3.7)
By Lemma 2.3,
$$\begin{aligned} u^{q}(t,\tau) \leq&\bigl(a(t,\tau)+b(t,\tau)\omega(t,\tau) \bigr)^{q/p} \\ \leq& \frac{q}{p}K^{(q-p)/p}\bigl(a(t,\tau)+b(t, \tau)\omega(t,\tau)\bigr) +\frac{p-q}{p}K^{q/p} \end{aligned}$$
(3.8)
for any \(K > 0\). It follows from (3.6)–(3.8) that
$$\begin{aligned} \omega^{\Delta_{t}}(t,s) \leq& \int^{s}_{s_{0}} \biggl[f(t,\tau) \biggl( \frac{q}{p}K^{(q-p)/p}\bigl(a(t,\tau)+b(t,\tau)\omega (t,\tau)\bigr)+ \frac{p-q}{p}K^{q/p} \biggr) \\ &{}+k_{12}(t,\tau) \bigl(a\bigl(\sigma(t),\tau\bigr)+b\bigl( \sigma(t),\tau\bigr)\omega \bigl(\sigma(t),\tau\bigr) \bigr) \\ &{}+\frac{k_{34}(t,\sigma(\tau))}{1+\mu(\tau)b(t,\sigma(\tau ))} \bigl(a\bigl(t,\sigma(\tau)\bigr)+b\bigl(t,\sigma(\tau) \bigr)\omega\bigl(t,\sigma(\tau )\bigr) \bigr) \biggr]\Delta\tau \\ &{}+\sum^{2}_{i=1} \int^{s}_{s_{0}}\theta_{i}\bigl(\lambda _{i},h_{i}(t,\tau),k_{i}(t,\tau),p\bigr)\Delta \tau \\ &{}+\sum^{4}_{i=3} \int^{s}_{s_{0}}\theta_{i} \biggl(\lambda _{i},h_{i}(t,\tau), \frac{k_{i}(t,\sigma(\tau))}{1+\mu(\tau)b(t,\sigma(\tau ))},p \biggr)\Delta\tau \\ \leq& \biggl(\frac{q}{p}K^{(q-p)/p} \int^{s}_{s_{0}}b(t,\tau )f(t,\tau)\Delta\tau \biggr) \omega(t,s) \\ &{}+ \biggl( \int ^{s}_{s_{0}}b\bigl(\sigma(t),\tau \bigr)k_{12}(t,\tau)\Delta\tau \biggr)\omega\bigl(\sigma(t),s\bigr) \\ &{}+ \int^{s}_{s_{0}}\frac{b(t,\sigma(\tau))k_{34}(t,\sigma(\tau ))}{1+\mu(\tau)b(t,\sigma(\tau))}\omega\bigl(t,\sigma( \tau)\bigr)\Delta \tau \\ &{}+ \int^{s}_{s_{0}} \biggl[a\bigl(\sigma(t),\tau \bigr)k_{12}(t,\tau)+\frac {a(t,\sigma(\tau))k_{34}(t,\sigma(\tau))}{1+\mu(\tau)b(t,\sigma (\tau))} \\ &{}+ \biggl(\frac{q}{p}K^{(q-p)/p}a(t,\tau)+\frac {p-q}{p}K^{q/p} \biggr)f(t,\tau) \biggr]\Delta\tau \\ &{}+\sum^{2}_{i=1} \int^{s}_{s_{0}}\theta_{i}\bigl( \lambda_{i},h_{i}(t,\tau ),k_{i}(t,\tau),p\bigr) \Delta\tau \\ &{}+\sum^{4}_{i=3} \int^{s}_{s_{0}}\theta_{i} \biggl(\lambda _{i},h_{i}(t,\tau),\frac{k_{i}(t,\sigma(\tau))}{1+\mu(\tau )b(t,\sigma(\tau))},p \biggr)\Delta\tau \\ =& \biggl(\frac{q}{p}K^{(q-p)/p} \int^{s}_{s_{0}}b(t,\tau)f(t,\tau )\Delta\tau \biggr) \omega(t,s) \\ &{}+ \biggl( \int^{s}_{s_{0}}b\bigl(\sigma (t),\tau \bigr)k_{12}(t,\tau)\Delta\tau \biggr)\omega\bigl(\sigma(t),s\bigr) \\ &{}+ \int^{s}_{s_{0}}\frac{b(t,\sigma(\tau))k_{34}(t,\sigma(\tau ))}{1+\mu(\tau)b(t,\sigma(\tau))}\omega\bigl(t,\sigma( \tau)\bigr)\Delta \tau+C_{2}(t,s). \end{aligned}$$
