Skip to main content

Advertisement

A class of dynamic integral inequalities with mixed nonlinearities and their applications in partial dynamic systems

Article metrics

  • 379 Accesses

Abstract

This paper investigates a class of nonlinear dynamic integral inequalities with mixed nonlinearities in two independent variables. The obtained results can be utilized to study the boundedness of partial dynamic systems on time scales. At the end, an example is presented to illustrate the main results.

Introduction

The theory and application of time scales was introduced by Hilger [1] and Bohner et al. [2]. At present, there exist various research branches of time scales theory such as oscillation [3,4,5,6], stability [7], and boundedness [8]. For the study of time scales theory, integral inequalities are usually used to investigate the boundedness of dynamic systems. In recent years, different types of integral inequalities have been widely studied [9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26]. For example, the sublinear integral inequality

$$u(t,s)\leq a(t,s)+b(t,s) \int^{t}_{t_{0}} \int^{s}_{s_{0}} \bigl[f(\xi,\tau )u(\xi,\tau)+h(\xi, \tau)u^{\lambda_{1}}\bigl(\sigma(\xi),\tau\bigr) \bigr]\Delta\tau\Delta\xi,\quad 0< \lambda_{1}< 1, $$

was investigated in [11]. Later, Sun et al. [12] studied the integral inequality

$$u(t)\leq a(t)+b(t) \int^{t}_{t_{0}}\bigl[f(s)u(s)+h_{1}(s)u^{\lambda _{1}} \bigl(\sigma(s)\bigr)-h_{2}(s)u^{\lambda_{2}}\bigl(\sigma(s)\bigr) \bigr]\Delta s,\quad 0< \lambda_{1}< 1< \lambda_{2}, $$

which was generalized to the more general nonlinear case by Tian et al. [13]. The following integral inequality

$$\begin{aligned} u^{p}(t) \leq& a(t)+b(t) \int ^{t}_{t_{0}}\bigl[f(s)u^{p}(s)+h_{1}(s)u^{q}(s)-h_{2}(s)u^{r}(s) \bigr]\,ds \\ &{}+c(t)\sum_{t_{0}< t_{i}< t}\beta_{i}x^{m}(t_{i}-0), \quad 0< q< p< r \end{aligned}$$

was considered in [14], and the theoretical results can provide the bounds for a class of dynamic systems with mixed nonlinearities and impulsive effects. Very recently, Boudeliou [25] investigated a class of nonlinear integral inequalities in two independent variables and their applications. Up to now, two dimensional integral inequalities with mixed nonlinearities have received less attention.

In this paper, we investigate the integral inequalities with mixed nonlinearities and forward jump operators, which can be used to estimate the bounds of the solutions to a class of partial dynamic systems on time scales. Consider the integral inequalities

$$\begin{aligned}& \begin{aligned}[b] u^{p}(t,s)&\leq a(t,s)+b(t,s) \int^{t}_{t_{0}} \int^{s}_{s_{0}} \bigl[f(\xi,\tau )u^{q}(\xi, \tau)+h_{1}(\xi,\tau)u^{\lambda_{1}}\bigl(\sigma(\xi),\tau\bigr) \\ &\quad {}-h_{2}(\xi,\tau)u^{\lambda_{2}}\bigl(\sigma(\xi),\tau\bigr) \bigr]\Delta\tau\Delta\xi, \end{aligned} \end{aligned}$$
(1.1)
$$\begin{aligned}& \begin{aligned}[b] u^{p}(t,s)&\leq a(t,s)+b(t,s) \int^{t}_{t_{0}} \int^{s}_{s_{0}} \bigl[f(\xi,\tau )u^{q}(\xi, \tau)+h_{1}(\xi,\tau)u^{\lambda_{1}}\bigl(\sigma(\xi),\tau\bigr) \\ &\quad {}-h_{2}(\xi,\tau)u^{\lambda_{2}}\bigl(\sigma(\xi),\tau \bigr)+h_{3}(\xi ,\tau)u^{\lambda_{3}}\bigl(\xi,\sigma(\tau)\bigr) \\ &\quad {}-h_{4}(\xi,\tau)u^{\lambda_{4}}\bigl(\xi,\sigma(\tau)\bigr) \bigr]\Delta \tau\Delta\xi, \end{aligned} \end{aligned}$$
(1.2)

and

$$\begin{aligned} u^{p}(t,s)&\leq a(t,s)+b(t,s) \int^{t}_{t_{0}} \int^{s}_{s_{0}} \bigl[f(\xi,\tau )u^{q}(\xi, \tau)+h_{1}(\xi,\tau)u^{\lambda_{1}}\bigl(\sigma(\xi),\tau\bigr) \\ &\quad {}-h_{2}(\xi,\tau)u^{\lambda_{2}}\bigl(\sigma(\xi),\tau \bigr)+h_{3}(\xi ,\tau)u^{\lambda_{3}}\bigl(\xi,\sigma(\tau)\bigr) -h_{4}(\xi,\tau)u^{\lambda_{4}}\bigl(\xi,\sigma(\tau)\bigr) \\ &\quad {}+h_{5}(\xi ,\tau)u^{\lambda_{5}}\bigl(\sigma(\xi),\sigma( \tau)\bigr) -h_{6}(\xi,\tau)u^{\lambda_{6}}\bigl(\sigma(\xi),\sigma( \tau)\bigr) \bigr]\Delta\tau\Delta\xi, \end{aligned}$$
(1.3)

where \(p\geq q>0\) and \(0<\lambda_{i}<p<\lambda_{i+1}\) (\(i=1,3,5\)) are real constants, \(u, a, b, f, h_{i}\ (i=1,2,\ldots, 6):\mathbb{T}\times\mathbb{\tilde {T}} \rightarrow\mathbb{R}_{+}\) are rd-continuous functions.

Inequalities (1.1)–(1.3) can be applied to the following partial dynamic system:

$$ u^{\Delta_{t}\Delta_{s}}(t,s)=F \bigl(t,s,u(t,s),u\bigl(\sigma (t),s\bigr),u\bigl(t, \sigma(s)\bigr),u\bigl(\sigma(t),\sigma(s)\bigr) \bigr) $$
(1.4)

with boundary conditions \(u(t,s_{0})=\alpha(t)\), \(u(t_{0},s)=\beta (s)\), and \(u(t_{0},s_{0})=u_{0}\). Integrating (1.4) yields

$$\begin{aligned} u(t,s) =&\alpha(t)+\beta(s)-u_{0} \\ &{}+ \int^{t}_{t_{0}} \int ^{s}_{s_{0}}F \bigl(\xi,\tau,u(\xi,\tau),u\bigl( \sigma(\xi),\tau \bigr),u\bigl(\xi,\sigma(\tau)\bigr),u\bigl(\sigma(\xi),\sigma( \tau)\bigr) \bigr)\Delta \tau\Delta\xi. \end{aligned}$$

It is not difficult to apply the theoretical results to estimate the bounds of the above system.

