Skip to main content

Theory and Modern Applications

Oscillation of second order neutral dynamic equations with deviating arguments on time scales

Abstract

In this paper, we consider the following second order neutral dynamic equations with deviating arguments on time scales:

$$\bigl(r(t) \bigl(z^{\Delta}(t)\bigr)^{\alpha}\bigr)^{\Delta}+q(t)f \bigl(y\bigl(m(t)\bigr)\bigr)=0, $$

where \(z(t)=y(t)+p(t)y(\tau(t))\), \(m(t)\leq t\) or \(m(t)\geq t\), and \(\tau(t)\leq t\). Some new oscillatory criteria are obtained by means of the inequality technique and a Riccati transformation. Our results extend and improve many well-known results for oscillation of second order dynamic equations. Some examples are given to illustrate the main results.

1 Introduction

The study of dynamic equations on time scales which goes back to its founder Hilger [1] as an area of mathematics that has received a lot of attention. It has been created in order to unify the study of differential and difference equations. Many authors have contributed on various aspects of this theory, see the survey paper by Agarwal et al. [2] and the references cited therein.

The theory of time scales, which provides powerful new tools for exploring connections between the traditionally separated fields, has been developing rapidly and has received much attention. Dynamic equations cannot only unify the theories of differential equations and difference equations, but also extend these classical cases to cases “in between” and can be applied to other different types of time scales. The theory of dynamic equations on time scales is an adequate mathematical apparatus for the simulation of processes and phenomena observed in biotechnology, chemical technology, economy, neural networks, physics, social sciences etc.

With the rapid development of science, the contributions of mathematical researchers are more urgent than ever before. Thus, beyond the purely mathematical interest, all of the above make the theory of dynamic equation very attractive to researchers. As a result, in the last decades many of them have focused their interest on problems of this area. One of the most interesting problems is the study of the oscillation of solutions of dynamic equation with deviating arguments.

Dynamic equations with deviating argument are deemed to be adequate in modeling of the countless processes in all areas of science. As is well known, a distinguishing feature of delay dynamic equations under consideration is the dependence of the evolution rate of the processes described by such equations on the past history. This consequently results in predicting the future in a more reliable and efficient way, explaining at the same time many qualitative phenomena such as periodicity, oscillation or instability. The concept of the delay incorporation into systems plays an essential role in modeling to represent time taken to complete some hidden processes; see [3, 4]. Contrariwise, advanced dynamic equations can find use in many applied problems whose evolution rate depends not only on the present, but also on the future, it also play a vital role.

Saker [5] studied the oscillation of second order nonlinear neutral delay dynamic equation

$$\bigl(r(t) \bigl(\bigl[y(t)+p(t)y(t-\tau)\bigr]^{\Delta}\bigr)^{\alpha}\bigr)^{\Delta}+f\bigl(t,y(t-\delta)\bigr)=0, $$

under the condition \(\int^{\infty}r^{-1/\alpha}(t)\Delta t=\infty\).

Baculíková [6] studied the oscillatory behavior of the second order advanced differential equations

$$y''(t) + p(t)y\bigl(\sigma(t)\bigr) = 0, $$

where \(\sigma(t) \geq t\), and provided some technique for studying oscillation of the second order advanced differential equation. The method is based on the monotonic properties of nonoscillatory solutions.

Motivate by the above articles, now, in this article, we consider the dynamic equation of the form

$$ \begin{aligned} \bigl(r(t) \bigl(z^{\Delta}(t) \bigr)^{\alpha}\bigr)^{\Delta}+q(t)f\bigl(y\bigl(m(t)\bigr)\bigr)=0, \quad t \in I, \end{aligned} $$
(1.1)

where \(z(t)=y(t)+p(t)y(\tau(t))\), \(I=[t_{0},\infty)_{\mathbb{T}}\) and \(\alpha\geq1\) is the ratio of two odd positive integers. Assume that the following conditions are satisfied:

  1. (H1)

    \(r(t), m(t)\in C^{1}_{rd}(I,[0,\infty)_{\mathbb{T}})\), \(p(t)\in C_{rd}(I,[0,\infty)_{\mathbb{T}})\), \(q(t)\in C_{rd}(I,(0,\infty )_{\mathbb{T}})\), \(\tau(t)\in C_{rd}(I,{\mathbb{R}})\);

  2. (H2)

    \(m(t)\leq\sigma(t)\), \(\tau(t)\leq t\) and \(m^{\Delta}(t)>0\) and \(\lim_{t\rightarrow\infty} m(t)= \lim_{t\rightarrow\infty}\tau (t)=\infty\);

  3. (H3)

    \(f\in C(\mathbb{R},\mathbb{R})\) such that \(xf(x)>0\) and \(f(x)/x^{\alpha}\geq k>0\), for \(x\neq0\), k is a constant.

We only discuss these solutions of (1.1) which exist on some half-line \([t_{0},\infty)_{\mathbb{T}}\) and satisfy

$$\sup\bigl\{ \bigl\vert x(t) \bigr\vert : t_{e} \leq t < \infty \bigr\} > 0 $$

for any \(t_{e} \geq t_{0}\). Such a solution of (1.1) is said to be oscillatory if it is neither eventually positive nor eventually negative, otherwise it is called nonoscillatory. The equation itself is called oscillatory if all of its solutions are oscillatory.