Note that
$$\omega\bigl(t,\sigma(\tau)\bigr)=\omega(t,\tau)+\mu(\tau)\omega^{\Delta _{\tau}}(t, \tau). $$
Therefore
$$\begin{aligned} \omega^{\Delta_{t}}(t,s) \leq& \biggl(\frac {q}{p}K^{(q-p)/p} \int^{s}_{s_{0}}b(t,\tau)f(t,\tau)\Delta\tau \biggr) \omega(t,s) \\ &{}+ \biggl( \int^{s}_{s_{0}}b\bigl(\sigma(t),\tau \bigr)k_{12}(t,\tau)\Delta\tau \biggr)\omega\bigl(\sigma(t),s\bigr) \\ &{}+ \int^{s}_{s_{0}}\frac{b(t,\sigma(\tau))k_{34}(t,\sigma(\tau ))}{1+\mu(\tau)b(t,\sigma(\tau))} \bigl(\omega(t,\tau) +\mu(\tau)\omega^{\Delta_{\tau}}(t,\tau) \bigr)\Delta\tau+C_{2}(t,s) \\ \leq& \biggl( \int^{s}_{s_{0}} \biggl(\frac{q}{p}K^{(q-p)/p}b(t, \tau )f(t,\tau)+\frac{b(t,\sigma(\tau))k_{34}(t,\sigma(\tau))}{1+\mu (\tau)b(t,\sigma(\tau))} \biggr)\Delta\tau \biggr) \omega(t,s) \\ &{}+ \biggl( \int^{s}_{s_{0}}b\bigl(\sigma(t),\tau \bigr)k_{12}(t,\tau)\Delta\tau \biggr)\omega\bigl(\sigma(t),s\bigr) \\ &{}+ \int^{s}_{s_{0}}k_{34}\bigl(t,\sigma(\tau) \bigr)\omega^{\Delta_{\tau }}(t,\tau)\Delta\tau+C_{2}(t,s). \end{aligned}$$
Since
$$k_{34}\bigl(t,\sigma(\tau)\bigr)\omega^{\Delta_{\tau}}(t,\tau )= \bigl(k_{34}\bigl(t,\sigma(\tau)\bigr)\omega(t,\tau) \bigr)^{\Delta_{\tau }}-k^{\Delta_{\tau}}_{34}(t,\tau)\omega(t,\tau), $$
we get
$$\begin{aligned} \omega^{\Delta_{t}}(t,s) \leq& \biggl( \int^{s}_{s_{0}} \biggl(\frac{q}{p}K^{(q-p)/p}b(t, \tau)f(t,\tau)+\frac{b(t,\sigma(\tau ))k_{34}(t,\sigma(\tau))}{1+\mu(\tau)b(t,\sigma(\tau))} \biggr)\Delta\tau \biggr) \omega(t,s) \\ &{}+ \biggl( \int^{s}_{s_{0}}b\bigl(\sigma (t),\tau \bigr)k_{12}(t,\tau)\Delta\tau \biggr)\omega\bigl(\sigma(t),s\bigr) \\ &{}+ \biggl(k_{34}(t,s)+ \int^{s}_{s_{0}}\bar{k}^{\Delta_{\tau }}_{34}(t, \tau)\Delta\tau \biggr)\omega(t,s)+C_{2}(t,s) \\ =&A_{2}(t,s)\omega(t,s)+\frac{B_{2}(t,s)}{1+\mu (t)B_{2}(t,s)}\omega\bigl(\sigma(t),s \bigr)+C_{2}(t,s), \end{aligned}$$
which implies that
$$w^{\Delta_{t}}(t,s)\leq(A_{2}\oplus B_{2}) (t,s)w(t,s)+ \bigl(1+\mu (t)B_{2}(t,s)\bigr)C_{2}(t,s). $$
By Lemma 2.2 and \(w(t_{0},s)=0\),
$$w(t,s)\leq \int^{t}_{t_{0}}\bigl(1+\mu(\tau)B_{2}( \tau,s)\bigr)C_{2}(\tau ,s)e_{(A_{2}\oplus B_{2})(\tau,s)}\bigl(t,\sigma(\tau)\bigr) \Delta\tau. $$
This combined with (3.6) yields (3.5), which completes the proof. □

