Theory and Modern Applications

# Oscillatory behavior of solutions of certain fractional difference equations

## Abstract

In this paper, we consider the oscillation behavior of solutions of the following fractional difference equation:

$$\Delta \bigl( c ( t ) \Delta \bigl( a ( t ) \Delta \bigl( r ( t ) \Delta^{\alpha }x ( t ) \bigr) \bigr) \bigr) +q ( t ) G ( t ) =0,$$

where $$t\in \mathbf{N}_{t_{0}+1-\alpha }$$, $$G ( t ) = \sum_{s=t_{0}}^{t-1+\alpha } ( t-s-1 ) ^{-\alpha }x ( s )$$, and $$\Delta^{\alpha }$$ denotes a Riemann–Liouville fractional difference operator of order $$0<\alpha \leq 1$$. By using the generalized Riccati transformation technique, we obtain some oscillation criteria. Finally we give an example.

## Introduction and preliminaries

Fractional differential (or difference) equations are a more general form of differential equations with integer order. And there is an increasing interest in the study of them due to some important contributions [1, 2].

Many authors have been focused on various equations like ordinary and partial differential equations [3,4,5,6], difference equations [7,8,9], dynamic equations on time scales [10,11,12,13,14], and fractional differential (difference) equations [15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31] obtaining some oscillation criteria. Recently, oscillation studies have become a very hot topic. That is why, we consider the following fractional difference equation:

$$\Delta \bigl( c ( t ) \Delta \bigl( a ( t ) \Delta \bigl( r ( t ) \Delta^{\alpha }x ( t ) \bigr) \bigr) \bigr) +q ( t ) G ( t ) =0,$$
(1)

where $$t\in \mathbf{N} _{t_{0}+1-\alpha }$$, $$G ( t ) = \sum_{s=t_{0}}^{t-1+\alpha } ( t-s-1 ) ^{ ( -\alpha ) }x ( s )$$, $$c ( t )$$, $$a ( t )$$, $$r ( t )$$, and $$q ( t )$$ are positive sequences, and $$\Delta^{\alpha }$$ denotes the Riemann–Liouville fractional difference operator of order $$0<\alpha \leq 1$$.

By a solution of Eq. (1), we mean a real-valued sequence $$x ( t )$$ satisfying Eq. (1) for $$t\in \mathbf{N} _{t_{0}}$$. A solution $$x ( t )$$ of Eq. (1) is called oscillatory if it is neither eventually positive nor eventually negative, otherwise it is called non-oscillatory. Equation (1) is called oscillatory if all its solutions are oscillatory.

### Definition 1

([32])

Let $$v>0$$. The vth fractional sum f is defined by

$$\Delta^{-v}f ( t ) =\frac{1}{\varGamma ( v ) }\sum_{s=a} ^{t-v} ( t-s-1 ) ^{v-1}f ( s ) ,$$
(2)

where f is defined for $$s\equiv a \mathbf{mod} ( 1 )$$, $$\Delta^{-v}f$$ is defined for $$t\equiv ( a+v ) \mathbf{mod} ( 1 )$$, and $$t^{ ( v ) }=\frac{\varGamma ( t+1 ) }{\varGamma ( t-v+1 ) }$$. The fractional sum $$\Delta^{-v}f$$ maps functions defined on $$\mathbf{N} _{a}$$ to functions defined on $$\mathbf{N} _{a+v}$$, where $$\mathbf{N} _{t}= \{ t,t+1,t+2,\ldots \}$$.

### Definition 2

([32])

Let $$v>0$$ and $$m-1<\mu <m$$, where m denotes a positive integer, $$m= \lceil \mu \rceil$$. Set $$v=m-\mu$$. The μth fractional difference is defined as

$$\Delta^{\mu }f ( t ) =\Delta^{m-v}f ( t ) =\Delta^{m} \Delta^{-v}f ( t ) ,$$
(3)

where $$\lceil \mu \rceil$$ is the ceiling function of μ.

### Lemma 1

([33])

Assume that A and B are nonnegative real numbers. Then

$$\lambda AB^{\lambda -1}-A^{\lambda }\leq ( \lambda -1 ) B ^{\lambda }$$
(4)

for all $$\lambda >1$$.

## Main results

Throughout this paper, we denote

$$\phi ( t ) =\sum_{s=t_{1}}^{t-1} \frac{1}{c ( s ) };\quad\quad \vartheta ( t ) =\sum_{s=t_{2}}^{t-1} \frac{\phi ( s ) }{a ( s ) };\quad\quad \delta ( t ) =\sum_{s=t_{3}} ^{t-1}\frac{\vartheta ( s ) }{r ( s ) }.$$

For simplification, we consider

$$\Delta \gamma_{+} ( s ) =\max \bigl\{ 0,\Delta \gamma ( s ) \bigr\}$$

and

$$\Delta \beta_{+} ( s ) =\max \bigl\{ 0,\Delta \beta ( s ) \bigr\} .$$

### Lemma 2

([28])

Let $$x ( t )$$ be a solution of Eq. (1), and let

$$G ( t ) =\sum_{s=t_{0}}^{t-1+\alpha } ( t-s-1 ) ^{ ( -\alpha ) }x ( s ) ,$$
(5)

then

$$\Delta \bigl( G ( t ) \bigr) =\varGamma ( 1-\alpha ) \Delta^{\alpha }x ( t ) .$$
(6)

### Lemma 3

Assume that $$x ( t )$$ is an eventually positive solution of Eq. (1). If

$$\sum_{s=t_{0}}^{\infty }\frac{1}{c ( s ) }=\sum _{s=t_{0}} ^{\infty }\frac{1}{a ( s ) }=\sum _{s=t_{0}}^{\infty }\frac{1}{r ( s ) }=\infty ,$$
(7)

then we have two possible cases for $$t\in [ t_{1},\infty )$$, $$t_{1}>t_{0}$$ is sufficiently large:

1. Case 1

$$\Delta^{\alpha }x ( t ) >0$$, $$\Delta ( r ( t ) \Delta^{\alpha }x ( t ) ) >0$$, $$\Delta ( a ( t ) \Delta ( r ( t ) \Delta^{\alpha }x ( t ) ) ) >0$$ or

2. Case 2

$$\Delta^{\alpha }x ( t ) >0$$, $$\Delta ( r ( t ) \Delta^{\alpha }x ( t ) ) <0$$, $$\Delta ( a ( t ) \Delta ( r ( t ) \Delta^{\alpha }x ( t ) ) ) >0$$.