In this paper, using a Riccati transformation and the inequality technique, we present some new sufficient conditions which ensure that any solution of (1.1) oscillates. We suppose that \(m(t)\leq\sigma(t)\), when \(m(t)\leq t\), Eq. (1.1) is a delay dynamic equation on time scales; when \(m(t)\geq t\), Eq. (1.1) is an advanced dynamic equation on time scales, such as the h-difference equation (\(h>0\)), and it is also called a finite difference equation, etc. Our results extend, complement, or improve some of the existing results, such as [721]. Our results further develop the functional differential equations on time scales.

2 Preliminaries

In order to prove our main results, we establish some fundamental results in this section. Without loss of generality, we can only deal with the positive solutions of Eq. (1.1) since the proof of the other case is similar.

Lemma 2.1

Let \(\alpha\geq1\) be a ratio of two odd numbers. Then

$$ \begin{aligned} A^{(1+\alpha)/\alpha}-\frac{B^{1/\alpha}}{\alpha} \bigl[(1+\alpha)A-B\bigr]\leq (A-B)^{(1+\alpha)/\alpha}, \quad AB\geq0, \end{aligned} $$
(2.1)

and

$$ \begin{aligned} -Cv^{(1+\alpha)/\alpha}+Dv\leq \frac{\alpha^{\alpha}}{(\alpha+1)^{1+\alpha }}\frac{D^{1+\alpha}}{C^{\alpha}}, \quad C>0. \end{aligned} $$
(2.2)

The inequality (2.1) can be found in (3.1) in [19], Lemma 1 in [20], and Lemma 2.1 in [21]. The proof of (2.2) can be found in Zhang and Wang [22].

3 Oscillation results

In this section, we are ready to establish the main results of this paper.

Theorem 3.1

Suppose that \(\sigma(m(t))=m(\sigma(t))\), and there exist two functions \(\eta, \delta\in C_{rd}^{1}([t_{0},\infty),(0,\infty))\) such that

$$ \begin{aligned} \limsup_{t\rightarrow\infty} \int^{t}_{t_{0}} \biggl[\eta(s)P\bigl(\sigma(s)\bigr)- \frac {r(m(s))(\eta^{\Delta}(s))_{+}^{\alpha+1}}{ (\alpha+1)^{\alpha+1}{(m^{\Delta}(s))^{\alpha}\eta^{\alpha}(s)} } \biggr]\Delta s=\infty, \end{aligned} $$
(3.1)

or

$$ \begin{aligned} \limsup_{t\rightarrow\infty} \int^{t}_{t_{0}} \biggl[ \psi(s)-\frac{\delta ^{\alpha+1}(s)r(s)((\varphi(s))_{+})^{\alpha+1}}{ \delta^{\alpha}(\sigma(s))(\alpha+1)^{\alpha+1}} \biggr]\Delta s=\infty, \end{aligned} $$
(3.2)

where

$$\begin{aligned}& P(t)=kq(t) \biggl(1-p\bigl(m(t)\bigr)\frac{\pi(\tau(m(t)))}{\pi(m(t))} \biggr)^{\alpha},\quad\quad \pi(t)= \int_{t}^{\infty}r^{-1/\alpha}(s)\Delta s, \\& p(t)< \frac{\pi (t)}{\pi(\tau(t))}, \quad\quad \psi(t)=\delta\bigl(\sigma(t)\bigr) \biggl[P(t)-\frac{\alpha}{r^{1/\alpha}(t)\pi ^{\alpha+1}(\sigma(t))} + \frac{1}{r^{1/\alpha}(t)\pi^{\alpha+1}(t)} \biggr], \\& \varphi(t)=\frac{\delta^{\Delta}(t)}{\delta(t)}+\frac{\delta(\sigma (t))(\alpha+1)}{r^{1/\alpha}(t)\pi(t)\delta(t)}, \quad\quad \bigl(\varphi(t)\bigr)_{+}=\max \bigl\{ 0,\varphi(t)\bigr\} , \\& \bigl(\eta^{\Delta}(t)\bigr)_{+}=\max\bigl\{ 0, \eta^{\Delta}(s)\bigr\} . \end{aligned}$$

Then every solution \(y(t)\) of (1.1) is oscillatory.

Proof

If \(y(t)\) is an eventually positive solution of (1.1), and there exists a \(t_{1}>t_{0}\) such that \(y(t)>0\), \(y(\tau(t))>0\), \(y(m(t))>0\), \(t\geq t_{1}\). By the definition of \(z(t)\) and (H1) we have \(z(t)\geq y(t)>0\), and from (1.1) we know that

$$ \begin{aligned} \bigl(r(t) \bigl(z^{\Delta}(t) \bigr)^{\alpha}\bigr)^{\Delta}=-q(t)f\bigl(y\bigl(m(t)\bigr)\bigr) \leq-kq(t)y^{\alpha}\bigl(m(t)\bigr)< 0, \quad t\in I. \end{aligned} $$
(3.3)

Thus \(r(t)(z^{\Delta}(t))^{\alpha}\) is decreasing for all \(t\geq t_{1}\), then, for any \(s\geq t \geq t_{1}\), we have

$$ \begin{aligned} r(t) \bigl(z^{\Delta}(t) \bigr)^{\alpha}\geq r(s) \bigl(z^{\Delta}(s)\bigr)^{\alpha}, \end{aligned} $$
(3.4)

thus

$$ \begin{aligned} z^{\Delta}(s)\leq \biggl( \frac{r(t)}{r(s)} \biggr)^{1/\alpha}z^{\Delta}(t). \end{aligned} $$
(3.5)

