Skip to main content

Table 2 Dependency of maximum absolute error on Δx, Δt with \(\lambda=0\), \(\alpha(x,t)=\frac{12-\sin^{3}(xt)}{12}\), where the final time is \(T=0.1\)

From: Finite difference approach for variable order reaction–subdiffusion equations

Δx Δt Maximum absolute error
\(\frac{1}{10}\) \(\frac{1}{20}\) 3.208 × 10−3
\(\frac{1}{10}\) \(\frac{1}{30}\) 2.756 × 10−3
\(\frac{1}{20}\) \(\frac{1}{40}\) 2.607 × 10−3
\(\frac{1}{30}\) \(\frac{1}{50}\) 2.589 × 10−3
\(\frac{1}{40}\) \(\frac{1}{50}\) 2.562 × 10−3