Preliminaries

Let \(\mathbb{R}=(-\infty,+\infty)\) and \(\mathbb{R}_{+}=[0,+\infty )\). Both \(\mathbb{T}\) and \(\mathbb{\tilde{T}}\) are arbitrary time scales. \(\mathbb{T}^{k}\) is defined as follows: if \(\mathbb{T}\) has a left-scattered maximum m, then \(\mathbb{T}^{k}=\mathbb{T}-\{ m\}\); otherwise, \(\mathbb{T}^{k}=\mathbb{T}\). \(C_{\mathrm{rd}}\) and \(C^{+}_{\mathrm{rd}}\) are the sets of all rd-continuous functions and positive rd-continuous functions, respectively. represents the set of all rd-continuous and regressive functions, and \(\Re^{+}=\{p\in\Re:1+\mu (t)p(t)>0, t\in\mathbb{T}\}\). \(\sigma(t)= \inf\{s\in\mathbb{T}:s > t\}\), \(\mu(t)=\sigma(t)-t\), and is defined as \((p\oplus q)(t)=p(t)+q(t)+\mu(t)p(t)q(t)\), \(t\in\mathbb{T}\).

Next, some lemmas are introduced.

Lemma 2.1

Let u be a nonnegative function, \(0<\lambda _{1}<p<\lambda_{2}\), \(h_{1}\geq0\), \(h_{2}> 0\), \(k_{1}>0\), and \(k_{2}\geq 0\). Then, for \(i=1,2\),

$$(-1)^{i+1}h_{i}u^{\lambda_{i}}+(-1)^{i}k_{i}u^{p} \leq\theta _{i}(\lambda_{i},h_{i},k_{i},p), $$

where

$$\theta_{i}(\lambda_{i},h_{i},k_{i},p)=(-1)^{i} \biggl(\frac{\lambda _{i}}{p}-1\biggr) \biggl(\frac{\lambda_{i}}{p}\biggr)^{\frac{\lambda_{i}}{p-\lambda_{i}}} h^{\frac{p}{p-\lambda_{i}}}_{i}k^{\frac{\lambda_{i}}{\lambda_{i}-p}}_{i}. $$

Proof

Define \(F_{i}(u)=(-1)^{i+1}h_{i}u^{\lambda _{i}}+(-1)^{i}k_{i}u^{p}\). Then \(F_{i}(u)\) reaches the maximum value at \(u=(\frac{\lambda_{i}h_{i}}{k_{i}p})^{\frac{1}{p-\lambda_{i}}}\) and

$$(F_{i})_{\max}=(-1)^{i}\biggl(\frac{\lambda_{i}}{p}-1 \biggr) \biggl(\frac{\lambda _{i}}{p}\biggr)^{\frac{\lambda_{i}}{p-\lambda_{i}}} h^{\frac{p}{p-\lambda_{i}}}_{i}k^{\frac{\lambda_{i}}{\lambda _{i}-p}}_{i} \quad \mbox{for } i=1,2. $$

This completes the proof. □

Lemma 2.2

([2])

Assume that \(u, b\in C_{\mathrm{rd}} \), \(a\in \Re^{+}\). Then

$$u^{\Delta}(t)\leq a(t)u(t)+b(t),\quad t\geq t_{0}, t\in \mathbb{T}^{k} $$

implies

$$u(t)\leq u(t_{0})e_{a}(t,t_{0})+ \int^{t}_{t_{0}}b(\tau)e_{a}\bigl(t,\sigma ( \tau)\bigr)\Delta\tau,\quad t\geq t_{0}, t\in\mathbb{T}^{k}. $$

Lemma 2.3

([10])

Let \(a\geq0\) and \(p\geq q>0\). Then, for any \(K>0\),

$$a^{q/p}\leq\frac{q}{p}K^{(q-p)/p}a+\frac{p-q}{p}K^{q/p}. $$

Main results

Theorem 3.1

Suppose \(k_{1}(t,s),k_{2}(t,s)\in C^{+}_{\mathrm{rd}}\) are defined on \(\mathbb{T}\times\mathbb{\tilde{T}}\) satisfying \(k_{12}(t,s)=k_{1}(t,s)-k_{2}(t,s)\geq0\) and

$$\mu(t) \int^{s}_{s_{0}}b\bigl(\sigma(t),\tau \bigr)k_{12}(t,\tau)\Delta\tau< 1. $$

Then inequality (1.1) yields

$$ u(t,s)\leq \biggl\{ a(t,s)+b(t,s) \int^{t}_{t_{0}} \bigl(1+\mu(\tau )B_{1}( \tau,s) \bigr)C_{1}(\tau,s)e_{(A_{1}\oplus B_{1})(\tau ,s)}\bigl(t,\sigma(\tau)\bigr) \Delta\tau \biggr\} ^{1/p} $$
(3.1)

for any \(K>0\), \((t,s)\in\mathbb {T}\times\mathbb{\tilde{T}} \), where

$$\begin{aligned}& A_{1}(t,s)=\frac{q}{p}K^{(q-p)/p} \int^{s}_{s_{0}}b(t,\tau )f(t,\tau)\Delta\tau, \\& B_{1}(t,s)=\frac{\int^{s}_{s_{0}}b(\sigma (t),\tau)k_{12}(t,\tau)\Delta\tau}{1-\mu(t)\int ^{s}_{s_{0}}b(\sigma(t),\tau)k_{12}(t,\tau)\Delta\tau}, \end{aligned}$$

and

$$\begin{aligned} C_{1}(t,s)&= \int^{s}_{s_{0}} \biggl[a\bigl(\sigma(t),\tau \bigr)k_{12}(t,\tau)+ \biggl(\frac{q}{p}K^{(q-p)/p}a(t,\tau)+ \frac {p-q}{p}K^{q/p} \biggr)f(t,\tau) \biggr]\Delta\tau \\ &\quad {}+\sum^{2}_{i=1} \int^{s}_{s_{0}}\theta_{i}\bigl( \lambda_{i},h_{i}(t,\tau ),k_{i}(t,\tau),p\bigr) \Delta\tau. \end{aligned}$$

Proof

Based on (1.1) and Lemma 2.1, we obtain

$$\begin{aligned} u^{p}(t,s) \leq& a(t,s)+b(t,s) \int^{t}_{t_{0}} \int^{s}_{s_{0}} \bigl[f(\xi,\tau )u^{q}(\xi, \tau)+h_{1}(\xi,\tau)u^{\lambda_{1}}\bigl(\sigma(\xi),\tau\bigr) \\ &{}-h_{2}(\xi,\tau)u^{\lambda_{2}}\bigl(\sigma(\xi),\tau\bigr) \bigr]\Delta \tau\Delta\xi \\ \leq& a(t,s)+b(t,s) \int^{t}_{t_{0}} \int ^{s}_{s_{0}} \Biggl[f(\xi,\tau)u^{q}(\xi, \tau)+k_{12}(\xi,\tau )u^{p}\bigl(\sigma(\xi),\tau\bigr) \\ &{}+\sum^{2}_{i=1}\theta_{i} \bigl(\lambda_{i},h_{i}(\xi,\tau),k_{i}(\xi , \tau),p\bigr) \Biggr]\Delta\tau\Delta\xi. \end{aligned}$$

Define \(v(t,s)\) by

$$\begin{aligned} v(t,s) =& \int^{t}_{t_{0}} \int^{s}_{s_{0}} \Biggl[f(\xi,\tau )u^{q}(\xi, \tau)+k_{12}(\xi,\tau)u^{p}\bigl(\sigma(\xi),\tau\bigr) \\ &{}+\sum^{2}_{i=1}\theta_{i} \bigl(\lambda_{i},h_{i}(\xi,\tau),k_{i}(\xi , \tau),p\bigr) \Biggr]\Delta\tau\Delta\xi. \end{aligned}$$