Integrating (3.5) from t to v, then

$$ \begin{aligned} z(v)-z(t)\leq r^{1/\alpha}(t)z^{\Delta}(t) \int_{t}^{v}r^{-1/\alpha}(s)\Delta s. \end{aligned} $$
(3.6)

Letting \(v \rightarrow\infty\), we have

$$ \begin{aligned} z(t)\geq-r^{1/\alpha}(t)z^{\Delta}(t) \pi(t). \end{aligned} $$
(3.7)

Then

$$ \begin{aligned} \biggl(\frac{z(t)}{\pi(t)} \biggr)^{\Delta}=\frac{z^{\Delta}(t)\pi(t)-z(t)\pi ^{\Delta}(t)}{\pi(\sigma(t))\pi(t)} =\frac{z^{\Delta}(t)\pi(t)+z(t)r^{-1/\alpha}(t)}{\pi(\sigma(t))\pi(t)}\geq0, \end{aligned} $$
(3.8)

thus \(\frac{z(t)}{\pi(t)}\geq\frac{z(\tau(t))}{\pi(\tau(t))}\), i.e.,

$$ \begin{aligned} \frac{\pi(\tau(t))}{\pi(t)}z(t)\geq z\bigl( \tau(t)\bigr). \end{aligned} $$
(3.9)

Moreover, by the definition of \(z(t)\) and (3.9) we have \(z(t)\geq y(t)\), then

$$ \begin{aligned}[b] y(t)&= z(t)-p(t)y\bigl(\tau(t)\bigr) \geq z(t)-p(t)z\bigl(\tau(t)\bigr)\geq z(t)-z(t)p(t)\frac{\pi(\tau(t))}{\pi(t)} \\ &=z(t) \biggl(1-p(t)\frac{\pi(\tau(t))}{\pi(t)} \biggr). \end{aligned} $$
(3.10)

From (3.3) and (3.10), we get

$$ \begin{aligned}[b] \bigl(r(t) \bigl(z^{\Delta}(t) \bigr)^{\alpha}\bigr)^{\Delta}&\leq-kq(t)y^{\alpha}\bigl(m(t) \bigr) \\&\leq-kq(t) z^{\alpha}\bigl(m(t)\bigr) \biggl(1-p\bigl(m(t)\bigr) \frac{\pi(\tau(m(t)))}{\pi (m(t))} \biggr)^{\alpha}, \end{aligned} $$
(3.11)

i.e.,

$$ \begin{aligned} \bigl(r(t) \bigl(z^{\Delta}(t) \bigr)^{\alpha}\bigr)^{\Delta}+kq(t) z^{\alpha}\bigl(m(t)\bigr) \biggl(1-p\bigl(m(t)\bigr)\frac{\pi(\tau(m(t)))}{\pi(m(t))} \biggr)^{\alpha}\leq0. \end{aligned} $$
(3.12)

Let \(P(t)=kq(t) (1-p(m(t))\frac{\pi(\tau(m(t)))}{\pi(m(t))} )^{\alpha}\). Then

$$ \begin{aligned} \bigl(r(t) \bigl(z^{\Delta}(t) \bigr)^{\alpha}\bigr)^{\Delta}+P(t) z^{\alpha}\bigl(m(t)\bigr) \leq0. \end{aligned} $$
(3.13)

We know that \(r(t)(z^{\Delta}(t))^{\alpha}\) is decreasing for all \(t\geq t_{1}\), which implies that \(r(t)(z^{\Delta}(t))^{\alpha}\) does not change sign eventually, so as \(z^{\Delta}(t)\), then there exists a \(t_{2}\geq t_{1}\) such that either \(z^{\Delta}(t) < 0\) or \(z^{\Delta}(t) > 0\) for any \(t\geq t_{2}\). We shall show that in each case we are led to a contradiction.

Case (1): Assume first that \(z^{\Delta}(t) > 0\) for all \(t \geq t_{2}\). Define the following Riccati transformation:

$$ \begin{aligned} w(t)=\eta(t)\frac{r(\sigma(t))(z^{\Delta}(\sigma(t)))^{\alpha}}{z^{\alpha}(m(t))}. \end{aligned} $$
(3.14)

Then \(w(t)>0\), and

$$ \begin{aligned}[b] w^{\Delta}(t)={}& \biggl[\eta(t) \frac{r(\sigma(t))(z^{\Delta}(\sigma(t)))^{\alpha}}{z^{\alpha}(m(t))} \biggr]^{\Delta}\\ ={}&\eta^{\Delta}(t)\frac{r(\sigma(\sigma(t)))(z^{\Delta}(\sigma(\sigma (t))))^{\alpha}}{z^{\alpha}(m(\sigma(t)))} +\eta(t) \biggl[\frac{r(\sigma(t))(z^{\Delta}(\sigma(t)))^{\alpha}}{z^{\alpha}(m(t))} \biggr]^{\Delta}\\ ={}&\frac{\eta^{\Delta}(t)}{\eta(\sigma(t))}w\bigl(\sigma(t)\bigr) +\eta(t)\frac{ [r(\sigma(t))(z^{\Delta}(\sigma(t)))^{\alpha}]^{\Delta}}{z^{\alpha}(m(\sigma(t)))} \\ &{} -\eta(t) \frac{r(\sigma(t))(z^{\Delta}(\sigma(t)))^{\alpha}(z^{\alpha}(m(t)))^{\Delta}}{z^{\alpha}(m(t))z^{\alpha}(m(\sigma(t)))}. \end{aligned} $$
(3.15)