Theorem 3.3

If there exist \(k_{i}(t,s)\in C^{+}_{\mathrm{rd}}\), \(i=1,2,\ldots,6\), defined on \(\mathbb{T}\times\mathbb {\tilde{T}}\) such that \(k_{ij}(t,s)=k_{i}(t,s)-k_{j}(t,s)\geq0\), \(j=i+1\), \(i=1, 3, 5\), and
$$\mu(t)\varLambda(t,s)< 1, $$
then inequality (1.3) yields
$$ u(t,s)\leq \biggl\{ a(t,s)+b(t,s) \int^{t}_{t_{0}} \bigl(1+\mu(\tau )B_{3}( \tau,s) \bigr)C_{2}(\tau,s)e_{(A_{2}\oplus B_{2})(\tau ,s)}\bigl(t,\sigma(\tau)\bigr) \Delta\tau \biggr\} ^{1/p} $$
(3.9)
for any \(K>0\), \((t,s)\in\mathbb {T}\times\mathbb{\tilde{T}}\), where \(\bar{k}^{\Delta_{\tau}}_{56}(t,\tau)=\max\{0,k^{\Delta _{\tau}}_{56}(t,\tau)\}\),
$$\begin{aligned}& \varLambda(t,s)= \int^{s}_{s_{0}} \biggl(b\bigl(\sigma(t),\tau \bigr)k_{12}(t,\tau)+\frac{b(\sigma(t),\sigma(\tau))k_{56}(t,\sigma (\tau))}{1+\mu(\tau)b(\sigma(t),\sigma(\tau))}+\bar{k}^{\Delta _{\tau}}_{56}(t, \tau) \biggr)\Delta\tau+k_{56}(t,s), \\& A_{3}(t,s)=A_{2}(t,s),\qquad B_{3}(t,s)= \frac{\varLambda(t,s)}{1-\mu (t)\varLambda(t,s)}, \\& \begin{aligned} C_{3}(t,s)&=C_{2}(t,s)+ \int^{s}_{s_{0}}\frac {a(\sigma(t),\sigma(\tau))k_{56}(t,\sigma(\tau))}{1+\mu(\tau )b(\sigma(t),\sigma(\tau))}\Delta\tau \\ &\quad {}+\sum^{6}_{i=5} \int^{s}_{s_{0}}\theta_{i} \biggl(\lambda _{i},h_{i}(t,\tau), \frac{k_{i}(t,\sigma(\tau))}{1+\mu(\tau)b(\sigma(t),\sigma(\tau ))},p \biggr)\Delta\tau, \end{aligned} \end{aligned}$$
\(A_{2}(t,s)\) and \(C_{2}(t,s)\) are defined by Theorem 3.2.