### Proof

From the hypothesis, there exists $$t_{1}$$ such that $$x ( t ) >0$$ on $$[ t_{1},\infty )$$, so that $$G ( t ) >0$$ on $$[ t_{1},\infty )$$, and from Eq. (1), we have

$$\Delta \bigl( c ( t ) \Delta \bigl( a ( t ) \Delta \bigl( r ( t ) \Delta^{\alpha }x ( t ) \bigr) \bigr) \bigr) =-q ( t ) G ( t ) < 0.$$
(8)

Then $$c ( t ) \Delta ( a ( t ) \Delta ( r ( t ) \Delta^{\alpha }x ( t ) ) )$$ is an eventually non-increasing sequence on $$[ t_{1},\infty )$$. We know that $$\Delta^{\alpha }x ( t )$$, $$\Delta ( r ( t ) \Delta^{\alpha }x ( t ) )$$, and $$\Delta ( a ( t ) \Delta ( r ( t ) \Delta^{\alpha }x ( t ) ) )$$ are eventually of one sign. For $$t_{2}>t_{1}$$ is sufficiently large, we claim that $$\Delta ( a ( t ) \Delta ( r ( t ) \Delta^{\alpha }x ( t ) ) ) >0$$ on $$[ t_{2}, \infty )$$. Otherwise, assume that there exists sufficiently large $$t_{3}>t_{2}$$ such that $$\Delta ( a ( t ) \Delta ( r ( t ) \Delta^{\alpha }x ( t ) ) ) <0$$ on $$[ t_{3},\infty )$$. For $$[ t_{3},\infty )$$ and there exists a constant $$l_{1}>0$$, we have

$$\Delta \bigl( a ( t ) \Delta \bigl( r ( t ) \Delta^{\alpha }x ( t ) \bigr) \bigr) \leq -\frac{l_{1}}{c ( t ) }< 0.$$

Hence, there exist a constant $$l_{2}>0$$ and sufficiently large $$t_{4}>t_{3}$$ such that

$$\Delta \bigl( r ( t ) \Delta^{\alpha }x ( t ) \bigr) \leq - \frac{l_{2}}{a ( t ) }< 0.$$
(9)

Then there exist a constant $$l_{3}>0$$ and sufficiently large $$t_{5}>t_{4}$$ such that

$$\Delta^{\alpha }x ( t ) \leq -\frac{l_{3}}{r ( t ) },$$

that is,

$$\Delta G ( t ) \leq -\frac{\varGamma ( 1-\alpha ) l _{3}}{r ( t ) }< 0.$$

By (7), we obtain $$\lim_{t\rightarrow \infty }G ( t ) =-\infty$$. This is a contradiction. If $$\Delta ( r ( t ) \Delta^{\alpha }x ( t ) ) <0$$, then $$\Delta^{\alpha }x ( t ) >0$$ due to $$\sum_{s=t_{0}}^{\infty }\frac{1}{r ( s ) }=\infty$$. If $$\Delta ( r ( t ) \Delta^{ \alpha }x ( t ) ) >0$$, then $$\Delta^{\alpha }x ( t ) >0$$ due to $$\Delta ( a ( t ) \Delta ( r ( t ) \Delta^{\alpha }x ( t ) ) ) >0$$. So, the proof is complete. □

### Lemma 4

Assume that $$x ( t )$$ is an eventually positive solution of Eq. (1), which satisfies Case 1 of Lemma 3. Then

$$a ( t ) \Delta \bigl( r ( t ) \Delta^{\alpha }x ( t ) \bigr) \geq c ( t ) \Delta \bigl( a ( t ) \Delta \bigl( r ( t ) \Delta^{\alpha }x ( t ) \bigr) \bigr) \sum_{s=t_{0}}^{t-1}\frac{1}{c ( s ) }.$$

If there exists a positive sequence ϕ such that, for $$t\in [ t_{1},\infty )$$,

$$\frac{\phi ( t ) }{c ( t ) \sum_{s=t_{0}}^{t-1}\frac{1}{c ( s ) }}-\Delta \phi ( t ) \leq 0,$$

where $$t_{1}$$ is sufficiently large, then $$a ( t ) \Delta ( r ( t ) \Delta^{\alpha }x ( t ) ) / \phi ( t )$$ is a non-increasing sequence on $$[ t_{1}, \infty )$$ and

$$r ( t ) \Delta^{\alpha }x ( t ) \geq \Delta \bigl( r ( t ) \Delta^{\alpha }x ( t ) \bigr) \frac{a ( t ) }{\phi ( t ) }\sum _{s=t_{1}}^{t-1}\frac{\phi ( s ) }{a ( s ) }.$$

Furthermore, if there exists a positive sequence ϑ and $$t_{2}>t_{1}$$ is sufficiently large such that, for $$t\in [ t_{2}, \infty )$$,

$$\frac{\vartheta ( t ) }{\frac{a ( t ) }{\phi ( t ) }\sum_{s=t_{2}}^{t-1}\frac{\phi ( s ) }{a ( s ) }}-\Delta \vartheta ( t ) \leq 0,$$

then $$r ( t ) \Delta^{\alpha }x ( t ) /\vartheta ( t )$$ is a non-increasing sequence on $$[ t_{2}, \infty )$$ and

$$G ( t ) \geq \Delta G ( t ) \frac{r ( t ) }{ \vartheta ( t ) }\sum_{s=t_{2}}^{t-1} \frac{\vartheta ( s ) }{r ( s ) }.$$

Suppose also that there exists a positive sequence δ and $$t_{3}>t_{2}$$ is sufficiently large such that, for $$t\in [ t_{3}, \infty )$$,

$$\frac{\delta ( t ) }{\frac{r ( t ) }{\vartheta ( t ) }\sum_{s=t_{2}}^{t-1}\frac{\vartheta ( s ) }{r ( s ) }}-\Delta \delta ( t ) \leq 0.$$

Then $$G ( t ) /\delta ( t )$$ is a non-increasing sequence on $$[ t_{3},\infty )$$.

### Proof

Assume that x is an eventually positive solution of Eq. (1). Then we have that $$\Delta ( r ( t ) \Delta^{\alpha }x ( t ) ) >0$$ and $$\Delta ( c ( t ) \Delta ( a ( t ) \Delta ( r ( t ) \Delta^{\alpha }x ( t ) ) ) ) <0$$ on $$[ t_{0},\infty )$$. So,

\begin{aligned} a ( t ) \Delta \bigl( r ( t ) \Delta^{\alpha }x ( t ) \bigr) =&a ( t_{0} ) \Delta \bigl( r ( t_{0} ) \Delta^{\alpha }x ( t_{0} ) \bigr) \\ &{}+\sum_{s=t_{0}}^{t-1}\frac{c ( s ) \Delta ( a ( s ) \Delta ( r ( s ) \Delta^{\alpha }x ( s ) ) ) }{c ( s ) } \\ \geq & c ( t ) \Delta \bigl( a ( t ) \Delta \bigl( r ( t ) \Delta^{\alpha }x ( t ) \bigr) \bigr) \sum_{s=t_{0}}^{t-1} \frac{1}{c ( s ) }, \end{aligned}

and then

\begin{aligned}& \Delta \biggl( \frac{a ( t ) \Delta ( r ( t ) \Delta^{\alpha }x ( t ) ) }{\phi ( t ) } \biggr) \\& \quad = \frac{\Delta ( a ( t ) \Delta ( r ( t ) \Delta^{\alpha }x ( t ) ) ) \phi ( t ) -a ( t ) \Delta ( r ( t ) \Delta^{\alpha }x ( t ) ) \Delta \phi ( t ) }{\phi ( t ) \phi ( t+1 ) } \\& \quad \leq \frac{\Delta ( a ( t ) \Delta ( r ( t ) \Delta^{\alpha }x ( t ) ) ) }{\phi ( t ) \phi ( t+1 ) } \biggl( \frac{\phi ( t ) }{c ( t ) \sum_{s=t_{1}}^{t-1}\frac{1}{c ( s ) }}-\Delta \phi ( t ) \biggr) \leq 0. \end{aligned}