By the corollary of the Keller chain rule [23] and the condition \(\sigma(m(t))=m(\sigma(t))\) ([24] Lemma 2.2), for \(\alpha\geq 1\), we have

$$ \begin{aligned}[b] \bigl(\bigl(z\bigl(m(t)\bigr) \bigr)^{\alpha}\bigr)^{\Delta}&=\alpha \int_{0}^{1} \bigl[hz\bigl(m\bigl(\sigma (t)\bigr) \bigr)+(1-h)z\bigl(m(t)\bigr) \bigr]^{\alpha-1}\bigl(z\bigl(m(t)\bigr) \bigr)^{\Delta}\,dh \\ &\geq\alpha \int_{0}^{1} \bigl[hz\bigl(m(t)\bigr)+(1-h)z \bigl(m(t)\bigr) \bigr]^{\alpha -1}\bigl(z\bigl(m(t)\bigr)\bigr)^{\Delta}\,dh \\ &=\alpha z^{\alpha-1}\bigl(m(t)\bigr)z^{\Delta}\bigl(m(t) \bigr)m^{\Delta}(t). \end{aligned} $$
(3.16)

Thus we get

$$ \begin{aligned}[b] w^{\Delta}(t)&\leq \frac{\eta^{\Delta}(t)}{\eta(\sigma(t))}w\bigl(\sigma(t)\bigr) +\eta(t)\frac{-P(\sigma(t))z^{\alpha}(m(\sigma(t)))}{z^{\alpha}(m(\sigma(t)))} \\ &\quad{} -\eta(t) \frac{r(\sigma(t))(z^{\Delta}(\sigma(t)))^{\alpha}\alpha z^{\Delta}(m(t))m^{\Delta}(t)}{z(m(t))z^{\alpha}(m(\sigma(t)))} \\ &\leq\frac{\eta^{\Delta}(t)}{\eta(\sigma(t))}w\bigl(\sigma(t)\bigr)-\eta(t)P\bigl(\sigma(t)\bigr) - \frac{\alpha\eta(t) m^{\Delta}(t)}{r^{1/\alpha}(m(t))\eta^{\frac{\alpha +1}{\alpha}}(\sigma(t))}w^{\frac{\alpha+1}{\alpha}}\bigl(\sigma(t)\bigr) \\ &\leq\bigl(\eta^{\Delta}(t)\bigr)_{+}\frac{w(\sigma(t))}{\eta(\sigma(t))}-\eta (t)P\bigl( \sigma(t)\bigr) -\frac{\alpha\eta(t) m^{\Delta}(t)}{r^{1/\alpha}(m(t))} \biggl(\frac {w(\sigma(t))}{\eta(\sigma(t))} \biggr)^{\frac{\alpha+1}{\alpha}}. \end{aligned} $$
(3.17)

Set

$$ \begin{aligned} F(v)=\bigl(\eta^{\Delta}(t) \bigr)_{+}v -\frac{\alpha\eta(t) m^{\Delta}(t)}{r^{1/\alpha}(m(t))}v^{\frac{\alpha +1}{\alpha}}. \end{aligned} $$
(3.18)

By calculating, we have

$$ \begin{aligned} v_{0}=\frac{1}{(\alpha+1)^{\alpha}} \frac{r(m(t))}{(m^{\Delta}(t))^{\alpha}} \biggl(\frac{(\eta^{\Delta}(t))_{+}}{\eta(t)} \biggr)^{\alpha}, \end{aligned} $$
(3.19)

and when \(v< v_{0}\), we have \(F^{\Delta}(v)>0\), when \(v>v_{0}\), \(F^{\Delta}(v)<0\), then \(F(v)\) obtains its maximum. So,

$$ \begin{aligned}[b] F(v)&\leq F(v_{0})= \frac{r(m(t))(\eta^{\Delta}(t))_{+}^{\alpha+1}}{(\alpha +1)^{\alpha}{(m^{\Delta}(t))^{\alpha}\eta^{\alpha}(t)} } -\frac{\alpha r(m(t))(\eta^{\Delta}(t))_{+}^{\alpha+1}}{(\alpha+1)^{\alpha +1}{(m^{\Delta}(t))^{\alpha}\eta^{\alpha}(t)} } \\ &=\frac{(\alpha+1)r(m(t))(\eta^{\Delta}(t))_{+}^{\alpha+1} -\alpha r(m(t))(\eta^{\Delta}(t))_{+}^{\alpha+1}}{(\alpha+1)^{\alpha +1}{(m^{\Delta}(t))^{\alpha}\eta^{\alpha}(t)} } \\ &=\frac{r(m(t))(\eta^{\Delta}(t))_{+}^{\alpha+1}}{(\alpha+1)^{\alpha +1}{(m^{\Delta}(t))^{\alpha}\eta^{\alpha}(t)} }. \end{aligned} $$
(3.20)