It is easy to obtain that \(v(t,s)\geq0\) for \((t,s)\in\mathbb {T}\times\mathbb{\tilde{T}}\), \(v(t,s)\) is nondecreasing with respect to t and s, and

$$ u(t,s)\leq\bigl(a(t,s)+b(t,s)v(t,s)\bigr)^{1/p}. $$
(3.2)

Taking the derivative of \(v(t,s)\) with respect to t, we get

$$\begin{aligned} v^{\Delta_{t}}(t,s) =& \int^{s}_{s_{0}} \Biggl[f(t,\tau )u^{q}(t, \tau)+k_{12}(t,\tau)u^{p}\bigl(\sigma(t),\tau\bigr) \\ &{}+\sum ^{2}_{i=1}\theta_{i}\bigl( \lambda_{i},h_{i}(t,\tau),k_{i}(t,\tau ),p\bigr) \Biggr]\Delta\tau. \end{aligned}$$
(3.3)

Based on Lemma 2.3, for any \(K >0\),

$$\begin{aligned} u^{q}(t,\tau) \leq&\bigl(a(t,\tau)+b(t,\tau)v(t,\tau) \bigr)^{q/p} \\ \leq&\frac {q}{p}K^{(q-p)/p}\bigl(a(t,\tau)+b(t, \tau)v(t,\tau)\bigr)+\frac {p-q}{p}K^{q/p}. \end{aligned}$$
(3.4)

Inequalities (3.2)–(3.4) yield

$$\begin{aligned} v^{\Delta_{t}}(t,s) \leq& \int^{s}_{s_{0}} \biggl[f(t,\tau ) \biggl( \frac{q}{p}K^{(q-p)/p} \bigl(a(t,\tau)+b(t,\tau)v(t,\tau ) \bigr)+ \frac{p-q}{p}K^{q/p} \biggr) \\ &{}+k_{12}(t,\tau) \bigl(a\bigl(\sigma (t),\tau\bigr) +b\bigl( \sigma(t),\tau\bigr)v\bigl(\sigma(t),\tau\bigr) \bigr) \biggr]\Delta\tau \\ &{}+\sum ^{2}_{i=1} \int^{s}_{s_{0}}\theta_{i}\bigl( \lambda_{i},h_{i}(t,\tau ),k_{i}(t,\tau),p\bigr) \Delta\tau \\ \leq& \biggl(\frac{q}{p}K^{(q-p)/p} \int^{s}_{s_{0}}b(t,\tau )f(t,\tau)\Delta\tau \biggr) v(t,s) \\ &{}+ \biggl( \int^{s}_{s_{0}}b\bigl(\sigma (t),\tau \bigr)k_{12}(t,\tau)\Delta\tau \biggr)v\bigl(\sigma(t),s\bigr) \\ &{}+ \int ^{s}_{s_{0}} \biggl[a\bigl(\sigma(t),\tau \bigr)k_{12}(t,\tau)+ \biggl(\frac{q}{p}K^{(q-p)/p}a(t,\tau)+ \frac{p-q}{p}K^{q/p} \biggr)f(t,\tau) \biggr]\Delta\tau \\ &{}+\sum^{2}_{i=1} \int ^{s}_{s_{0}}\theta_{i}\bigl( \lambda_{i},h_{i}(t,\tau),k_{i}(t,\tau ),p\bigr) \Delta\tau \\ =&A_{1}(t,s)v(t,s)+\frac{B_{1}(t,s)}{1+\mu(t)B_{1}(t,s)}v\bigl(\sigma (t),s \bigr)+C_{1}(t,s), \end{aligned}$$

which implies that

$$v^{\Delta_{t}}(t,s)\leq(A_{1}\oplus B_{1}) (t,s)v(t,s)+ \bigl(1+\mu (t)B_{1}(t,s)\bigr)C_{1}(t,s). $$

Based on Lemma 2.2 and \(v(t_{0},s)=0\), we can deduce that

$$v(t,s)\leq \int^{t}_{t_{0}}\bigl(1+\mu(\tau)B_{1}( \tau,s)\bigr)C_{1}(\tau ,s)e_{(A_{1}\oplus B_{1})(\tau,s)}\bigl(t,\sigma(\tau)\bigr) \Delta\tau. $$

This combined with (3.2) yields (3.1). The proof is completed. □

Remark 3.1

Letting \(p=q=1\) and \(h_{2}(t,s)\equiv0\), the inequality in Theorem 3.1 reduces to [11, Theorem 3.1].

Theorem 3.2

Assume \(k_{i}(t,s)\in C^{+}_{\mathrm{rd}}\), \(i=1,2,3,4\), are defined on \(\mathbb{T}\times\mathbb{\tilde{T}}\) satisfying \(k_{12}(t,s)=k_{1}(t,s)-k_{2}(t,s)\geq0\), \(k_{34}(t,s)=k_{3}(t,s)-k_{4}(t,s)\geq0\), and

$$\mu(t) \int^{s}_{s_{0}}b\bigl(\sigma(t),\tau \bigr)k_{12}(t,\tau)\Delta\tau< 1. $$

Then inequality (1.2) implies

$$ u(t,s)\leq \biggl\{ a(t,s)+b(t,s) \int^{t}_{t_{0}} \bigl(1+\mu(\tau )B_{2}( \tau,s) \bigr)C_{2}(\tau,s)e_{(A_{2}\oplus B_{2})(\tau ,s)}\bigl(t,\sigma(\tau)\bigr) \Delta\tau \biggr\} ^{1/p} $$
(3.5)

for any \(K>0\), \((t,s)\in\mathbb {T}\times\mathbb{\tilde{T}}\), where

$$\begin{aligned}& \bar{k}^{\Delta_{\tau}}_{34}(t,\tau)=\max\bigl\{ 0,k^{\Delta_{\tau }}_{34}(t, \tau)\bigr\} , \\& A_{2}(t,s)= \int^{s}_{s_{0}} \biggl(\frac {q}{p}K^{(q-p)/p}b(t, \tau)f(t,\tau)+\frac{k_{34}(t,\sigma(\tau ))b(t,\sigma(\tau))}{1+\mu(\tau)b(t,\sigma(\tau))} +\bar{k}^{\Delta_{\tau}}_{34}(t,\tau) \biggr)\Delta\tau +k_{34}(t,s), \\& B_{2}(t,s)=\frac{\int^{s}_{s_{0}}b(\sigma(t),\tau )k_{12}(t,\tau)\Delta\tau}{1-\mu(t)\int^{s}_{s_{0}}b(\sigma (t),\tau)k_{12}(t,\tau)\Delta\tau}, \end{aligned}$$

and

$$\begin{aligned} C_{2}(t,s) =& \int^{s}_{s_{0}} \biggl[a\bigl(\sigma(t),\tau \bigr)k_{12}(t,\tau)+\frac{a(t,\sigma(\tau))k_{34}(t,\sigma(\tau ))}{1+\mu(\tau)b(t,\sigma(\tau))} \\ &{}+ \biggl(\frac{q}{p}K^{(q-p)/p}a(t,\tau)+\frac {p-q}{p}K^{q/p} \biggr)f(t,\tau) \biggr]\Delta\tau \\ &{}+\sum^{2}_{i=1} \int^{s}_{s_{0}}\theta_{i}\bigl(\lambda _{i},h_{i}(t,\tau),k_{i}(t,\tau),p\bigr)\Delta \tau \\ &{}+\sum^{4}_{i=3} \int ^{s}_{s_{0}}\theta_{i} \biggl( \lambda_{i},h_{i}(t,\tau),\frac{k_{i}(t,\sigma(\tau ))}{1+\mu(\tau)b(t,\sigma(\tau))},p \biggr)\Delta \tau. \end{aligned}$$