Proof

Combining (1.3) and Lemma 2.1, we get
$$\begin{aligned} u^{p}(t,s) \leq& a(t,s)+b(t,s) \int^{t}_{t_{0}} \int^{s}_{s_{0}} \bigl[f(\xi,\tau )u^{q}(\xi, \tau)+h_{1}(\xi,\tau)u^{\lambda_{1}}\bigl(\sigma(\xi),\tau\bigr) \\ &{}-h_{2}(\xi,\tau)u^{\lambda_{2}}\bigl(\sigma(\xi),\tau\bigr)+h_{3}(\xi ,\tau)u^{\lambda_{3}}\bigl(\xi,\sigma(\tau)\bigr) -h_{4}(\xi,\tau)u^{\lambda_{4}}\bigl(\xi,\sigma(\tau)\bigr) \\ &{}+h_{5}(\xi ,\tau)u^{\lambda_{5}}\bigl(\sigma(\xi),\sigma(\tau) \bigr) -h_{6}(\xi,\tau)u^{\lambda_{6}}\bigl(\sigma(\xi),\sigma(\tau) \bigr) \bigr]\Delta\tau\Delta\xi, \\ \leq& a(t,s)+b(t,s) \int^{t}_{t_{0}} \int^{s}_{s_{0}} \Biggl[f(\xi ,\tau)u^{q}(\xi, \tau)+k_{12}(\xi,\tau)u^{p}\bigl(\sigma(\xi),\tau\bigr) \\ &{}+\frac{k_{34}(\xi,\sigma(\tau))}{1+\mu(\tau)b(\xi,\sigma (\tau))}u^{p}\bigl(\xi,\sigma(\tau)\bigr)+ \frac{k_{56}(\xi,\sigma(\tau ))}{1+\mu(\tau)b(\sigma(\xi),\sigma(\tau))}u^{p}\bigl(\sigma(\xi ),\sigma(\tau)\bigr) \\ &{}+\sum^{2}_{i=1}\theta_{i} \bigl(\lambda_{i},h_{i}(\xi,\tau),k_{i}(\xi , \tau),p\bigr)+\sum^{4}_{i=3} \theta_{i} \biggl(\lambda_{i},h_{i}(\xi ,\tau), \frac{k_{i}(\xi,\sigma(\tau))}{1+\mu(\tau)b(\xi,\sigma(\tau ))},p \biggr) \\ &{}+\sum^{6}_{i=5}\theta_{i} \biggl(\lambda_{i},h_{i}(\xi,\tau), \frac{k_{i}(\xi,\sigma(\tau))}{1+\mu(\tau)b(\sigma(\xi),\sigma (\tau))},p \biggr) \Biggr]\Delta\tau\Delta\xi. \end{aligned}$$
Define \(z(t,s)\) by
$$\begin{aligned} z(t,s) =& \int^{t}_{t_{0}} \int^{s}_{s_{0}} \Biggl[f(\xi,\tau )u^{q}(\xi, \tau)+k_{12}(\xi,\tau)u^{p}\bigl(\sigma(\xi),\tau\bigr) \\ &{}+\frac{k_{34}(\xi,\sigma(\tau))}{1+\mu(\tau)b(\xi,\sigma (\tau))}u^{p}\bigl(\xi,\sigma(\tau)\bigr)+ \frac{k_{56}(\xi,\sigma(\tau ))}{1+\mu(\tau)b(\sigma(\xi),\sigma(\tau))}u^{p}\bigl(\sigma(\xi ),\sigma(\tau)\bigr) \\ &{}+\sum^{2}_{i=1}\theta_{i} \bigl(\lambda_{i},h_{i}(\xi,\tau),k_{i}(\xi , \tau),p\bigr)+\sum^{4}_{i=3} \theta_{i} \biggl(\lambda_{i},h_{i}(\xi ,\tau), \frac{k_{i}(\xi,\sigma(\tau))}{1+\mu(\tau)b(\xi,\sigma(\tau ))},p \biggr) \\ &{}+\sum^{6}_{i=5}\theta_{i} \biggl(\lambda_{i},h_{i}(\xi,\tau), \frac{k_{i}(\xi,\sigma(\tau))}{1+\mu(\tau)b(\sigma(\xi),\sigma (\tau))},p \biggr) \Biggr]\Delta\tau\Delta\xi. \end{aligned}$$
Then \(z(t,s)\geq0\) is nondecreasing with respect to t and s, and
$$ u(t,s)\leq\bigl(a(t,s)+b(t,s)z(t,s)\bigr)^{1/p}. $$
(3.10)
Similar to the procedure of Theorem 3.2, we get