Therefore,

$$ \begin{aligned} w^{\Delta}(t)\leq-\eta(t)P\bigl( \sigma(t)\bigr)+\frac{r(m(t))(\eta^{\Delta}(t))_{+}^{\alpha+1}}{(\alpha+1)^{\alpha+1} {(m^{\Delta}(t))^{\alpha}\eta^{\alpha}(t)} }. \end{aligned} $$
(3.21)

Integrating the above inequality from \(T_{0}\) to t, we have

$$ \begin{aligned} 0< w(t)\leq w(T_{0})- \int_{T_{0}}^{t} \biggl[\eta(s)P\bigl(\sigma(s)\bigr) - \frac{r(m(s))(\eta^{\Delta}(s))_{+}^{\alpha+1}}{(\alpha+1)^{\alpha +1}{(m^{\Delta}(s))^{\alpha}\eta^{\alpha}(s)} } \biggr]\Delta s. \end{aligned} $$
(3.22)

Let \(t\rightarrow\infty\) in the above inequality, which contradicts (3.1).

Case (2): Assume now that \(z^{\Delta}(t) < 0\) for all \(t \geq t_{2}\). Define the following Riccati transformation:

$$ \begin{aligned} w(t)=\delta(t) \biggl[ \frac{r(t)(z^{\Delta}(t))^{\alpha}}{z^{\alpha}(t)}+\frac {1}{\pi^{\alpha}(t)} \biggr]. \end{aligned} $$
(3.23)

Since (3.7), we have \(w(t)>0\), then

$$ \begin{aligned}[b] w^{\Delta}(t)&= \biggl\{ \delta(t) \biggl[\frac{r(t)(z^{\Delta}(t))^{\alpha}}{z^{\alpha}(t)} +\frac{1}{\pi^{\alpha}(t)} \biggr] \biggr\} ^{\Delta}\\ &=\frac{\delta^{\Delta}(t)}{\delta(t)}w(t)+\delta\bigl(\sigma(t)\bigr) \biggl[\frac {[r(t)(z^{\Delta}(t))^{\alpha}]^{\Delta}}{z^{\alpha}(\sigma(t))} - \frac{r(t)(z^{\Delta}(t))^{\alpha}[z^{\alpha}(t)]^{\Delta}}{z^{\alpha}(t)z^{\alpha}(\sigma(t))} \\ &\quad{} +\frac{-[\pi^{\alpha}(t)]^{\Delta}}{\pi^{\alpha}(t)\pi^{\alpha}(\sigma (t))} \biggr]. \end{aligned} $$
(3.24)

By the corollary of the Keller chain rule [23], for \(\alpha \geq1\), we have

$$ \begin{aligned}[b] \bigl(z^{\alpha}(t) \bigr)^{\Delta}&=\alpha \int_{0}^{1} \bigl[hz\bigl(\sigma(t)\bigr)+(1-h)z(t) \bigr]^{\alpha-1}z^{\Delta}(t) \,dh \\ &\geq\alpha \int_{0}^{1} \bigl[hz\bigl(\sigma(t)\bigr)+(1-h)z \bigl(\sigma(t)\bigr) \bigr]^{\alpha -1}z^{\Delta}(t) \,dh \\ &=\alpha z^{\alpha-1}\bigl(\sigma(t)\bigr)z^{\Delta}(t) \end{aligned} $$
(3.25)

and

$$ \begin{aligned}[b] \bigl(\pi^{\alpha}(t) \bigr)^{\Delta}&=\alpha \int_{0}^{1} \bigl[h\pi\bigl(\sigma(t)\bigr)+(1-h) \pi (t) \bigr]^{\alpha-1}\pi^{\Delta}(t) \,dh \\ &\geq\alpha \int_{0}^{1} \bigl[h\pi\bigl(\sigma(t)\bigr)+(1-h) \pi\bigl(\sigma(t)\bigr) \bigr]^{\alpha-1}\pi^{\Delta}(t) \,dh \\ &=\alpha\pi^{\alpha-1}\bigl(\sigma(t)\bigr)\pi^{\Delta}(t)=-\alpha \pi^{\alpha -1}\bigl(\sigma(t)\bigr)r^{-1/\alpha}(t). \end{aligned} $$
(3.26)