Hence, $$a ( t ) \Delta ( r ( t ) \Delta^{ \alpha }x ( t ) ) /\phi ( t )$$ is a non-increasing sequence on $$[ t_{1},\infty )$$ where $$t_{1}>t_{0}$$ is sufficiently large. Then we have

\begin{aligned} r ( t ) \Delta^{\alpha }x ( t ) =&r ( t_{1} ) \Delta^{\alpha }x ( t_{1} ) +\sum_{s=t_{1}}^{t-1} \frac{a ( s ) \Delta ( r ( s ) \Delta^{\alpha }x ( s ) ) }{\phi ( s ) }\frac{\phi ( s ) }{a ( s ) } \\ \geq &\frac{a ( t ) \Delta ( r ( t ) \Delta^{\alpha }x ( t ) ) }{\phi ( t ) } \sum_{s=t_{1}}^{t-1} \frac{\phi ( s ) }{a ( s ) } \end{aligned}

and

\begin{aligned} \Delta \biggl( \frac{r ( t ) \Delta^{\alpha }x ( t ) }{\vartheta ( t ) } \biggr) =&\frac{\Delta ( r ( t ) \Delta^{\alpha }x ( t ) ) \vartheta ( t ) -r ( t ) \Delta^{\alpha }x ( t ) \Delta \vartheta ( t ) }{\vartheta ( t ) \vartheta ( t+1 ) } \\ \leq &\frac{r ( t ) \Delta^{\alpha }x ( t ) }{ \vartheta ( t ) \vartheta ( t+1 ) } \biggl( \frac{ \vartheta ( t ) }{\frac{a ( t ) }{\phi ( t ) }\sum_{s=t_{1}}^{t-1}\frac{\phi ( s ) }{a ( s ) }}-\Delta \vartheta ( t ) \biggr) \leq 0. \end{aligned}

So $$r ( t ) \Delta^{\alpha }x ( t ) /\vartheta ( t )$$ is a non-increasing sequence on $$[ t_{2}, \infty )$$ where $$t_{2}>t_{1}$$ is sufficiently large. Then we have

\begin{aligned} G ( t ) =&G ( t_{2} ) +\varGamma ( 1-\alpha ) \sum _{s=t_{2}}^{t-1}\frac{r ( s ) \Delta^{\alpha }x ( s ) }{\vartheta ( s ) }\frac{ \vartheta ( s ) }{r ( s ) } \\ \geq &\frac{r ( t ) \varGamma ( 1-\alpha ) \Delta^{\alpha }x ( t ) }{\vartheta ( t ) } \sum_{s=t_{2}}^{t-1} \frac{\vartheta ( s ) }{r ( s ) } \\ =&\Delta G ( t ) \frac{r ( t ) }{\vartheta ( t ) }\sum_{s=t_{2}}^{t-1} \frac{\vartheta ( s ) }{r ( s ) }, \end{aligned}

and then

\begin{aligned} \Delta \biggl( \frac{G ( t ) }{\delta ( t ) } \biggr) =&\frac{ ( \Delta G ( t ) ) \delta ( t ) -G ( t ) \Delta \delta ( t ) }{\delta ( t ) \delta ( t+1 ) } \\ \leq &\frac{G ( t ) }{\delta ( t ) \delta ( t+1 ) } \biggl( \frac{\delta ( t ) }{\frac{r ( t ) }{\vartheta ( t ) }\sum_{s=t_{2}}^{t-1}\frac{\vartheta ( s ) }{r ( s ) }}-\Delta \delta ( t ) \biggr) \leq 0. \end{aligned}

Then $$G ( t ) /\delta ( t )$$ is a non-increasing sequence on $$[ t_{3},\infty )$$ where $$t_{3}>t_{2}$$ is sufficiently large. So the proof is complete. □

### Theorem 1

Assume that (7) holds and there exists a positive sequence γ such that, for all sufficiently large t,

$$\lim_{t\rightarrow \infty }\sup \sum_{s=t_{3}}^{t-1} \Biggl( \frac{ \varGamma ( 1-\alpha ) \gamma ( s ) q ( s ) }{\vartheta ( s ) \phi ( s+1 ) }\sum_{u=t_{2}} ^{s-1} \frac{\vartheta ( u ) }{r ( u ) }\sum_{u=t _{1}}^{s-1} \frac{\phi ( u ) }{a ( u ) }-\frac{c ( s ) ( \Delta \gamma_{+} ( s ) ) ^{2}}{4 \gamma ( s ) } \Biggr) =\infty .$$
(10)

If there exist positive sequences β, λ such that, for all sufficiently large t,

$$\frac{\lambda ( t ) }{r ( t ) \sum_{s=t_{1}}^{t-1}\frac{1}{r ( s ) }}-\Delta \lambda ( t ) \leq 0$$
(11)

and

$$\lim_{t\rightarrow \infty }\sup \sum_{\zeta =t_{2}}^{t-1} \Biggl( \frac{ \beta ( \zeta ) \lambda ( \zeta ) }{\lambda ( \zeta +1 ) a ( \zeta ) }\sum_{s=\zeta }^{\infty } \Biggl( \frac{1}{c ( s ) }\sum_{v=s}^{\infty }q ( v ) \Biggr) -\frac{r ( \zeta ) ( \Delta \beta_{+} ( \zeta ) ) ^{2}}{4\varGamma ( 1-\alpha ) \beta ( \zeta ) } \Biggr) =\infty .$$
(12)

Then every solution of Eq. (1) is oscillatory.

### Proof

Suppose to the contrary that $$x(t)$$ is a non-oscillatory solution of Eq. (1). Then, without loss of generality, we may assume that there is a solution $$x ( t )$$ of Eq. (1) such that $$x ( t ) >0$$ on $$[ t_{0},\infty )$$, where $$t_{0}$$ is sufficiently large. From Lemma 3, $$x ( t )$$ satisfies Case 1 or Case 2. Firstly, let Case 1 hold. Then we define the following function:

$$\omega ( t ) =\gamma ( t ) \frac{c ( t ) \Delta ( a ( t ) \Delta ( r ( t ) \Delta^{\alpha }x ( t ) ) ) }{a ( t ) \Delta ( r ( t ) \Delta^{\alpha }x ( t ) ) }.$$

For $$t\in [ t_{0},\infty )$$, we have

\begin{aligned} \Delta \omega ( t ) =&\Delta \gamma ( t ) \frac{ \omega ( t+1 ) }{\gamma ( t+1 ) }+\gamma ( t ) \Delta \biggl( \frac{c ( t ) \Delta ( a ( t ) \Delta ( r ( t ) \Delta^{\alpha }x ( t ) ) ) }{a ( t ) \Delta ( r ( t ) \Delta^{\alpha }x ( t ) ) } \biggr) \\ =&\Delta \gamma ( t ) \frac{\omega ( t+1 ) }{ \gamma ( t+1 ) }-\gamma ( t ) \frac{q ( t ) G ( t ) }{a ( t+1 ) \Delta ( r ( t+1 ) \Delta^{\alpha }x ( t+1 ) ) } \\ &{}-\gamma ( t ) \frac{c ( t ) \Delta ( a ( t ) \Delta ( r ( t ) \Delta^{\alpha }x ( t ) ) ) \Delta ( a ( t ) \Delta ( r ( t ) \Delta^{\alpha }x ( t ) ) ) }{a ( t ) \Delta ( r ( t ) \Delta^{\alpha }x ( t ) ) a ( t+1 ) \Delta ( r ( t+1 ) \Delta^{\alpha }x ( t+1 ) ) }. \end{aligned}

Since $$a ( t ) \Delta ( r ( t ) \Delta^{\alpha }x ( t ) ) /\phi ( t )$$ is a non-increasing sequence on $$[ t_{1},\infty )$$, we have

$$\frac{a ( t+1 ) \Delta ( r ( t+1 ) \Delta^{ \alpha }x ( t+1 ) ) }{\phi ( t+1 ) }\leq \frac{a ( t ) \Delta ( r ( t ) \Delta^{\alpha }x ( t ) ) }{\phi ( t ) }.$$

