Skip to main content

Table 3 Comparison of errors between the scheme (20) and the scheme given in [26]

From: An efficient numerical algorithm for solving the two-dimensional fractional cable equation

  \(h_{x}=h_{y}=\tau \) \(e_{2}(h,\tau)\) \(e_{\infty }(h,\tau)\) \(e_{2}(h,\tau)\) [26] \(e_{\infty }(h,\tau)\) [26]
\(\gamma _{1}=0.9\), \(\gamma _{2}=0.4\) 1/5 4.8507e-3 9.7013e-3 2.7115e-2 5.3825e-2
1/10 1.2286e-3 2.4074e-3 1.0684e-2 2.1395e-2
1/20 3.0928e-4 6.1511e-4 4.1439e-3 8.2895e-3
1/30 1.3769e-4 2.7467e-4 2.3706e-3 4.7416e-3
\(\gamma _{1}=0.6\), \(\gamma _{2}=0.8\) 1/5 4.6336e-3 9.2673e-3 5.0394e-3 9.7966e-3
1/10 1.1881e-3 2.3281e-3 1.6070e-3 3.2412e-3
1/20 3.0103e-4 5.9869e-4 5.0187e-4 1.0054e-3
1/30 1.3436e-4 2.6804e-4 2.5264e-4 5.0562e-4
\(\gamma _{1}=0.5\), \(\gamma _{2}=0.5\) 1/5 4.4248e-3 8.8496e-3 1.9661e-2 3.8921e-2
1/10 1.1486e-3 2.2508e-3 7.2986e-3 1.4625e-2
1/20 2.9324e-4 5.8320e-4 2.6612e-3 5.3241e-3
1/30 1.3133e-4 2.6199e-4 1.4673e-3 2.9349e-3