By (3.25), (3.26), Eq. (3.24) can be written as

$$\begin{aligned} &w^{\Delta}(t) \\ &\quad =\frac{\delta^{\Delta}(t)}{\delta(t)}w(t)+\delta\bigl(\sigma(t)\bigr)\frac {[r(t)(z^{\Delta}(t))^{\alpha}]^{\Delta}}{z^{\alpha}(\sigma(t))} - \delta \bigl(\sigma(t)\bigr)\frac{r(t)(z^{\Delta}(t))^{\alpha}[z^{\alpha}(t)]^{\Delta}}{z^{\alpha}(t)z^{\alpha}(\sigma(t))} \\ &\quad\quad {} -\delta\bigl(\sigma(t)\bigr) \frac{[\pi^{\alpha}(t)]^{\Delta}}{\pi^{\alpha}(t)\pi ^{\alpha}(\sigma(t))} \\ &\quad \leq\frac{\delta^{\Delta}(t)}{\delta(t)}w(t)+\delta\bigl(\sigma(t)\bigr)\frac {[r(t)(z^{\Delta}(t))^{\alpha}]^{\Delta}}{z^{\alpha}(\sigma(t))} - \alpha\delta\bigl(\sigma(t)\bigr)r(t)\frac{(z^{\Delta}(t))^{\alpha+1}}{z^{\alpha+1}(t)} +\frac{\alpha\delta(\sigma(t))}{r^{1/\alpha}(t)\pi^{\alpha+1}(\sigma (t))} \\ &\quad =\frac{\delta^{\Delta}(t)}{\delta(t)}w(t)+\delta\bigl(\sigma(t)\bigr)\frac {[r(t)(z^{\Delta}(t))^{\alpha}]^{\Delta}}{z^{\alpha}(\sigma(t))} -\alpha \delta\bigl(\sigma(t)\bigr)r(t) \biggl[\frac{w(t)}{\delta(t)r(t)}-\frac {1}{r(t)\pi^{\alpha}(t)} \biggr]^{\frac{\alpha+1}{\alpha}} \\ &\quad \quad {} +\frac{\alpha\delta(\sigma(t))}{r^{1/\alpha}(t)\pi^{\alpha+1}(\sigma(t))}. \end{aligned}$$
(3.27)

Let \(A:=w(t)/(\delta(t)r(t))\) and \(B:=1/(r(t)\pi^{\alpha}(t)) \). Using inequality (2.1), we conclude that

$$ \begin{aligned}[b] & \biggl(\frac{w(t)}{\delta(t)r(t)}- \frac{1}{r(t)\pi^{\alpha}(t)} \biggr)^{(\alpha+1)/\alpha} \\ &\quad \geq \biggl(\frac{w(t)}{\delta(t)r(t)} \biggr)^{(\alpha+1)/\alpha} -\frac{1}{\alpha r^{1/\alpha}(t)\pi(t)} \biggl[(\alpha+1)\frac {w(t)}{\delta(t)r(t)}-\frac{1}{r(t)\pi^{\alpha}(t)} \biggr]. \end{aligned} $$
(3.28)

On the other hand, we get by (3.11), \([r(t)(z^{\Delta}(t))^{\alpha}]^{\Delta}<0\), \(z^{\Delta}<0\), and \(m(t)\leq\sigma(t)\) that

$$ \begin{aligned}[b] \frac{[r(t)(z^{\Delta}(t))^{\alpha}]^{\Delta}}{z^{\alpha}(\sigma(t))} &\leq \frac{[r(t)(z^{\Delta}(t))^{\alpha}]^{\Delta}}{z^{\alpha}(m(t))} \leq-kq(t) \biggl(1-p\bigl(m(t)\bigr)\frac{\pi(\tau(m(t)))}{\pi(m(t))} \biggr)^{\alpha}\\&=-P(t). \end{aligned} $$
(3.29)

Thus, (3.27) yields

$$\begin{aligned} w^{\Delta}(t) &\leq \frac{\delta^{\Delta}(t)}{\delta(t)}w(t)-\delta\bigl(\sigma(t)\bigr)P(t) +\frac{\alpha\delta(\sigma(t))}{r^{1/\alpha}(t)\pi^{\alpha+1}(\sigma(t))} \\ & \quad {} -\alpha\delta\bigl(\sigma(t)\bigr)r(t) \biggl\{ \biggl(\frac{w(t)}{\delta (t)r(t)} \biggr)^{(\alpha+1)/\alpha} \\ &\quad{} -\frac{1}{\alpha r^{1/\alpha}(t)\pi(t)} \biggl[(\alpha+1)\frac {w(t)}{\delta(t)r(t)}- \frac{1}{r(t)\pi^{\alpha}(t)} \biggr] \biggr\} \\ & =\frac{\delta^{\Delta}(t)}{\delta(t)}w(t)-\delta\bigl(\sigma(t)\bigr)P(t) +\frac{\alpha\delta(\sigma(t))}{r^{1/\alpha}(t)\pi^{\alpha+1}(\sigma(t))} \\ & \quad {} -\frac{\alpha\delta(\sigma(t))}{\delta^{(\alpha+1)/\alpha }(t)r^{1/\alpha}(t)} w^{(\alpha+1)/\alpha}(t) +\frac{\delta(\sigma(t))(\alpha+1)}{r^{1/\alpha}(t)\pi(t)\delta(t)}w(t) - \frac{\delta(\sigma(t))}{r^{1/\alpha}(t)\pi^{\alpha+1}(t)} \\ &= -\delta\bigl(\sigma(t)\bigr) \biggl[P(t)-\frac{\alpha}{r^{1/\alpha}(t)\pi^{\alpha +1}(\sigma(t))} + \frac{1}{r^{1/\alpha}(t)\pi^{\alpha+1}(t)} \biggr] \\ & \quad {} + \biggl[\frac{\delta^{\Delta}(t)}{\delta(t)}+\frac{\delta(\sigma (t))(\alpha+1)}{r^{1/\alpha}(t)\pi(t)\delta(t)} \biggr]w(t) - \frac{\alpha\delta(\sigma(t))}{\delta^{(\alpha+1)/\alpha}(t)r^{1/\alpha }(t)} w^{(\alpha+1)/\alpha}(t) \\ & \leq-\psi(t)+\bigl(\varphi(t)\bigr)_{+}w(t)-\frac{\alpha\delta(\sigma(t))}{\delta ^{(\alpha+1)/\alpha}(t)r^{1/\alpha}(t)} w^{(\alpha+1)/\alpha}(t), \end{aligned}$$
(3.30)