From Lemma 4, we obtain

\begin{aligned}& \frac{G ( t ) }{a ( t+1 ) \Delta ( r ( t+1 ) \Delta^{\alpha }x ( t+1 ) ) } \\& \quad = \frac{1}{a ( t+1 ) }\frac{G ( t ) }{\Delta G ( t ) }\frac{\Delta G ( t ) }{\Delta ( r ( t ) \Delta^{\alpha }x ( t ) ) }\frac{\Delta ( r ( t ) \Delta^{\alpha }x ( t ) ) }{\Delta ( r ( t+1 ) \Delta^{\alpha }x ( t+1 ) ) } \\& \quad \geq \frac{1}{a ( t+1 ) } \Biggl( \frac{r ( t ) }{ \vartheta ( t ) }\sum _{s=t_{2}}^{t-1}\frac{\vartheta ( s ) }{r ( s ) } \Biggr) \Biggl( \frac{\varGamma ( 1- \alpha ) }{r ( t ) }\frac{a ( t ) }{\phi ( t ) }\sum_{s=t_{1}}^{t-1} \frac{\phi ( s ) }{a ( s ) } \Biggr) \frac{\phi ( t ) a ( t+1 ) }{\phi ( t+1 ) a ( t ) } \\& \quad = \frac{\varGamma ( 1-\alpha ) }{\vartheta ( t ) \phi ( t+1 ) }\sum_{s=t_{2}}^{t-1} \frac{\vartheta ( s ) }{r ( s ) } \Biggl( \sum_{s=t_{1}}^{t-1} \frac{\phi ( s ) }{a ( s ) } \Biggr) \end{aligned}

and

\begin{aligned} \Delta \omega ( t ) \leq &\Delta \gamma_{+} ( t ) \frac{\omega ( t+1 ) }{\gamma ( t+1 ) }-\gamma ( t ) q ( t ) \frac{\varGamma ( 1-\alpha ) }{\vartheta ( t ) \phi ( t+1 ) }\sum _{s=t_{2}} ^{t-1}\frac{\vartheta ( s ) }{r ( s ) } \Biggl( \sum _{s=t_{1}}^{t-1}\frac{\phi ( s ) }{a ( s ) } \Biggr) \\ &{}-\frac{\gamma ( t ) }{c ( t ) }\frac{\omega^{2} ( t+1 ) }{\gamma^{2} ( t+1 ) }. \end{aligned}

Setting $$\lambda =2$$, $$A= ( \frac{\gamma ( t ) }{c ( t ) } ) ^{1/2}\frac{\omega ( t+1 ) }{\phi ( t+1 ) }$$, and $$B=\frac{1}{2} ( \frac{c ( t ) }{ \gamma ( t ) } ) ^{1/2}\Delta \gamma_{+} ( t )$$ using Lemma 1, we obtain

$$\Delta \omega ( t ) \leq -\gamma ( t ) q ( t ) \frac{\varGamma ( 1-\alpha ) }{\vartheta ( t ) \phi ( t+1 ) }\sum _{s=t_{2}}^{t-1}\frac{\vartheta ( s ) }{r ( s ) } \Biggl( \sum _{s=t_{1}}^{t-1}\frac{ \phi ( s ) }{a ( s ) } \Biggr) + \frac{c ( t ) }{4\gamma ( t ) } \bigl( \Delta \gamma_{+} ( t ) \bigr) ^{2}.$$

Summing both sides of the above inequality from $$t_{3}$$ to $$t-1$$, we get

\begin{aligned}& \sum_{s=t_{3}}^{t-1} \Biggl( \frac{\varGamma ( 1-\alpha ) \gamma ( s ) q ( s ) }{\vartheta ( s ) \phi ( s+1 ) } \sum_{u=t_{2}}^{s-1} \frac{\vartheta ( u ) }{r ( u ) } \Biggl( \sum_{u=t_{1}}^{s-1} \frac{\phi ( u ) }{a ( u ) } \Biggr) - \frac{c ( s ) ( \Delta \gamma_{+} ( s ) ) ^{2}}{4\gamma ( s ) } \Biggr) \\& \quad \leq \omega ( t_{3} ) -\omega ( t ) \leq \omega ( t_{3} ) . \end{aligned}

This contradicts (10). Now we consider Case 2. Then we define the following function:

$$\omega_{2} ( t ) =\beta ( t ) \frac{r ( t ) \Delta^{\alpha }x ( t ) }{G ( t ) }.$$

Then

\begin{aligned} \Delta \omega_{2} ( t ) =&\Delta \beta ( t ) \frac{ \omega ( t+1 ) }{\beta ( t+1 ) }+ \beta ( t ) \Delta \biggl( \frac{r ( t ) \Delta^{\alpha }x ( t ) }{G ( t ) } \biggr) \\ =&\Delta \beta ( t ) \frac{\omega ( t+1 ) }{ \beta ( t+1 ) }+\beta ( t ) \biggl( \frac{\Delta ( r ( t ) \Delta^{\alpha }x ( t ) ) G ( t ) -r ( t ) \Delta^{\alpha }x ( t ) \Delta G ( t ) }{G ( t ) G ( t+1 ) } \biggr) \\ =&\Delta \beta ( t ) \frac{\omega ( t+1 ) }{ \beta ( t+1 ) }+\beta ( t ) \frac{\Delta ( r ( t ) \Delta^{\alpha }x ( t ) ) }{G ( t+1 ) }-\beta ( t ) \frac{r ( t ) \Delta^{ \alpha }x ( t ) \Delta G ( t ) }{G ( t ) G ( t+1 ) }. \end{aligned}

Hence we have

\begin{aligned} G ( t ) =&G ( t_{1} ) +\varGamma ( 1-\alpha ) \sum _{s=t_{1}}^{t-1}\frac{r ( s ) \Delta^{\alpha }x ( s ) }{r ( s ) } \\ \geq &\varGamma ( 1-\alpha ) r ( t ) \Delta^{ \alpha }x ( t ) \sum _{s=t_{1}}^{t-1}\frac{1}{r ( s ) }. \end{aligned}

That is,

$$\frac{G ( t ) }{r ( t ) \sum_{s=t_{1}}^{t-1}\frac{1}{r ( s ) }}\geq \varGamma ( 1-\alpha ) \Delta^{\alpha }x ( t ) = \Delta G ( t )$$

and

\begin{aligned} \Delta \biggl( \frac{G ( t ) }{\lambda ( t ) } \biggr) =&\frac{\Delta G ( t ) \lambda ( t ) -G ( t ) \Delta \lambda ( t ) }{\lambda ( t ) \lambda ( t+1 ) } \\ \leq &\frac{G ( t ) }{\lambda ( t ) \lambda ( t+1 ) } \biggl( \frac{\lambda ( t ) }{r ( t ) \sum_{s=t_{1}}^{t-1}\frac{1}{r ( s ) }}-\Delta \lambda ( t ) \biggr) \leq 0. \end{aligned}

Thus we have $$G ( t ) /\lambda ( t )$$ is eventually non-increasing and

$$\frac{G ( t ) }{G ( t+1 ) }\geq \frac{\lambda ( t ) }{\lambda ( t+1 ) }.$$
(13)