Proof

Based on (1.2) and Lemma 2.1, we obtain

$$\begin{aligned} u^{p}(t,s) \leq& a(t,s)+b(t,s) \int^{t}_{t_{0}} \int^{s}_{s_{0}} \bigl[f(\xi,\tau )u^{q}(\xi, \tau)+h_{1}(\xi,\tau)u^{\lambda_{1}}\bigl(\sigma(\xi),\tau\bigr) \\ &{}-h_{2}(\xi,\tau)u^{\lambda_{2}}\bigl(\sigma(\xi),\tau\bigr)+h_{3}(\xi ,\tau)u^{\lambda_{3}}\bigl(\xi,\sigma(\tau)\bigr) -h_{4}(\xi,\tau)u^{\lambda_{4}}\bigl(\xi,\sigma(\tau)\bigr) \bigr] \Delta \tau\Delta\xi \\ \leq& a(t,s)+b(t,s) \int^{t}_{t_{0}} \int^{s}_{s_{0}} \Biggl[f(\xi ,\tau)u^{q}(\xi, \tau)+k_{12}(\xi,\tau)u^{p}\bigl(\sigma(\xi),\tau\bigr) \\ &{}+\frac{k_{34}(\xi,\sigma(\tau))}{1+\mu(\tau)b(\xi,\sigma (\tau))}u^{p}\bigl(\xi,\sigma(\tau)\bigr) +\sum ^{2}_{i=1}\theta_{i}\bigl( \lambda_{i},h_{i}(\xi,\tau),k_{i}(\xi ,\tau),p \bigr) \\ &{}+\sum^{4}_{i=3}\theta_{i} \biggl(\lambda_{i},h_{i}(\xi,\tau), \frac{k_{i}(\xi,\sigma(\tau))}{1+\mu(\tau)b(\xi,\sigma(\tau ))},p \biggr) \Biggr]\Delta\tau\Delta\xi. \end{aligned}$$

Define \(\omega(t,s)\) by

$$\begin{aligned} \omega(t,s) =& \int^{t}_{t_{0}} \int^{s}_{s_{0}} \Biggl[f(\xi ,\tau)u^{q}(\xi, \tau)+k_{12}(\xi,\tau)u^{p}\bigl(\sigma(\xi),\tau\bigr) + \frac{k_{34}(\xi,\sigma(\tau))}{1+\mu(\tau)b(\xi,\sigma(\tau ))}u^{p}\bigl(\xi,\sigma(\tau)\bigr) \\ &{}+\sum^{2}_{i=1}\theta_{i} \bigl(\lambda_{i},h_{i}(\xi,\tau),k_{i}(\xi , \tau),p\bigr) \\ &{}+\sum^{4}_{i=3} \theta_{i} \biggl(\lambda_{i},h_{i}(\xi ,\tau), \frac{k_{i}(\xi,\sigma(\tau))}{1+\mu(\tau)b(t,\sigma(\tau ))},p \biggr) \Biggr]\Delta\tau\Delta\xi. \end{aligned}$$

Then \(\omega(t,s)\geq0\) is nondecreasing with respect to t and s, and

$$ u(t,s)\leq\bigl(a(t,s)+b(t,s)\omega(t,s)\bigr)^{1/p}. $$
(3.6)

Taking the derivative of \(\omega(t,s)\) with respect to t, we have

$$\begin{aligned} \omega^{\Delta_{t}}(t,s) =& \int^{s}_{s_{0}} \Biggl[f(t,\tau )u^{q}(t, \tau)+k_{12}(t,\tau)u^{p}\bigl(\sigma(t),\tau\bigr) + \frac{k_{34}(t,\sigma(\tau))}{1+\mu(\tau)b(t,\sigma(\tau ))}u^{p}\bigl(t,\sigma(\tau)\bigr) \\ &{}+\sum^{2}_{i=1}\theta_{i} \bigl(\lambda_{i},h_{i}(t,\tau),k_{i}(t,\tau),p \bigr) \\ &{}+\sum^{4}_{i=3}\theta_{i} \biggl(\lambda_{i},h_{i}(t,\tau),\frac {k_{i}(t,\sigma(\tau))}{1+\mu(\tau)b(t,\sigma(\tau))},p \biggr) \Biggr]\Delta\tau. \end{aligned}$$
(3.7)

By Lemma 2.3,

$$\begin{aligned} u^{q}(t,\tau) \leq&\bigl(a(t,\tau)+b(t,\tau)\omega(t,\tau) \bigr)^{q/p} \\ \leq& \frac{q}{p}K^{(q-p)/p}\bigl(a(t,\tau)+b(t, \tau)\omega(t,\tau)\bigr) +\frac{p-q}{p}K^{q/p} \end{aligned}$$
(3.8)