where

$$\begin{aligned}& \psi(t)=\delta\bigl(\sigma(t)\bigr) \biggl[P(t)-\frac{\alpha}{r^{1/\alpha}(t)\pi ^{\alpha+1}(\sigma(t))} + \frac{1}{r^{1/\alpha}(t)\pi^{\alpha+1}(t)} \biggr], \\& \varphi(t)=\frac{\delta^{\Delta}(t)}{\delta(t)}+\frac{\delta(\sigma (t))(\alpha+1)}{r^{1/\alpha}(t)\pi(t)\delta(t)}, \quad\quad \bigl(\varphi(t)\bigr)_{+}=\max \bigl\{ 0,\varphi(t)\bigr\} . \end{aligned}$$

Define now \(C:=\frac{\alpha\delta(\sigma(t))}{\delta^{(\alpha+1)/\alpha }(t)r^{1/\alpha}(t)}\), \(D:=(\varphi(t))_{+}\), and \(v:=w(t)\). Applying inequality (2.2), we obtain

$$ \begin{aligned} -\frac{\alpha\delta(\sigma(t))}{\delta^{(\alpha+1)/\alpha}(t)r^{1/\alpha }(t)} w^{(\alpha+1)/\alpha}(t)+\bigl(\varphi(t)\bigr)_{+}w(t) \leq\frac{\delta^{\alpha+1}(t)r(t)((\varphi(t))_{+})^{\alpha+1}}{\delta ^{\alpha}(\sigma(t))(\alpha+1)^{\alpha+1}}. \end{aligned} $$
(3.31)

By (3.30) and (3.31),

$$ \begin{aligned} w^{\Delta}(t)\leq-\psi(t)+ \frac{\delta^{\alpha+1}(t)r(t)((\varphi (t))_{+})^{\alpha+1}}{\delta^{\alpha}(\sigma(t))(\alpha+1)^{\alpha+1}}. \end{aligned} $$
(3.32)

Integrating the latter inequality from \(t_{2}\) to t, we have

$$ \begin{aligned} \int_{t_{2}}^{t} \biggl[\psi(s)-\frac{\delta^{\alpha+1}(s)r(s)((\varphi (s))_{+})^{\alpha+1}}{ \delta^{\alpha}(\sigma(s))(\alpha+1)^{\alpha+1}} \biggr]\Delta s \leq-w(t)+w(t_{2})\leq w(t_{2}), \end{aligned} $$
(3.33)

which contradicts (3.2). Therefore, Eq. (1.1) is oscillatory. □

4 Examples

Example 4.1

As an illustrative example, we consider the following equation:

$$ \begin{aligned} \biggl(t^{2} \biggl(y(t)+ \frac{1}{3}y \biggl(\frac{t}{2} \biggr) \biggr)' \biggr)'+y \biggl(\frac{t}{3} \biggr)=0. \end{aligned} $$
(4.1)

Here \(\mathbb{T}=\mathbb{R}^{+}\), and \(\alpha=1\), \(t_{0}=2\), \(r(t)=t^{2}\), \(p(t)=\frac{1}{3}\), \(\tau(t)=\frac{t}{2}\), \(q(t)=1\), \(f(t)=t\), \(m(t)=\frac{t}{3}\). By taking \(\eta(t)=k=1\), then \(\pi(t)=\frac{1}{t}\), \(\frac{\pi(t)}{\pi(\frac{t}{2})}=\frac{1}{2}>\frac{1}{3}\), and \(P(t)=\frac{1}{3}\).

$$ \begin{aligned} \limsup_{t\rightarrow\infty} \int^{t}_{2} \biggl[\eta(s)P(s)-\frac {r(m(s))(\eta'(s))_{+}^{\alpha+1}}{ (\alpha+1)^{\alpha+1}{(m'(s))^{\alpha}\eta^{\alpha}(s)} } \biggr]\,ds =\limsup_{t\rightarrow\infty} \int^{t}_{2}\frac{1}{3}\,ds=\infty. \end{aligned} $$
(4.2)

It is easy to check that all hypotheses of Theorem 3.1 are satisfied, so we see that Eq. (4.1) is oscillatory.

Example 4.2

Consider the equation

$$ \begin{aligned} \Delta^{2} \biggl(y(t)+ \frac{1}{4}y(t-2) \biggr)+y(t+1)=0. \end{aligned} $$
(4.3)

Here \(\mathbb{T}=\mathbb{N}^{+}\), and \(\alpha=1\), \(t_{0}=2\), \(r(t)=1\), \(p(t)=\frac{1}{4}\), \(\tau(t)=t-2\), \(q(t)=1\), \(f(t)=t\), \(m(t)=t+1\). By taking \(\eta(t)=k=1\), then \(P(t)=\frac{3}{4}\).

$$ \begin{aligned} \limsup_{t\rightarrow\infty}\sum ^{t}_{2} \biggl[\eta(s)P(s+1)- \frac {r(m(s))(\Delta\eta(s))_{+}^{\alpha+1}}{ (\alpha+1)^{\alpha+1}{(\Delta m(s))^{\alpha}\eta^{\alpha}(s)} } \biggr] =\limsup_{t\rightarrow\infty}\sum ^{t}_{2}\frac{3}{4}=\infty. \end{aligned} $$
(4.4)

It is easy to check that all hypotheses of Theorem 3.1 are satisfied, so we see that Eq. (4.3) is oscillatory.