Using the fact that $$r ( t ) \Delta^{\alpha }x ( t )$$ is strictly decreasing, we have

$$r ( t ) \Delta^{\alpha }x ( t ) \geq r ( t+1 ) \Delta^{\alpha }x ( t+1 )$$

and $$\Delta G ( t ) >0$$, then $$G ( t+1 ) >G ( t )$$, it follows that

\begin{aligned} \Delta \omega_{2} ( t ) \leq &\Delta \beta_{+} ( t ) \frac{\omega ( t+1 ) }{\beta ( t+1 ) }+\beta ( t ) \frac{\Delta ( r ( t ) \Delta^{\alpha }x ( t ) ) }{G ( t+1 ) } \\ &{}-\frac{\varGamma ( 1-\alpha ) \beta ( t ) }{r ( t ) }\frac{\omega_{2}^{2} ( t+1 ) }{\beta^{2} ( t+1 ) }. \end{aligned}

From 8, we have

\begin{aligned}& c ( u ) \Delta \bigl( a ( u ) \Delta \bigl( r ( u ) \Delta^{\alpha }x ( u ) \bigr) \bigr) -c ( t ) \Delta \bigl( a ( t ) \Delta \bigl( r ( t ) \Delta^{\alpha }x ( t ) \bigr) \bigr) \\ & \quad =-\sum_{s=t}^{u-1}q ( s ) G ( s ) \end{aligned}

for $$\Delta G ( t ) >0$$, and letting $$u\rightarrow \infty$$, we get

$$-c ( t ) \Delta \bigl( a ( t ) \Delta \bigl( r ( t ) \Delta^{\alpha }x ( t ) \bigr) \bigr) \leq -G ( t ) \sum_{s=t}^{\infty }q ( s )$$

or

$$\Delta \bigl( a ( t ) \Delta \bigl( r ( t ) \Delta^{\alpha }x ( t ) \bigr) \bigr) \geq \frac{G ( t ) }{c ( t ) }\sum_{s=t}^{\infty }q ( s ) .$$

And so

$$a ( u ) \Delta \bigl( r ( u ) \Delta^{\alpha }x ( u ) \bigr) -a ( t ) \Delta \bigl( r ( t ) \Delta^{\alpha }x ( t ) \bigr) \geq G ( t ) \sum _{s=t} ^{u-1} \Biggl( \frac{1}{c ( s ) }\sum _{v=s}^{\infty }q ( v ) \Biggr) .$$

Letting $$u\rightarrow \infty$$, we have

$$\Delta \bigl( r ( t ) \Delta^{\alpha }x ( t ) \bigr) \leq -G ( t ) \frac{1}{a ( t ) }\sum_{s=t}^{\infty } \Biggl( \frac{1}{c ( s ) }\sum_{v=s}^{\infty }q ( v ) \Biggr)$$

due to $$\lim_{u\rightarrow \infty }a ( u ) \Delta ( r ( u ) \Delta^{\alpha }x ( u ) ) =k<0$$. Then, by (13), we obtain

\begin{aligned} \frac{\Delta ( r ( t ) \Delta^{\alpha }x ( t ) ) }{G ( t+1 ) } \leq& -\frac{G ( t ) }{G ( t+1 ) }\frac{1}{a ( t ) }\sum _{s=t}^{\infty } \Biggl( \frac{1}{c ( s ) }\sum _{v=s}^{\infty }q ( v ) \Biggr) \\ \leq &-\frac{\lambda ( t ) }{\lambda ( t+1 ) }\frac{1}{a ( t ) }\sum _{s=t}^{\infty } \Biggl( \frac{1}{c ( s ) }\sum _{v=s}^{\infty }q ( v ) \Biggr) . \end{aligned}

So,

\begin{aligned} \begin{aligned} \Delta \omega_{2} ( t ) &\leq \Delta \beta_{+} ( t ) \frac{\omega_{2} ( t+1 ) }{\beta ( t+1 ) }-\beta ( t ) \frac{\lambda ( t ) }{\lambda ( t+1 ) } \frac{1}{a ( t ) }\sum_{s=t}^{\infty } \Biggl( \frac{1}{c ( s ) }\sum_{v=s}^{\infty }q ( v ) \Biggr) \\ &{}-\frac{\varGamma ( 1-\alpha ) \beta ( t ) }{r ( t ) }\frac{\omega_{2}^{2} ( t+1 ) }{\beta^{2} ( t+1 ) }.\end{aligned} \end{aligned}

Setting $$\lambda =2$$, $$A= ( \frac{\varGamma ( 1-\alpha ) \beta ( t ) }{r ( t ) } ) ^{1/2}\frac{\omega_{2} ( t+1 ) }{\beta ( t+1 ) }$$, and $$B=\frac{1}{2} ( \frac{r ( t ) }{\varGamma ( 1-\alpha ) \beta ( t ) } ) ^{1/2}\Delta \beta_{+} ( t )$$ using Lemma 1, we obtain

$$\Delta \omega_{2} ( t ) \leq -\beta ( t ) \frac{ \lambda ( t ) }{\lambda ( t+1 ) } \frac{1}{a ( t ) }\sum_{s=t}^{\infty } \Biggl( \frac{1}{c ( s ) }\sum_{v=s} ^{\infty }q ( v ) \Biggr) +\frac{r ( t ) ( \Delta \beta_{+} ( t ) ) ^{2}}{4\varGamma ( 1-\alpha ) \beta ( t ) }.$$

Summing both sides of the above inequality from $$t_{2}$$ to $$t-1$$, we have

\begin{aligned}& \sum_{\zeta =t_{2}}^{t-1} \Biggl( \beta ( \zeta ) \frac{ \lambda ( \zeta ) }{\lambda ( \zeta +1 ) }\frac{1}{a ( \zeta ) }\sum_{s=\zeta }^{\infty } \Biggl( \frac{1}{c ( s ) }\sum_{v=s}^{\infty }q ( v ) \Biggr) -\frac{r ( \zeta ) ( \Delta \beta_{+} ( \zeta ) ) ^{2}}{4\varGamma ( 1-\alpha ) \beta ( \zeta ) } \Biggr) \\& \quad \leq \omega_{2} ( t_{2} ) -\omega_{2} ( t ) \leq \omega_{2} ( t_{2} ) < \infty , \end{aligned}

which contradicts (12). So, the proof is complete. □

### Theorem 2

Let (7) hold. Assume that there exists a positive sequence γ such that, for all sufficiently large t,

$$\lim_{t\rightarrow \infty }\sup \sum_{s=t_{3}}^{t-1} \Biggl( \gamma ( s ) q ( s ) \frac{\varGamma ( 1-\alpha ) }{\vartheta ( s+1 ) }\sum _{u=t_{2}}^{s-1}\frac{\vartheta ( u ) }{r ( u ) }-\frac{a ( s ) \vartheta ( s+1 ) ( \Delta \gamma_{+} ( s ) ) ^{2}}{4\gamma ( s ) \vartheta ( s ) \sum_{u=t_{0}} ^{s-1}\frac{1}{c ( u ) }} \Biggr) =\infty .$$
(14)

If there exist positive sequences β, λ such that (11) and (12) hold, then Eq. (1) is oscillatory.