$$\begin{aligned} z^{\Delta_{t}}(t,s) \leq&A_{2}(t,s)z(t,s)+ \biggl( \int ^{s}_{s_{0}}b\bigl(\sigma(t),\tau \bigr)k_{12}(t,\tau)\Delta\tau \biggr)z\bigl(\sigma(t),s \bigr)+C_{2}(t,s) \\ &{}+ \int^{s}_{s_{0}}\frac{a(\sigma(t),\sigma(\tau))k_{56}(t,\sigma (\tau))}{1+\mu(\tau)b(\sigma(t),\sigma(\tau))}\Delta\tau \\ &{}+ \int^{s}_{s_{0}}\frac{b(\sigma(t),\sigma(\tau))k_{56}(t,\sigma (\tau))}{1+\mu(\tau)b(\sigma(t),\sigma(\tau))}z\bigl(\sigma(t), \sigma (\tau)\bigr)\Delta\tau \\ &{}+\sum^{6}_{i=5} \int^{s}_{s_{0}}\theta_{i} \biggl(\lambda _{i},h_{i}(t,\tau), \frac{k_{i}(t,\sigma(\tau))}{1+\mu(\tau)b(\sigma(t),\sigma(\tau ))},p \biggr)\Delta\tau \\ =&A_{2}(t,s)z(t,s)+ \biggl( \int^{s}_{s_{0}}b\bigl(\sigma(t),\tau \bigr)k_{12}(t,\tau)\Delta\tau \biggr)z\bigl(\sigma(t),s \bigr)+C_{3}(t,s) \\ &{}+ \int^{s}_{s_{0}}\frac{b(\sigma(t),\sigma(\tau))k_{56}(t,\sigma (\tau))}{1+\mu(\tau)b(\sigma(t),\sigma(\tau))}z\bigl(\sigma(t), \sigma (\tau)\bigr)\Delta\tau. \end{aligned}$$
Note that
$$z\bigl(\sigma(t),\sigma(\tau)\bigr)=z\bigl(\sigma(t),\tau\bigr)+\mu( \tau)z^{\Delta _{\tau}}\bigl(\sigma(t),\tau\bigr). $$
Therefore
$$\begin{aligned} z^{\Delta_{t}}(t,s) \leq&A_{2}(t,s)z(t,s)+ \biggl( \int ^{s}_{s_{0}}b\bigl(\sigma(t),\tau \bigr)k_{12}(t,\tau)\Delta\tau \biggr)z\bigl(\sigma(t),s \bigr)+C_{3}(t,s) \\ &{}+ \biggl( \int^{s}_{s_{0}}\frac{b(\sigma(t),\sigma(\tau ))k_{56}(t,\sigma(\tau))}{1+\mu(\tau)b(\sigma(t),\sigma(\tau ))}\Delta\tau \biggr) z \bigl(\sigma(t),s\bigr) \\ &{}+ \int^{s}_{s_{0}}k_{56}\bigl(t,\sigma(\tau) \bigr)z^{\Delta_{\tau}}\bigl(\sigma (t),\tau\bigr)\Delta\tau \\ =&A_{2}(t,s)z(t,s)+ \biggl( \int^{s}_{s_{0}}b\bigl(\sigma(t),\tau \bigr)k_{12}(t,\tau)\Delta\tau \biggr)z\bigl(\sigma(t),s \bigr)+C_{3}(t,s) \\ &{}+ \biggl( \int^{s}_{s_{0}}\frac{b(\sigma(t),\sigma(\tau ))k_{56}(t,\sigma(\tau))}{1+\mu(\tau)b(\sigma(t),\sigma(\tau ))}\Delta\tau \biggr) z \bigl(\sigma(t),s\bigr) +k_{56}(t,s)z\bigl(\sigma(t),s\bigr) \\ &{}- \int^{s}_{s_{0}}k^{\Delta_{\tau }}_{56}(t,\tau)z \bigl(\sigma(t),\tau\bigr)\Delta\tau \\ \leq&A_{2}(t,s)z(t,s)+ \biggl( \int^{s}_{s_{0}}b\bigl(\sigma(t),\tau \bigr)k_{12}(t,\tau)\Delta\tau+ \int^{s}_{s_{0}}\frac{b(\sigma (t),\sigma(\tau))k_{56}(t,\sigma(\tau))}{1+\mu(\tau)b(\sigma (t),\sigma(\tau))} \Delta\tau \\ &{}+k_{56}(t,s)+ \int^{s}_{s_{0}}\bar{k}^{\Delta_{\tau }}_{56}(t, \tau)\Delta\tau \biggr)z\bigl(\sigma(t),s\bigr)+C_{3}(t,s) \\ =&A_{3}(t,s)z(t,s)+\frac{B_{3}(t,s)}{1+\mu(t)B_{3}(t,s)}z\bigl(\sigma (t),s \bigr)+C_{3}(t,s), \end{aligned}$$
i.e.,
$$z^{\Delta_{t}}(t,s)\leq(A_{3}\oplus B_{3}) (t,s)z(t,s)+ \bigl(1+\mu (t)B_{3}(t,s)\bigr)C_{3}(t,s). $$
It follows from Lemma 2.2 that
$$z(t,s)\leq \int^{t}_{t_{0}}\bigl(1+\mu(\tau)B_{3}( \tau,s)\bigr)C_{3}(\tau ,s)e_{(A_{3}\oplus B_{3})(\tau,s)}\bigl(t,\sigma(\tau)\bigr) \Delta\tau $$
due to \(z(t_{0},s)=0\). This together with (3.10) yields (3.9). The proof is completed. □