for any \(K > 0\). It follows from (3.6)–(3.8) that

$$\begin{aligned} \omega^{\Delta_{t}}(t,s) \leq& \int^{s}_{s_{0}} \biggl[f(t,\tau) \biggl( \frac{q}{p}K^{(q-p)/p}\bigl(a(t,\tau)+b(t,\tau)\omega (t,\tau)\bigr)+ \frac{p-q}{p}K^{q/p} \biggr) \\ &{}+k_{12}(t,\tau) \bigl(a\bigl(\sigma(t),\tau\bigr)+b\bigl( \sigma(t),\tau\bigr)\omega \bigl(\sigma(t),\tau\bigr) \bigr) \\ &{}+\frac{k_{34}(t,\sigma(\tau))}{1+\mu(\tau)b(t,\sigma(\tau ))} \bigl(a\bigl(t,\sigma(\tau)\bigr)+b\bigl(t,\sigma(\tau) \bigr)\omega\bigl(t,\sigma(\tau )\bigr) \bigr) \biggr]\Delta\tau \\ &{}+\sum^{2}_{i=1} \int^{s}_{s_{0}}\theta_{i}\bigl(\lambda _{i},h_{i}(t,\tau),k_{i}(t,\tau),p\bigr)\Delta \tau \\ &{}+\sum^{4}_{i=3} \int^{s}_{s_{0}}\theta_{i} \biggl(\lambda _{i},h_{i}(t,\tau), \frac{k_{i}(t,\sigma(\tau))}{1+\mu(\tau)b(t,\sigma(\tau ))},p \biggr)\Delta\tau \\ \leq& \biggl(\frac{q}{p}K^{(q-p)/p} \int^{s}_{s_{0}}b(t,\tau )f(t,\tau)\Delta\tau \biggr) \omega(t,s) \\ &{}+ \biggl( \int ^{s}_{s_{0}}b\bigl(\sigma(t),\tau \bigr)k_{12}(t,\tau)\Delta\tau \biggr)\omega\bigl(\sigma(t),s\bigr) \\ &{}+ \int^{s}_{s_{0}}\frac{b(t,\sigma(\tau))k_{34}(t,\sigma(\tau ))}{1+\mu(\tau)b(t,\sigma(\tau))}\omega\bigl(t,\sigma( \tau)\bigr)\Delta \tau \\ &{}+ \int^{s}_{s_{0}} \biggl[a\bigl(\sigma(t),\tau \bigr)k_{12}(t,\tau)+\frac {a(t,\sigma(\tau))k_{34}(t,\sigma(\tau))}{1+\mu(\tau)b(t,\sigma (\tau))} \\ &{}+ \biggl(\frac{q}{p}K^{(q-p)/p}a(t,\tau)+\frac {p-q}{p}K^{q/p} \biggr)f(t,\tau) \biggr]\Delta\tau \\ &{}+\sum^{2}_{i=1} \int^{s}_{s_{0}}\theta_{i}\bigl( \lambda_{i},h_{i}(t,\tau ),k_{i}(t,\tau),p\bigr) \Delta\tau \\ &{}+\sum^{4}_{i=3} \int^{s}_{s_{0}}\theta_{i} \biggl(\lambda _{i},h_{i}(t,\tau),\frac{k_{i}(t,\sigma(\tau))}{1+\mu(\tau )b(t,\sigma(\tau))},p \biggr)\Delta\tau \\ =& \biggl(\frac{q}{p}K^{(q-p)/p} \int^{s}_{s_{0}}b(t,\tau)f(t,\tau )\Delta\tau \biggr) \omega(t,s) \\ &{}+ \biggl( \int^{s}_{s_{0}}b\bigl(\sigma (t),\tau \bigr)k_{12}(t,\tau)\Delta\tau \biggr)\omega\bigl(\sigma(t),s\bigr) \\ &{}+ \int^{s}_{s_{0}}\frac{b(t,\sigma(\tau))k_{34}(t,\sigma(\tau ))}{1+\mu(\tau)b(t,\sigma(\tau))}\omega\bigl(t,\sigma( \tau)\bigr)\Delta \tau+C_{2}(t,s). \end{aligned}$$

Note that

$$\omega\bigl(t,\sigma(\tau)\bigr)=\omega(t,\tau)+\mu(\tau)\omega^{\Delta _{\tau}}(t, \tau). $$

Therefore

$$\begin{aligned} \omega^{\Delta_{t}}(t,s) \leq& \biggl(\frac {q}{p}K^{(q-p)/p} \int^{s}_{s_{0}}b(t,\tau)f(t,\tau)\Delta\tau \biggr) \omega(t,s) \\ &{}+ \biggl( \int^{s}_{s_{0}}b\bigl(\sigma(t),\tau \bigr)k_{12}(t,\tau)\Delta\tau \biggr)\omega\bigl(\sigma(t),s\bigr) \\ &{}+ \int^{s}_{s_{0}}\frac{b(t,\sigma(\tau))k_{34}(t,\sigma(\tau ))}{1+\mu(\tau)b(t,\sigma(\tau))} \bigl(\omega(t,\tau) +\mu(\tau)\omega^{\Delta_{\tau}}(t,\tau) \bigr)\Delta\tau+C_{2}(t,s) \\ \leq& \biggl( \int^{s}_{s_{0}} \biggl(\frac{q}{p}K^{(q-p)/p}b(t, \tau )f(t,\tau)+\frac{b(t,\sigma(\tau))k_{34}(t,\sigma(\tau))}{1+\mu (\tau)b(t,\sigma(\tau))} \biggr)\Delta\tau \biggr) \omega(t,s) \\ &{}+ \biggl( \int^{s}_{s_{0}}b\bigl(\sigma(t),\tau \bigr)k_{12}(t,\tau)\Delta\tau \biggr)\omega\bigl(\sigma(t),s\bigr) \\ &{}+ \int^{s}_{s_{0}}k_{34}\bigl(t,\sigma(\tau) \bigr)\omega^{\Delta_{\tau }}(t,\tau)\Delta\tau+C_{2}(t,s). \end{aligned}$$

Since

$$k_{34}\bigl(t,\sigma(\tau)\bigr)\omega^{\Delta_{\tau}}(t,\tau )= \bigl(k_{34}\bigl(t,\sigma(\tau)\bigr)\omega(t,\tau) \bigr)^{\Delta_{\tau }}-k^{\Delta_{\tau}}_{34}(t,\tau)\omega(t,\tau), $$

we get

$$\begin{aligned} \omega^{\Delta_{t}}(t,s) \leq& \biggl( \int^{s}_{s_{0}} \biggl(\frac{q}{p}K^{(q-p)/p}b(t, \tau)f(t,\tau)+\frac{b(t,\sigma(\tau ))k_{34}(t,\sigma(\tau))}{1+\mu(\tau)b(t,\sigma(\tau))} \biggr)\Delta\tau \biggr) \omega(t,s) \\ &{}+ \biggl( \int^{s}_{s_{0}}b\bigl(\sigma (t),\tau \bigr)k_{12}(t,\tau)\Delta\tau \biggr)\omega\bigl(\sigma(t),s\bigr) \\ &{}+ \biggl(k_{34}(t,s)+ \int^{s}_{s_{0}}\bar{k}^{\Delta_{\tau }}_{34}(t, \tau)\Delta\tau \biggr)\omega(t,s)+C_{2}(t,s) \\ =&A_{2}(t,s)\omega(t,s)+\frac{B_{2}(t,s)}{1+\mu (t)B_{2}(t,s)}\omega\bigl(\sigma(t),s \bigr)+C_{2}(t,s), \end{aligned}$$

which implies that

$$w^{\Delta_{t}}(t,s)\leq(A_{2}\oplus B_{2}) (t,s)w(t,s)+ \bigl(1+\mu (t)B_{2}(t,s)\bigr)C_{2}(t,s). $$

By Lemma 2.2 and \(w(t_{0},s)=0\),

$$w(t,s)\leq \int^{t}_{t_{0}}\bigl(1+\mu(\tau)B_{2}( \tau,s)\bigr)C_{2}(\tau ,s)e_{(A_{2}\oplus B_{2})(\tau,s)}\bigl(t,\sigma(\tau)\bigr) \Delta\tau. $$