### Proof

Suppose to the contrary that $$x(t)$$ is a non-oscillatory solution of (1). Then, without loss of generality, we may assume that there is a solution $$x ( t )$$ of Eq. (1) such that $$x ( t ) >0$$ on $$[ t_{0},\infty )$$ where $$t_{0}$$ is sufficiently large. From Lemma 3, $$x ( t )$$ satisfies Case 1 or Case 2. Firstly, let Case 1 hold. Then we define the following function:

$$\pi ( t ) =\gamma ( t ) \frac{c ( t ) \Delta ( a ( t ) \Delta ( r ( t ) \Delta^{\alpha }x ( t ) ) ) }{r ( t ) \Delta^{\alpha }x ( t ) }.$$

For $$t\in [ t_{0},\infty )$$, we have

\begin{aligned} \Delta \pi ( t ) =&\Delta \gamma ( t ) \frac{ \pi ( t+1 ) }{\gamma ( t+1 ) }+\gamma ( t ) \Delta \biggl( \frac{c ( t ) \Delta ( a ( t ) \Delta ( r ( t ) \Delta^{\alpha }x ( t ) ) ) }{r ( t ) \Delta^{\alpha }x ( t ) } \biggr) \\ =&\Delta \gamma ( t ) \frac{\pi ( t+1 ) }{ \gamma ( t+1 ) }-\gamma ( t ) \frac{q ( t ) G ( t ) }{r ( t+1 ) \Delta^{\alpha }x ( t+1 ) } \\ &{}-\gamma ( t ) \frac{c ( t ) \Delta ( a ( t ) \Delta ( r ( t ) \Delta^{\alpha }x ( t ) ) ) \Delta ( r ( t ) \Delta^{\alpha }x ( t ) ) }{r ( t ) \Delta^{\alpha }x ( t ) r ( t+1 ) \Delta^{\alpha }x ( t+1 ) }. \end{aligned}

From Lemma 4, we obtain

\begin{aligned}& \Delta \bigl( r ( t ) \Delta^{\alpha }x ( t ) \bigr) \geq \frac{\sum_{s=t_{0}}^{t-1}\frac{1}{c ( s ) }}{a ( t ) }c ( t ) \Delta \bigl( a ( t ) \Delta \bigl( r ( t ) \Delta^{\alpha }x ( t ) \bigr) \bigr) , \\& 1\leq \frac{r ( t+1 ) \Delta^{\alpha }x ( t+1 ) }{r ( t ) \Delta^{\alpha }x ( t ) }\leq \frac{\vartheta ( t+1 ) }{\vartheta ( t ) }, \\& \frac{\vartheta ( t ) }{\vartheta ( t+1 ) }\leq \frac{r ( t+1 ) \Delta^{\alpha }x ( t+1 ) }{r ( t ) \Delta^{\alpha }x ( t ) } \end{aligned}

or

$$\frac{r ( t+1 ) \vartheta ( t ) }{r ( t ) \vartheta ( t+1 ) }\leq \frac{\Delta G ( t ) }{ \Delta G ( t+1 ) }$$

and

\begin{aligned} \frac{G ( t ) }{r ( t+1 ) \Delta^{\alpha }x ( t+1 ) } =&\frac{\varGamma ( 1-\alpha ) }{r ( t+1 ) }\frac{G ( t ) }{\Delta G ( t ) } \frac{ \Delta G ( t ) }{\Delta G ( t+1 ) } \\ \geq &\frac{\varGamma ( 1-\alpha ) }{r ( t+1 ) } \Biggl( \frac{r ( t ) }{\vartheta ( t ) }\sum _{s=t _{2}}^{t-1}\frac{\vartheta ( s ) }{r ( s ) } \Biggr) \frac{r ( t+1 ) \vartheta ( t ) }{r ( t ) \vartheta ( t+1 ) } \\ =&\frac{\varGamma ( 1-\alpha ) }{\vartheta ( t+1 ) }\sum_{s=t_{2}}^{t-1} \frac{\vartheta ( s ) }{r ( s ) }. \end{aligned}

Hence,

\begin{aligned} \Delta \pi ( t ) \leq &\Delta \gamma_{+} ( t ) \frac{ \pi ( t+1 ) }{\gamma ( t+1 ) }- \gamma ( t ) q ( t ) \frac{\varGamma ( 1-\alpha ) }{ \vartheta ( t+1 ) }\sum_{s=t_{2}}^{t-1} \frac{\vartheta ( s ) }{r ( s ) } \\ &{}-\frac{\gamma ( t ) \vartheta ( t ) }{\vartheta ( t+1 ) }\frac{\sum_{s=t_{0}}^{t-1}\frac{1}{c ( s ) }}{a ( t ) }\frac{\pi^{2} ( t+1 ) }{\gamma^{2} ( t+1 ) }. \end{aligned}

In Lemma 1, choosing $$\lambda =2$$, $$A= ( \frac{\gamma ( t ) \vartheta ( t ) }{\vartheta ( t+1 ) }\frac{ \sum_{s=t_{1}}^{t-1}\frac{1}{c ( s ) }}{a ( t ) } ) ^{1/2}\frac{\pi ( t+1 ) }{\gamma ( t+1 ) }$$, and $$B=\frac{1}{2} ( \frac{a ( t ) \vartheta ( t+1 ) }{\gamma ( t ) \vartheta ( t ) \sum_{s=t_{0}}^{t-1}\frac{1}{c ( s ) }} ) ^{1/2} \Delta \gamma_{+} ( t )$$, we obtain

$$\Delta \pi ( t ) \leq -\gamma ( t ) q ( t ) \frac{\varGamma ( 1-\alpha ) }{\vartheta ( t+1 ) } \sum _{s=t_{2}}^{t-1}\frac{\vartheta ( s ) }{r ( s ) }+\frac{a ( t ) \vartheta ( t+1 ) ( \Delta \gamma_{+} ( t ) ) ^{2}}{4\gamma ( t ) \vartheta ( t ) \sum_{s=t_{0}}^{t-1}\frac{1}{c ( s ) }}.$$

Summing both sides of the above inequality from $$t_{3}$$ to $$t-1$$, we have

\begin{aligned}& \sum_{s=t_{3}}^{t-1} \Biggl( \gamma ( s ) q ( s ) \frac{ \varGamma ( 1-\alpha ) }{\vartheta ( s+1 ) } \sum_{u=t_{2}}^{s-1} \frac{\vartheta ( u ) }{r ( u ) }-\frac{a ( s ) \vartheta ( s+1 ) ( \Delta \gamma_{+} ( s ) ) ^{2}}{4\gamma ( s ) \vartheta ( s ) \sum_{u=t_{0}}^{s-1}\frac{1}{c ( u ) }} \Biggr) \\& \quad \leq \pi ( t_{1} ) -\pi ( t ) \\& \quad \leq \pi ( t_{2} ) < \infty , \end{aligned}

which contradicts (14). And the proof of Case 2 is the same as that of Theorem 1 and hence is omitted. This completes the proof. □

### Theorem 3

Let (7) hold. Assume that there exists a positive sequence γ such that, for all sufficiently large t,

$$\lim_{t\rightarrow \infty }\sup \sum_{s=t_{2}}^{t-1} \biggl( \gamma ( s ) q ( s ) \frac{\delta ( s ) }{ \delta ( s+1 ) }-\frac{r ( s ) \phi ( s ) ( \Delta \gamma_{+} ( s ) ) ^{2}}{4\gamma ( s ) \sum_{s=t_{1}}^{u-1}\frac{\phi ( u ) }{a ( u ) }\sum_{u=t_{0}}^{s-1}\frac{1}{c ( u ) }} \biggr) = \infty .$$
(15)

If there exist positive sequences β, λ such that (11) and (12) hold, then Eq. (1) is oscillatory.