Remark 3.2

The inequalities in Theorems 3.13.3 generalize the results in [1214] to two independent variables, which can be used to study the boundedness of dynamic systems.

Remark 3.3

The explicit bounds for inequalities (1.1)–(1.3) can be obtained by choosing proper \(k_{i}(t,s)\) (\(i=1,2,\ldots,6\)). For example, letting \(k_{1}(t,s)=k_{2}(t,s)>0\) and \(k_{5}(t,s)=k_{6}(t,s)>0\) yields \(B_{i}(t,s)=0\) in Theorems 3.13.3. Under this case, Theorems 3.13.3 possess simpler forms.

4 Application

In this part, an example is presented to state the main results.

Example 4.1

Consider the partial dynamic system with positive and negative coefficients
$$ \textstyle\begin{cases} u^{\Delta_{t}\Delta _{s}}(t,s)=f(t,s)u(t,s)+h_{1}(t,s)u^{1/3}(\sigma(t),s) -h_{2}(t,s)u^{2}(\sigma(t),s), \\ u(t,s_{0})=\alpha(t),\qquad u(t_{0},s)=\beta(s),\qquad u(t_{0},s_{0})=u_{0}, \end{cases} $$
(4.1)
where \(f, h_{1}, h_{2}:\mathbb{T}\times\mathbb{\tilde {T}}\rightarrow\mathbb{R_{+}}\) are right-dense continuous functions. System (4.1) possesses sublinear and superlinear terms, which can be regarded as a class of dynamic systems with mixed nonlinearities. By simple calculation, the solution of System (4.1) satisfies
$$ \bigl\vert u(t,s) \bigr\vert \leq a(t,s)+ \int^{t}_{t_{0}}e_{A(\tau,s)}\bigl(t,\sigma(\tau ) \bigr)C(\tau,s)\Delta\tau, $$
(4.2)
where
$$\begin{aligned}& a(t,s)= \bigl\vert \alpha(t) \bigr\vert + \bigl\vert \beta(s) \bigr\vert + \vert u_{0} \vert , \qquad A(t,s)=\frac {1}{3}K^{-2/3} \int^{s}_{s_{0}}f(t,\tau)\Delta\tau, \\& \begin{aligned} C(t,s)&= \int ^{s}_{s_{0}} \biggl(\frac{1}{3}K^{-2/3}a(t, \tau)f(t,\tau)+\frac {2}{3}K^{1/3}f(t,\tau) \biggr)\Delta\tau \\ &\quad {}+ \int^{s}_{s_{0}} \biggl[\theta_{1}\biggl( \frac{1}{3},h_{1}(t,\tau),k_{1}(t,\tau),1\biggr)+ \theta _{2}\bigl(2,h_{2}(t,\tau),k_{2}(t,\tau),1 \bigr) \biggr]\Delta\tau \end{aligned} \end{aligned}$$
for any \(K>0\) and any rd-continuous functions \(k_{1}(t,s)>0\) and \(k_{2}(t,s)\geq0\) satisfying \(k_{12}(t,s)=k_{1}(t,s)-k_{2}(t,s)=0\) for \((t,s)\in\mathbb{T}\times\mathbb{\tilde{T}}\).
Actually, integrating (4.1) generates
$$\begin{aligned} u(t,s) =&\alpha(t)+\beta(s)-u_{0} \\ &{}+ \int^{t}_{t_{0}} \int ^{s}_{s_{0}} \bigl[f(\xi,\tau)u(\xi, \tau)+h_{1}(\xi,\tau )u^{1/3}\bigl(\sigma(\xi),\tau\bigr) -h_{2}(\xi,\tau)u^{2}\bigl(\sigma(\xi),\tau\bigr) \bigr] \Delta\tau\Delta \xi. \end{aligned}$$
Therefore,
$$\begin{aligned} \bigl\vert u(t,s) \bigr\vert \leq& a(t,s)+ \int^{t}_{t_{0}} \int^{s}_{s_{0}} \bigl[f(\xi ,\tau) \bigl\vert u(\xi, \tau) \bigr\vert +h_{1}(\xi,\tau) \bigl\vert u\bigl(\sigma(\xi), \tau\bigr) \bigr\vert ^{1/3} \\ &{}-h_{2}(\xi,\tau) \bigl\vert u \bigl(\sigma(\xi),\tau\bigr) \bigr\vert ^{2} \bigr]\Delta\tau\Delta \xi. \end{aligned}$$
(4.3)
By Theorem 3.1, (4.3) yields (4.2).