This combined with (3.6) yields (3.5), which completes the proof. □

Theorem 3.3

If there exist \(k_{i}(t,s)\in C^{+}_{\mathrm{rd}}\), \(i=1,2,\ldots,6\), defined on \(\mathbb{T}\times\mathbb {\tilde{T}}\) such that \(k_{ij}(t,s)=k_{i}(t,s)-k_{j}(t,s)\geq0\), \(j=i+1\), \(i=1, 3, 5\), and

$$\mu(t)\varLambda(t,s)< 1, $$

then inequality (1.3) yields

$$ u(t,s)\leq \biggl\{ a(t,s)+b(t,s) \int^{t}_{t_{0}} \bigl(1+\mu(\tau )B_{3}( \tau,s) \bigr)C_{2}(\tau,s)e_{(A_{2}\oplus B_{2})(\tau ,s)}\bigl(t,\sigma(\tau)\bigr) \Delta\tau \biggr\} ^{1/p} $$
(3.9)

for any \(K>0\), \((t,s)\in\mathbb {T}\times\mathbb{\tilde{T}}\), where \(\bar{k}^{\Delta_{\tau}}_{56}(t,\tau)=\max\{0,k^{\Delta _{\tau}}_{56}(t,\tau)\}\),

$$\begin{aligned}& \varLambda(t,s)= \int^{s}_{s_{0}} \biggl(b\bigl(\sigma(t),\tau \bigr)k_{12}(t,\tau)+\frac{b(\sigma(t),\sigma(\tau))k_{56}(t,\sigma (\tau))}{1+\mu(\tau)b(\sigma(t),\sigma(\tau))}+\bar{k}^{\Delta _{\tau}}_{56}(t, \tau) \biggr)\Delta\tau+k_{56}(t,s), \\& A_{3}(t,s)=A_{2}(t,s),\qquad B_{3}(t,s)= \frac{\varLambda(t,s)}{1-\mu (t)\varLambda(t,s)}, \\& \begin{aligned} C_{3}(t,s)&=C_{2}(t,s)+ \int^{s}_{s_{0}}\frac {a(\sigma(t),\sigma(\tau))k_{56}(t,\sigma(\tau))}{1+\mu(\tau )b(\sigma(t),\sigma(\tau))}\Delta\tau \\ &\quad {}+\sum^{6}_{i=5} \int^{s}_{s_{0}}\theta_{i} \biggl(\lambda _{i},h_{i}(t,\tau), \frac{k_{i}(t,\sigma(\tau))}{1+\mu(\tau)b(\sigma(t),\sigma(\tau ))},p \biggr)\Delta\tau, \end{aligned} \end{aligned}$$

\(A_{2}(t,s)\) and \(C_{2}(t,s)\) are defined by Theorem 3.2.

Proof

Combining (1.3) and Lemma 2.1, we get

$$\begin{aligned} u^{p}(t,s) \leq& a(t,s)+b(t,s) \int^{t}_{t_{0}} \int^{s}_{s_{0}} \bigl[f(\xi,\tau )u^{q}(\xi, \tau)+h_{1}(\xi,\tau)u^{\lambda_{1}}\bigl(\sigma(\xi),\tau\bigr) \\ &{}-h_{2}(\xi,\tau)u^{\lambda_{2}}\bigl(\sigma(\xi),\tau\bigr)+h_{3}(\xi ,\tau)u^{\lambda_{3}}\bigl(\xi,\sigma(\tau)\bigr) -h_{4}(\xi,\tau)u^{\lambda_{4}}\bigl(\xi,\sigma(\tau)\bigr) \\ &{}+h_{5}(\xi ,\tau)u^{\lambda_{5}}\bigl(\sigma(\xi),\sigma(\tau) \bigr) -h_{6}(\xi,\tau)u^{\lambda_{6}}\bigl(\sigma(\xi),\sigma(\tau) \bigr) \bigr]\Delta\tau\Delta\xi, \\ \leq& a(t,s)+b(t,s) \int^{t}_{t_{0}} \int^{s}_{s_{0}} \Biggl[f(\xi ,\tau)u^{q}(\xi, \tau)+k_{12}(\xi,\tau)u^{p}\bigl(\sigma(\xi),\tau\bigr) \\ &{}+\frac{k_{34}(\xi,\sigma(\tau))}{1+\mu(\tau)b(\xi,\sigma (\tau))}u^{p}\bigl(\xi,\sigma(\tau)\bigr)+ \frac{k_{56}(\xi,\sigma(\tau ))}{1+\mu(\tau)b(\sigma(\xi),\sigma(\tau))}u^{p}\bigl(\sigma(\xi ),\sigma(\tau)\bigr) \\ &{}+\sum^{2}_{i=1}\theta_{i} \bigl(\lambda_{i},h_{i}(\xi,\tau),k_{i}(\xi , \tau),p\bigr)+\sum^{4}_{i=3} \theta_{i} \biggl(\lambda_{i},h_{i}(\xi ,\tau), \frac{k_{i}(\xi,\sigma(\tau))}{1+\mu(\tau)b(\xi,\sigma(\tau ))},p \biggr) \\ &{}+\sum^{6}_{i=5}\theta_{i} \biggl(\lambda_{i},h_{i}(\xi,\tau), \frac{k_{i}(\xi,\sigma(\tau))}{1+\mu(\tau)b(\sigma(\xi),\sigma (\tau))},p \biggr) \Biggr]\Delta\tau\Delta\xi. \end{aligned}$$

Define \(z(t,s)\) by

$$\begin{aligned} z(t,s) =& \int^{t}_{t_{0}} \int^{s}_{s_{0}} \Biggl[f(\xi,\tau )u^{q}(\xi, \tau)+k_{12}(\xi,\tau)u^{p}\bigl(\sigma(\xi),\tau\bigr) \\ &{}+\frac{k_{34}(\xi,\sigma(\tau))}{1+\mu(\tau)b(\xi,\sigma (\tau))}u^{p}\bigl(\xi,\sigma(\tau)\bigr)+ \frac{k_{56}(\xi,\sigma(\tau ))}{1+\mu(\tau)b(\sigma(\xi),\sigma(\tau))}u^{p}\bigl(\sigma(\xi ),\sigma(\tau)\bigr) \\ &{}+\sum^{2}_{i=1}\theta_{i} \bigl(\lambda_{i},h_{i}(\xi,\tau),k_{i}(\xi , \tau),p\bigr)+\sum^{4}_{i=3} \theta_{i} \biggl(\lambda_{i},h_{i}(\xi ,\tau), \frac{k_{i}(\xi,\sigma(\tau))}{1+\mu(\tau)b(\xi,\sigma(\tau ))},p \biggr) \\ &{}+\sum^{6}_{i=5}\theta_{i} \biggl(\lambda_{i},h_{i}(\xi,\tau), \frac{k_{i}(\xi,\sigma(\tau))}{1+\mu(\tau)b(\sigma(\xi),\sigma (\tau))},p \biggr) \Biggr]\Delta\tau\Delta\xi. \end{aligned}$$

Then \(z(t,s)\geq0\) is nondecreasing with respect to t and s, and

$$ u(t,s)\leq\bigl(a(t,s)+b(t,s)z(t,s)\bigr)^{1/p}. $$
(3.10)