### Proof

Suppose to the contrary that $$x(t)$$ is a non-oscillatory solution of (1). Then, without loss of generality, we may assume that there is a solution $$x ( t )$$ of Eq. (1) such that $$x ( t ) >0$$ on $$[ t_{0},\infty )$$, where $$t_{0}$$ is sufficiently large. From Lemma 3, $$x ( t )$$ satisfies Case 1 or Case 2. Firstly, let Case 1 hold. Then we define the following function:

$$\nu ( t ) =\gamma ( t ) \frac{c ( t ) \Delta ( a ( t ) \Delta ( r ( t ) \Delta^{\alpha }x ( t ) ) ) }{G ( t ) }.$$

For $$t\in [ t_{0},\infty )$$, we get

\begin{aligned} \Delta \nu ( t ) =&\Delta \gamma ( t ) \frac{ \nu ( t+1 ) }{\gamma ( t+1 ) }+\gamma ( t ) \Delta \biggl( \frac{c ( t ) \Delta ( a ( t ) \Delta ( r ( t ) \Delta^{\alpha }x ( t ) ) ) }{G ( t ) } \biggr) \\ =&\Delta \gamma ( t ) \frac{\nu ( t+1 ) }{ \alpha ( t+1 ) }-\gamma ( t ) \frac{q ( t ) G ( t ) }{G ( t+1 ) } \\ &{}-\gamma ( t ) \frac{c ( t ) \Delta ( a ( t ) \Delta ( r ( t ) \Delta^{\alpha }x ( t ) ) ) \Delta G ( t ) }{G ( t ) G ( t+1 ) }. \end{aligned}

From Lemma 4, we have

$$\Delta G ( t ) \geq \frac{1}{r ( t ) } \Biggl( \frac{a ( t ) }{\phi ( t ) }\sum _{s=t_{1}}^{t-1}\frac{ \phi ( s ) }{a ( s ) } \Biggr) \frac{\sum_{s=t_{0}} ^{t-1}\frac{1}{c ( s ) }}{a ( t ) }c ( t ) \Delta \bigl( a ( t ) \Delta \bigl( r ( t ) \Delta^{\alpha }x ( t ) \bigr) \bigr)$$

and

$$\frac{G ( t ) }{G ( t+1 ) }\geq \frac{\delta ( t ) }{\delta ( t+1 ) }.$$

Thus we obtain

\begin{aligned} \Delta \nu ( t ) \leq &\Delta \gamma_{+} ( t ) \frac{ \nu ( t+1 ) }{\gamma ( t+1 ) }- \gamma ( t ) p ( t ) \frac{\delta ( t ) }{\delta ( t+1 ) } \\ &{}-\frac{\gamma ( t ) }{r ( t ) \phi ( t ) }\sum_{s=t_{1}}^{t-1} \frac{\phi ( s ) }{a ( s ) } \sum_{s=t_{0}}^{t-1} \frac{1}{c ( s ) }\frac{\nu^{2} ( t+1 ) }{\gamma^{2} ( t+1 ) }. \end{aligned}

Then, setting $$\lambda =2$$,

\begin{aligned}& A= \Biggl( \frac{\gamma ( t ) }{r ( t ) \phi ( t ) }\sum_{s=t_{1}}^{t-1} \frac{ \phi ( s ) }{a ( s ) }\sum_{s=t_{0}}^{t-1} \frac{1}{c ( s ) } \Biggr) ^{1/2}\frac{\nu ( t+1 ) }{\gamma ( t+1 ) },\quad \text{and} \\& B=\frac{1}{2} \biggl( \frac{r ( t ) \phi ( t ) }{\gamma ( t ) \sum_{s=t_{1}}^{t-1}\frac{ \phi ( s ) }{a ( s ) }\sum_{s=t_{0}}^{t-1}\frac{1}{c ( s ) }} \biggr) ^{1/2}\Delta \gamma_{+} ( t ) \end{aligned}

using Lemma 1, we obtain

$$\Delta \nu ( t ) \leq -\gamma ( t ) q ( t ) \frac{\delta ( t ) }{\delta ( t+1 ) }+ \frac{r ( t ) \phi ( t ) ( \Delta \gamma_{+} ( t ) ) ^{2}}{4\gamma ( t ) \sum_{s=t_{1}}^{t-1}\frac{ \phi ( s ) }{a ( s ) }\sum_{s=t_{0}}^{t-1}\frac{1}{c ( s ) }}.$$

Summing both sides of the above inequality from $$t_{2}$$ to $$t-1$$, we have

\begin{aligned} \begin{aligned} \sum_{s=t_{2}}^{t-1} \biggl( \gamma ( s ) q ( s ) \frac{ \delta ( s ) }{\delta ( s+1 ) }-\frac{r ( s ) \phi ( s ) ( \Delta \gamma_{+} ( s ) ) ^{2}}{4\gamma ( s ) \sum_{s=t_{1}}^{u-1}\frac{ \phi ( u ) }{a ( u ) }\sum_{u=t_{0}}^{s-1}\frac{1}{c ( u ) }} \biggr) & \leq \nu ( t_{2} ) -\nu ( t ) \\ & \leq \nu ( t_{2} ) < \infty ,\end{aligned} \end{aligned}

which contradicts (15). The proof of Case 2 is the same as that of Theorem 1 and hence is omitted. This completes the proof. □

## Applications

### Example 1

Consider the following fractional difference equation for $$t\geq 2$$:

$$\Delta^{3+\alpha }x ( t ) +t^{-2} \Biggl( \sum _{s=t_{0}}^{t-1+ \alpha } ( t-s-1 ) ^{ ( -\alpha ) }x ( s ) \Biggr) =0.$$
(16)

This corresponds to Eq. (1) with $$\alpha \in ( 0,1 ]$$, $$t_{0}=2$$, $$c ( t ) =a ( t ) =r ( t ) =1$$, and $$q ( t ) =t^{-2}$$. Then $$\phi ( t ) =\lambda ( t ) =t-t_{1}$$, $$\vartheta ( t ) =\sum_{s=t_{2}} ^{t-1} ( s-t_{1} )$$, $$\gamma ( t ) =\beta ( t ) =t$$. For $$k\in ( 0,1 )$$, it can be written $$kt \leq \phi ( t ) \leq t$$, $$k^{2}t^{2}/2\leq \vartheta ( t ) \leq t^{2}/2$$, $$k^{3}t^{3}/3\leq \sum_{s=t_{3}}^{t-1}k^{2}s ^{2}\leq t^{3}/3$$. So,

\begin{aligned}& \lim_{t\rightarrow \infty }\sup \sum_{s=t_{3}}^{t-1} \Biggl( \frac{ \varGamma ( 1-\alpha ) \gamma ( s ) q ( s ) }{\vartheta ( s ) \phi ( s+1 ) }\sum_{u=t_{2}} ^{s-1} \frac{\vartheta ( u ) }{r ( u ) }\sum_{u=t _{1}}^{s-1} \frac{\phi ( u ) }{a ( u ) }-\frac{c ( s ) ( \Delta \gamma_{+} ( s ) ) ^{2}}{4 \gamma ( s ) } \Biggr) \\& \quad \geq \lim_{t\rightarrow \infty }\sup \sum_{s=t_{3}}^{t-1} \biggl( \frac{ \varGamma ( 1-\alpha ) k^{5}s^{2}}{6 ( s+1 ) }- \frac{1}{4s} \biggr) =\infty \end{aligned}

and

\begin{aligned}& \lim_{t\rightarrow \infty }\sup \sum_{\zeta =t_{2}}^{t-1} \Biggl( \frac{ \beta ( \zeta ) \lambda ( \zeta ) }{\lambda ( \zeta +1 ) a ( \zeta ) }\sum_{s=\zeta }^{\infty } \Biggl( \frac{1}{c ( s ) }\sum_{v=s}^{\infty }q ( v ) \Biggr) -\frac{r ( \zeta ) ( \Delta \beta_{+} ( \zeta ) ) ^{2}}{4\varGamma ( 1-\alpha ) \beta ( \zeta ) } \Biggr) \\& \quad \geq \lim_{t\rightarrow \infty }\sup \sum_{\zeta =t_{2}}^{t-1} \Biggl( \frac{\zeta^{2}}{ ( \zeta +1 ) }\sum_{s=\zeta }^{ \infty } \Biggl( \sum_{v=s}^{\infty }v^{-2} \Biggr) -\frac{1}{4\varGamma ( 1-\alpha ) \zeta } \Biggr) \\& \quad =\infty . \end{aligned}

Thus, (16) is oscillatory from Theorem 1.