Declarations

Funding

The authors express their sincere gratitude to the editors and anonymous referees for their constructive comments and suggestions that helped to improve the presentation of the results and accentuate important details. This work was supported by the National Natural Science Foundation of China (61807015, 11671227), the Natural Science Foundation of Shandong Province (ZR2017LF012), a Project of Shandong Province Higher Educational Science and Technology Program (J17KA157), and the Doctoral Scientific Research Foundation of University of Jinan (1008398).

Authors’ contributions

All three authors contributed equally to this work. They read and approved the final version of the manuscript.

Competing interests

The authors declare that they have no competing interests.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors’ Affiliations

(1)
Qingdao University of Technology, Feixian, P.R. China
(2)
School of Mathematical and Sciences, University of Jinan, Jinan, P.R. China
(3)
School of Mathematical and Sciences, Qufu Normal University, Qufu, P.R. China

References

  1. Hilger, S.: Analysis on measure chains-a unified approach to continuous and discrete calculus. Results Math. 18, 18–56 (1990) MathSciNetView ArticleGoogle Scholar
  2. Bohner, M., Peterson, A.: Dynamic Equations on Time Scales: An Introduction with Applications. Birkhäuser, Boston (2001) View ArticleGoogle Scholar
  3. Zhang, C., Li, T.: Some oscillation results for second-order nonlinear delay dynamic equations. Appl. Math. Lett. 26, 1114–1119 (2013) MathSciNetView ArticleGoogle Scholar
  4. Agarwal, R.P., Bohner, M., Li, T.: Oscillatory behavior of second-order half-linear damped dynamic equations. Appl. Math. Comput. 254, 408–418 (2015) MathSciNetMATHGoogle Scholar
  5. Bohner, M., Hassan, T.S., Li, T.: Fite–Hille–Wintner-type oscillation criteria for second-order half-linear dynamic equations with deviating arguments. Indag. Math. 29, 548–560 (2018) MathSciNetView ArticleGoogle Scholar
  6. Li, T., Saker, S.H.: A note on oscillation criteria for second-order neutral dynamic equations on isolated time scales. Commun. Nonlinear Sci. Numer. Simul. 19, 4185–4188 (2014) MathSciNetView ArticleGoogle Scholar
  7. Nasser, B., Boukerrioua, K., Defoort, M., Djemaic, M., Hammami, M.: State feedback stabilization of a class of uncertain nonlinear systems on non-uniform time domains. Syst. Control Lett. 97, 18–26 (2016) MathSciNetView ArticleGoogle Scholar
  8. Ma, Q.H., Pečarič, J.: The bounds on the solutions of certain two-dimensional delay dynamic systems on time scales. Comput. Math. Appl. 61, 2158–2163 (2011) MathSciNetView ArticleGoogle Scholar
  9. Agarwal, R.P., O’Regan, D., Saker, S.: Dynamic Inequalities on Time Scales. Springer, Cham (2014) View ArticleGoogle Scholar
  10. Jiang, F.C., Meng, F.W.: Explicit bounds on some new nonlinear integral inequalities with delay. J. Comput. Appl. Math. 205, 479–486 (2007) MathSciNetView ArticleGoogle Scholar
  11. Sun, Y.G.: Nonlinear dynamical integral inequalities in two independent variables and their applications. Discrete Dyn. Nat. Soc. 2011, Article ID 320794 (2011) MathSciNetMATHGoogle Scholar