Similar to the procedure of Theorem 3.2, we get

$$\begin{aligned} z^{\Delta_{t}}(t,s) \leq&A_{2}(t,s)z(t,s)+ \biggl( \int ^{s}_{s_{0}}b\bigl(\sigma(t),\tau \bigr)k_{12}(t,\tau)\Delta\tau \biggr)z\bigl(\sigma(t),s \bigr)+C_{2}(t,s) \\ &{}+ \int^{s}_{s_{0}}\frac{a(\sigma(t),\sigma(\tau))k_{56}(t,\sigma (\tau))}{1+\mu(\tau)b(\sigma(t),\sigma(\tau))}\Delta\tau \\ &{}+ \int^{s}_{s_{0}}\frac{b(\sigma(t),\sigma(\tau))k_{56}(t,\sigma (\tau))}{1+\mu(\tau)b(\sigma(t),\sigma(\tau))}z\bigl(\sigma(t), \sigma (\tau)\bigr)\Delta\tau \\ &{}+\sum^{6}_{i=5} \int^{s}_{s_{0}}\theta_{i} \biggl(\lambda _{i},h_{i}(t,\tau), \frac{k_{i}(t,\sigma(\tau))}{1+\mu(\tau)b(\sigma(t),\sigma(\tau ))},p \biggr)\Delta\tau \\ =&A_{2}(t,s)z(t,s)+ \biggl( \int^{s}_{s_{0}}b\bigl(\sigma(t),\tau \bigr)k_{12}(t,\tau)\Delta\tau \biggr)z\bigl(\sigma(t),s \bigr)+C_{3}(t,s) \\ &{}+ \int^{s}_{s_{0}}\frac{b(\sigma(t),\sigma(\tau))k_{56}(t,\sigma (\tau))}{1+\mu(\tau)b(\sigma(t),\sigma(\tau))}z\bigl(\sigma(t), \sigma (\tau)\bigr)\Delta\tau. \end{aligned}$$

Note that

$$z\bigl(\sigma(t),\sigma(\tau)\bigr)=z\bigl(\sigma(t),\tau\bigr)+\mu( \tau)z^{\Delta _{\tau}}\bigl(\sigma(t),\tau\bigr). $$

Therefore

$$\begin{aligned} z^{\Delta_{t}}(t,s) \leq&A_{2}(t,s)z(t,s)+ \biggl( \int ^{s}_{s_{0}}b\bigl(\sigma(t),\tau \bigr)k_{12}(t,\tau)\Delta\tau \biggr)z\bigl(\sigma(t),s \bigr)+C_{3}(t,s) \\ &{}+ \biggl( \int^{s}_{s_{0}}\frac{b(\sigma(t),\sigma(\tau ))k_{56}(t,\sigma(\tau))}{1+\mu(\tau)b(\sigma(t),\sigma(\tau ))}\Delta\tau \biggr) z \bigl(\sigma(t),s\bigr) \\ &{}+ \int^{s}_{s_{0}}k_{56}\bigl(t,\sigma(\tau) \bigr)z^{\Delta_{\tau}}\bigl(\sigma (t),\tau\bigr)\Delta\tau \\ =&A_{2}(t,s)z(t,s)+ \biggl( \int^{s}_{s_{0}}b\bigl(\sigma(t),\tau \bigr)k_{12}(t,\tau)\Delta\tau \biggr)z\bigl(\sigma(t),s \bigr)+C_{3}(t,s) \\ &{}+ \biggl( \int^{s}_{s_{0}}\frac{b(\sigma(t),\sigma(\tau ))k_{56}(t,\sigma(\tau))}{1+\mu(\tau)b(\sigma(t),\sigma(\tau ))}\Delta\tau \biggr) z \bigl(\sigma(t),s\bigr) +k_{56}(t,s)z\bigl(\sigma(t),s\bigr) \\ &{}- \int^{s}_{s_{0}}k^{\Delta_{\tau }}_{56}(t,\tau)z \bigl(\sigma(t),\tau\bigr)\Delta\tau \\ \leq&A_{2}(t,s)z(t,s)+ \biggl( \int^{s}_{s_{0}}b\bigl(\sigma(t),\tau \bigr)k_{12}(t,\tau)\Delta\tau+ \int^{s}_{s_{0}}\frac{b(\sigma (t),\sigma(\tau))k_{56}(t,\sigma(\tau))}{1+\mu(\tau)b(\sigma (t),\sigma(\tau))} \Delta\tau \\ &{}+k_{56}(t,s)+ \int^{s}_{s_{0}}\bar{k}^{\Delta_{\tau }}_{56}(t, \tau)\Delta\tau \biggr)z\bigl(\sigma(t),s\bigr)+C_{3}(t,s) \\ =&A_{3}(t,s)z(t,s)+\frac{B_{3}(t,s)}{1+\mu(t)B_{3}(t,s)}z\bigl(\sigma (t),s \bigr)+C_{3}(t,s), \end{aligned}$$

i.e.,

$$z^{\Delta_{t}}(t,s)\leq(A_{3}\oplus B_{3}) (t,s)z(t,s)+ \bigl(1+\mu (t)B_{3}(t,s)\bigr)C_{3}(t,s). $$

It follows from Lemma 2.2 that

$$z(t,s)\leq \int^{t}_{t_{0}}\bigl(1+\mu(\tau)B_{3}( \tau,s)\bigr)C_{3}(\tau ,s)e_{(A_{3}\oplus B_{3})(\tau,s)}\bigl(t,\sigma(\tau)\bigr) \Delta\tau $$

due to \(z(t_{0},s)=0\). This together with (3.10) yields (3.9). The proof is completed. □

Remark 3.2

The inequalities in Theorems 3.13.3 generalize the results in [12,13,14] to two independent variables, which can be used to study the boundedness of dynamic systems.

Remark 3.3

The explicit bounds for inequalities (1.1)–(1.3) can be obtained by choosing proper \(k_{i}(t,s)\) (\(i=1,2,\ldots,6\)). For example, letting \(k_{1}(t,s)=k_{2}(t,s)>0\) and \(k_{5}(t,s)=k_{6}(t,s)>0\) yields \(B_{i}(t,s)=0\) in Theorems 3.13.3. Under this case, Theorems 3.13.3 possess simpler forms.

Application

In this part, an example is presented to state the main results.

Example 4.1

Consider the partial dynamic system with positive and negative coefficients

$$ \textstyle\begin{cases} u^{\Delta_{t}\Delta _{s}}(t,s)=f(t,s)u(t,s)+h_{1}(t,s)u^{1/3}(\sigma(t),s) -h_{2}(t,s)u^{2}(\sigma(t),s), \\ u(t,s_{0})=\alpha(t),\qquad u(t_{0},s)=\beta(s),\qquad u(t_{0},s_{0})=u_{0}, \end{cases} $$
(4.1)

where \(f, h_{1}, h_{2}:\mathbb{T}\times\mathbb{\tilde {T}}\rightarrow\mathbb{R_{+}}\) are right-dense continuous functions. System (4.1) possesses sublinear and superlinear terms, which can be regarded as a class of dynamic systems with mixed nonlinearities. By simple calculation, the solution of System (4.1) satisfies

$$ \bigl\vert u(t,s) \bigr\vert \leq a(t,s)+ \int^{t}_{t_{0}}e_{A(\tau,s)}\bigl(t,\sigma(\tau ) \bigr)C(\tau,s)\Delta\tau, $$
(4.2)

where

$$\begin{aligned}& a(t,s)= \bigl\vert \alpha(t) \bigr\vert + \bigl\vert \beta(s) \bigr\vert + \vert u_{0} \vert , \qquad A(t,s)=\frac {1}{3}K^{-2/3} \int^{s}_{s_{0}}f(t,\tau)\Delta\tau, \\& \begin{aligned} C(t,s)&= \int ^{s}_{s_{0}} \biggl(\frac{1}{3}K^{-2/3}a(t, \tau)f(t,\tau)+\frac {2}{3}K^{1/3}f(t,\tau) \biggr)\Delta\tau \\ &\quad {}+ \int^{s}_{s_{0}} \biggl[\theta_{1}\biggl( \frac{1}{3},h_{1}(t,\tau),k_{1}(t,\tau),1\biggr)+ \theta _{2}\bigl(2,h_{2}(t,\tau),k_{2}(t,\tau),1 \bigr) \biggr]\Delta\tau \end{aligned} \end{aligned}$$

for any \(K>0\) and any rd-continuous functions \(k_{1}(t,s)>0\) and \(k_{2}(t,s)\geq0\) satisfying \(k_{12}(t,s)=k_{1}(t,s)-k_{2}(t,s)=0\) for \((t,s)\in\mathbb{T}\times\mathbb{\tilde{T}}\).