## References

1. Diethelm, K.: The Analysis of Fractional Differential Equations. Springer, Berlin (2010)

2. Kilbas, A., Srivastava, H., Trujillo, J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

3. Öğrekçi, S.: Interval oscillation criteria for second-order functional differential equations. SIGMA 36(2), 351–359 (2018)

4. Öğrekçi, S., Misir, A., Tiryaki, A.: On the oscillation of a second-order nonlinear differential equations with damping. Miskolc Math. Notes 18(1), 365–378 (2017)

5. Öğrekçi, S.: New interval oscillation criteria for second-order functional differential equations with nonlinear damping. Open Math. 13(1), 239–246 (2015)

6. Sadhasivam, V., Kavitha, J., Nagajothi, N.: Oscillation of neutral fractional order partial differential equations with damping term. Int. J. Pure Appl. Math. 115(9), 47–64 (2017)

7. Hasil, P., Veselý, M.: Oscillation and non-oscillation criteria for linear and half-linear difference equations. J. Math. Anal. Appl. 452(1), 401–428 (2017)

8. Hasil, P., Veselý, M.: Oscillation constants for half-linear difference equations with coefficients having mean values. Adv. Differ. Equ. 2015, 210 (2015)

9. Sugie, J., Tanaka, M.: Nonoscillation theorems for second-order linear difference equations via the Riccati-type transformation. Proc. Am. Math. Soc. 145(5), 2059–2073 (2017)

10. Zhang, C., Agarwal, R.P., Bohner, M., Li, T.: Oscillation of fourth-order delay dynamic equations. Sci. China Math. 58(1), 143–160 (2015)

11. Grace, S.R., Agarwal, R.P., Sae-Jie, W.: Monotone and oscillatory behavior of certain fourth order nonlinear dynamic equations. Dyn. Syst. Appl. 19(1), 25–32 (2010)

12. Grace, S.R., Bohner, M., Sun, S.: Oscillation of fourth-order dynamic equations. Hacet. J. Math. Stat. 39, 545–553 (2010)

13. Grace, S.R., Argawal, R.P., Pinelas, S.: On the oscillation of fourth order superlinear dynamic equations on time scales. Dyn. Syst. Appl. 20, 45–54 (2011)

14. Li, T., Thandapani, E., Tang, S.: Oscillation theorems for fourth-order delay dynamic equations on time scales. Bull. Math. Anal. Appl. 3, 190–199 (2011)

15. Liu, T., Zheng, B., Meng, F.: Oscillation on a class of differential equations of fractional order. Math. Probl. Eng. 2013, Article ID 830836 (2013)

16. Qin, H., Zheng, B.: Oscillation of a class of fractional differential equations with damping term. Sci. World J. 2013, Article ID 685621 (2013)

17. Ogrekci, S.: Interval oscillation criteria for functional differential equations of fractional order. Adv. Differ. Equ. 2015, 3 (2015)

18. Muthulakshmi, V., Pavithra, S.: Interval oscillation criteria for forced fractional differential equations with mixed nonlinearities. Glob. J. Pure Appl. Math. 13(9), 6343–6353 (2017)

19. Chen, D.-X.: Oscillation criteria of fractional differential equations. Adv. Differ. Equ. 2012, 33 (2012)

20. Zheng, B.: Oscillation for a class of nonlinear fractional differential equations with damping term. J. Adv. Math. Stud. 6(1), 107–115 (2013)

21. Xu, R.: Oscillation criteria for nonlinear fractional differential equations. J. Appl. Math. 2013, Article ID 971357 (2013)

22. Secer, A., Adiguzel, H.: Oscillation of solutions for a class of nonlinear fractional difference equations. J. Nonlinear Sci. Appl. 9(11), 5862–5869 (2016)

23. Abdalla, B.: On the oscillation of q-fractional difference equations. Adv. Differ. Equ. 2017, 254 (2017)

24. Abdalla, B., Abodayeh, K., Abdeljawad, T. Alzabut, J.: New oscillation criteria for forced nonlinear fractional difference equations. Vietnam J. Math. 45(4), 609–618 (2017)

25. Alzabut, J.O., Abdeljawad, T.: Sufficient conditions for the oscillation of nonlinear fractional difference equations. J. Fract. Calc. Appl. 5(1), 177–187 (2014)

26. Bai, Z., Xu, R.: The asymptotic behavior of solutions for a class of nonlinear fractional difference equations with damping term. Discrete Dyn. Nat. Soc. 2018, Article ID 5232147 (2018)

27. Chatzarakis, G.E., Gokulraj, P., Kalaimani, T., Sadhasivam, V.: Oscillatory solutions of nonlinear fractional difference equations. Int. J. Differ. Equ. 13(1), 19–31 (2018)

28. Sagayaraj, M.R., Selvam, A.G.M., Loganathan, M.P.: On the oscillation of nonlinear fractional difference equations. Math. Æterna 4, 220–224 (2014)

29. Selvam, A.G.M., Sagayaraj, M.R., Loganathan, M.P.: Oscillatory behavior of a class of fractional difference equations with damping. Int. J. Appl. Math. Res. 3(3), 220–224 (2014)

30. Li, W.N.: Oscillation results for certain forced fractional difference equations with damping term. Adv. Differ. Equ. 2016, 70 (2016)

31. Sagayaraj, M.R., Selvam, A.G.M., Loganathan, M.P.: Oscillation criteria for a class of discrete nonlinear fractional equations. Bull. Soc. Math. Serv. Stand. 3(1), 27–35 (2014)

32. Atici, F.M., Eloe, P.W.: Initial value problems in discrete fractional calculus. Proc. Am. Math. Soc. 137(3), 981–989 (2008)

33. Hardy, G.H., Littlewood, J.E., Polya, G.: Inequalities. Cambridge University Press, Cambridge (1988)

### Acknowledgements

The author is grateful to the scholars who provided the literature sources.

Not applicable.

Not applicable.

## Author information

Authors

### Contributions

HA contributed to the work totally, and he read and approved the final version of the manuscript.

## Ethics declarations

### Competing interests

The author declares that they have no competing interests.

### Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

## Rights and permissions

Reprints and Permissions

Adiguzel, H. Oscillatory behavior of solutions of certain fractional difference equations. Adv Differ Equ 2018, 445 (2018). https://doi.org/10.1186/s13662-018-1905-3

• Accepted:

• Published:

• DOI: https://doi.org/10.1186/s13662-018-1905-3

### Keywords

• Oscillation
• Oscillation criteria
• Fractional difference operator
• Riemann–Liouville
• Fractional difference equations
• Riccati technique
• Hardy inequalities