  12. Sun, Y.G., Hassan, T.S.: Some nonlinear dynamic integral inequalities on time scales. Appl. Math. Comput. 220, 221–225 (2013) MathSciNetMATHGoogle Scholar
  13. Tian, Y.Z., Cai, Y.L., Li, L.Z., Li, T.X.: Some dynamic integral inequalities with mixed nonlinearities on time scales. J. Inequal. Appl. 2015, 12 (2015) MathSciNetView ArticleGoogle Scholar
  14. Liu, H.D.: Some new integral inequalities with mixed nonlinearities for discontinuous functions. Adv. Differ. Equ. 2018, 22 (2018) MathSciNetView ArticleGoogle Scholar
  15. Liu, H.D.: A class of retarded Volterra–Fredholm type integral inequalities on time scales and their applications. J. Inequal. Appl. 2017, 293 (2017) MathSciNetView ArticleGoogle Scholar
  16. Feng, Q.H., Meng, F.W., Zheng, B.: Gronwall–Bellman type nonlinear delay integral inequalities on time scales. J. Math. Anal. Appl. 382, 772–784 (2011) MathSciNetView ArticleGoogle Scholar
  17. Gu, J., Meng, F.W.: Some new nonlinear Volterra–Fredholm type dynamic integral inequalities on time scales. Appl. Math. Comput. 245, 235–242 (2014) MathSciNetMATHGoogle Scholar
  18. Tian, Y.Z., Fan, M., Meng, F.W.: A generalization of retarded integral inequalities in two independent variables and their applications. Appl. Math. Comput. 221, 239–248 (2013) MathSciNetMATHGoogle Scholar
  19. Tian, Y.Z., El-Deeb, A.A., Meng, F.W.: Some nonlinear delay Volterra–Fredholm type dynamic integral inequalities on time scales. Discrete Dyn. Nat. Soc. 2018, Article ID 5841985 (2018) MathSciNetView ArticleGoogle Scholar
  20. Abdeldaim, A., El-Deeb, A.A.: On generalized of certain retarded nonlinear integral inequalities and its applications in retarded integro-differential equations. Appl. Math. Comput. 256, 375–380 (2015) MathSciNetMATHGoogle Scholar
  21. Xu, R., Meng, F.W.: Some new weakly singular integral inequalities and their applications to fractional differential equations. J. Inequal. Appl. 2016, 78 (2016) MathSciNetView ArticleGoogle Scholar
  22. Meng, F.W., Shao, J.: Some new Volterra–Fredholm type dynamic integral inequalities on time scales. Appl. Math. Comput. 223, 444–451 (2013) MathSciNetMATHGoogle Scholar
  23. Wang, W.S., Zhou, X.L., Guo, Z.H.: Some new retarded nonlinear integral inequalities and their applications in differential–integral equations. Appl. Math. Comput. 218, 10726–10736 (2012) MathSciNetMATHGoogle Scholar
  24. Saker, S.H.: Applications of Opial inequalities on time scales on dynamic equations with damping terms. Math. Comput. Model. 58, 1777–1790 (2013) MathSciNetView ArticleGoogle Scholar
  25. Boudeliou, A.: On certain new nonlinear retarded integral inequalities in two independent variables and applications. Appl. Math. Comput. 335, 103–111 (2018) MathSciNetGoogle Scholar
  26. Xu, R., Ma, X.T.: Some new retarded nonlinear Volterra–Fredholm type integral inequalities with maxima in two variables and their applications. J. Inequal. Appl. 2017, 187 (2017) MathSciNetView ArticleGoogle Scholar

Copyright

© The Author(s) 2019

Advertisement