Actually, integrating (4.1) generates

$$\begin{aligned} u(t,s) =&\alpha(t)+\beta(s)-u_{0} \\ &{}+ \int^{t}_{t_{0}} \int ^{s}_{s_{0}} \bigl[f(\xi,\tau)u(\xi, \tau)+h_{1}(\xi,\tau )u^{1/3}\bigl(\sigma(\xi),\tau\bigr) -h_{2}(\xi,\tau)u^{2}\bigl(\sigma(\xi),\tau\bigr) \bigr] \Delta\tau\Delta \xi. \end{aligned}$$

Therefore,

$$\begin{aligned} \bigl\vert u(t,s) \bigr\vert \leq& a(t,s)+ \int^{t}_{t_{0}} \int^{s}_{s_{0}} \bigl[f(\xi ,\tau) \bigl\vert u(\xi, \tau) \bigr\vert +h_{1}(\xi,\tau) \bigl\vert u\bigl(\sigma(\xi), \tau\bigr) \bigr\vert ^{1/3} \\ &{}-h_{2}(\xi,\tau) \bigl\vert u \bigl(\sigma(\xi),\tau\bigr) \bigr\vert ^{2} \bigr]\Delta\tau\Delta \xi. \end{aligned}$$
(4.3)

By Theorem 3.1, (4.3) yields (4.2).

References

  1. 1.

    Hilger, S.: Analysis on measure chains-a unified approach to continuous and discrete calculus. Results Math. 18, 18–56 (1990)

  2. 2.

    Bohner, M., Peterson, A.: Dynamic Equations on Time Scales: An Introduction with Applications. Birkhäuser, Boston (2001)

  3. 3.

    Zhang, C., Li, T.: Some oscillation results for second-order nonlinear delay dynamic equations. Appl. Math. Lett. 26, 1114–1119 (2013)

  4. 4.

    Agarwal, R.P., Bohner, M., Li, T.: Oscillatory behavior of second-order half-linear damped dynamic equations. Appl. Math. Comput. 254, 408–418 (2015)

  5. 5.

    Bohner, M., Hassan, T.S., Li, T.: Fite–Hille–Wintner-type oscillation criteria for second-order half-linear dynamic equations with deviating arguments. Indag. Math. 29, 548–560 (2018)

  6. 6.

    Li, T., Saker, S.H.: A note on oscillation criteria for second-order neutral dynamic equations on isolated time scales. Commun. Nonlinear Sci. Numer. Simul. 19, 4185–4188 (2014)

  7. 7.

    Nasser, B., Boukerrioua, K., Defoort, M., Djemaic, M., Hammami, M.: State feedback stabilization of a class of uncertain nonlinear systems on non-uniform time domains. Syst. Control Lett. 97, 18–26 (2016)

  8. 8.

    Ma, Q.H., Pečarič, J.: The bounds on the solutions of certain two-dimensional delay dynamic systems on time scales. Comput. Math. Appl. 61, 2158–2163 (2011)

  9. 9.

    Agarwal, R.P., O’Regan, D., Saker, S.: Dynamic Inequalities on Time Scales. Springer, Cham (2014)

  10. 10.

    Jiang, F.C., Meng, F.W.: Explicit bounds on some new nonlinear integral inequalities with delay. J. Comput. Appl. Math. 205, 479–486 (2007)

  11. 11.

    Sun, Y.G.: Nonlinear dynamical integral inequalities in two independent variables and their applications. Discrete Dyn. Nat. Soc. 2011, Article ID 320794 (2011)

  12. 12.

    Sun, Y.G., Hassan, T.S.: Some nonlinear dynamic integral inequalities on time scales. Appl. Math. Comput. 220, 221–225 (2013)

  13. 13.

    Tian, Y.Z., Cai, Y.L., Li, L.Z., Li, T.X.: Some dynamic integral inequalities with mixed nonlinearities on time scales. J. Inequal. Appl. 2015, 12 (2015)

  14. 14.

    Liu, H.D.: Some new integral inequalities with mixed nonlinearities for discontinuous functions. Adv. Differ. Equ. 2018, 22 (2018)

  15. 15.

    Liu, H.D.: A class of retarded Volterra–Fredholm type integral inequalities on time scales and their applications. J. Inequal. Appl. 2017, 293 (2017)

  16. 16.

    Feng, Q.H., Meng, F.W., Zheng, B.: Gronwall–Bellman type nonlinear delay integral inequalities on time scales. J. Math. Anal. Appl. 382, 772–784 (2011)

  17. 17.

    Gu, J., Meng, F.W.: Some new nonlinear Volterra–Fredholm type dynamic integral inequalities on time scales. Appl. Math. Comput. 245, 235–242 (2014)

  18. 18.

    Tian, Y.Z., Fan, M., Meng, F.W.: A generalization of retarded integral inequalities in two independent variables and their applications. Appl. Math. Comput. 221, 239–248 (2013)

  19. 19.

    Tian, Y.Z., El-Deeb, A.A., Meng, F.W.: Some nonlinear delay Volterra–Fredholm type dynamic integral inequalities on time scales. Discrete Dyn. Nat. Soc. 2018, Article ID 5841985 (2018)

  20. 20.

    Abdeldaim, A., El-Deeb, A.A.: On generalized of certain retarded nonlinear integral inequalities and its applications in retarded integro-differential equations. Appl. Math. Comput. 256, 375–380 (2015)

  21. 21.

    Xu, R., Meng, F.W.: Some new weakly singular integral inequalities and their applications to fractional differential equations. J. Inequal. Appl. 2016, 78 (2016)

  22. 22.

    Meng, F.W., Shao, J.: Some new Volterra–Fredholm type dynamic integral inequalities on time scales. Appl. Math. Comput. 223, 444–451 (2013)

  23. 23.

    Wang, W.S., Zhou, X.L., Guo, Z.H.: Some new retarded nonlinear integral inequalities and their applications in differential–integral equations. Appl. Math. Comput. 218, 10726–10736 (2012)

  24. 24.

    Saker, S.H.: Applications of Opial inequalities on time scales on dynamic equations with damping terms. Math. Comput. Model. 58, 1777–1790 (2013)

  25. 25.

    Boudeliou, A.: On certain new nonlinear retarded integral inequalities in two independent variables and applications. Appl. Math. Comput. 335, 103–111 (2018)

  26. 26.

    Xu, R., Ma, X.T.: Some new retarded nonlinear Volterra–Fredholm type integral inequalities with maxima in two variables and their applications. J. Inequal. Appl. 2017, 187 (2017)

Download references

Author information

All three authors contributed equally to this work. They read and approved the final version of the manuscript.

Correspondence to Yazhou Tian.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Keywords

  • Time scale
  • Integral inequality
  • Mixed nonlinearity