Example 4.3

Consider the following equation:

$$ \begin{aligned} D^{q}\biggl(t \biggl(D^{q}\biggl(y(t)+\frac{1}{2}y(t-1)\biggr)\biggr)\biggr)+ \frac{1}{3}y(t-2)=0. \end{aligned} $$
(4.5)

Here \(0< q<1\), \(\alpha=1\), \(t_{0}=2\), \(r(t)=t\), \(p(t)=\frac{1}{2}\), \(\tau(t)=t-1\), \(q(t)=\frac{1}{3}\), \(f(t)=t\), \(m(t)=t-2\). By taking \(\eta(t)=k=1\), then \(\pi(t)=\int_{t}^{\infty}r^{-1/\alpha}(s)\,d_{q} s=\int_{t}^{\infty}s^{-1}\,d_{q}s =\sum^{\infty}_{k=1}tq^{-k}(1-q)(tq^{-k})^{-1}=\sum^{\infty}_{k=1}(1-q)\), \(\frac{\pi(t)}{\pi(\frac{t}{2})}=1>\frac{1}{2}\), and \(P(t)=\frac{1}{6}\).

$$ \begin{aligned} \limsup_{t\rightarrow\infty} \int^{t}_{2} \biggl[\eta(s)P(s)-\frac {r(m(s))(D^{q}\eta(s))_{+}^{\alpha+1}}{ (\alpha+1)^{\alpha+1}{(m'(s))^{\alpha}\eta^{\alpha}(s)} } \biggr]\,d_{q}s =\limsup_{t\rightarrow\infty} \int^{t}_{2}\frac{1}{6}\,d_{q}s= \infty. \end{aligned} $$
(4.6)

It is easy to check that all hypotheses of Theorem 3.1 are satisfied, so we see that Eq. (4.5) is oscillatory.

5 Conclusion and future direction

The results of this article are presented in a form which is essentially new and of high degree of generality. In this article, using a Riccati transformation and the inequality technique, we offer some new sufficient conditions which ensure that any solution of Eq. (1.1) oscillates. We suppose that \(m(t)\leq\sigma(t)\), when \(m(t)\leq t\), Eq. (1.1) is a delay dynamic equation on time scales; when \(m(t)\geq t\), Eq. (1.1) is an advanced dynamic equation on time scales. Further, we can consider the case of \(m(t)\geq\sigma(t)\), and we can try to get some oscillation criteria of Eq. (1.1) if \(p(t)<0\) and \(q(t)<0\) in the future work.

References

  1. Hilger, S.: Analysis on measure chains a unified approach to continuous and discrete calculus. Results Math. 18, 18–56 (1990)

    Article  MathSciNet  Google Scholar 

  2. Agarwal, R.P., Bohner, M., O’Regan, D., Peterson, A.: Dynamic equations on time scales: a survey. J. Comput. Appl. Math. 1471, 1–2 (2002)

    Article  MathSciNet  Google Scholar 

  3. Elsgolts, L.E., Norkin, S.B.: Introduction to the Theory and Application of Differential Equations with Deviating Arguments. Elsevier, Amsterdam (1973)

    Google Scholar 

  4. Gyori, I., Ladas, G.: Oscillation Theory of Delay Differential Equations with Applications. Clarendon, Oxford (1991)

    MATH  Google Scholar 

  5. Saker, S.H.: Oscillation of second-order nonlinear neutral delay dynamic equations on time scales. J. Comput. Appl. Math. 187, 123–141 (2006)

    Article  MathSciNet  Google Scholar 

  6. Baculíková, B.: Oscillatory behavior of the second order functional differential equations. Appl. Math. Lett. 72, 3–41 (2017)

    Article  MathSciNet  Google Scholar 

  7. Agarwal, R.P., Bohner, M., Li, T.: Oscillatory behavior of second-order half-linear damped dynamic equations. Appl. Math. Comput. 254, 408–418 (2015)

    MathSciNet  MATH  Google Scholar 

  8. Agarwal, R.P., Bohner, M., Li, T., Zhang, C.: Comparison theorems for oscillation of second-order neutral dynamic equations. Mediterr. J. Math. 11, 1115–1127 (2014)

    Article  MathSciNet  Google Scholar 

  9. Bohner, M., Hassan, T.S., Li, T.: Fite–Hille–Wintner-type oscillation criteria for second-order half-linear dynamic equations with deviating arguments. Indag. Math. 29, 548–560 (2018)

    Article  MathSciNet  Google Scholar 

  10. Bohner, M., Li, T.: Oscillation of second-order p-Laplace dynamic equations with a nonpositive neutral coefficient. Appl. Math. Lett. 37, 72–76 (2014)

    Article  MathSciNet  Google Scholar 

  11. Bohner, M., Li, T.: Kamenev-type criteria for nonlinear damped dynamic equations. Sci. China Math. 58, 1445–1452 (2015)

    Article  MathSciNet  Google Scholar 

  12. Chatzarakis, G.E., Li, T.: Oscillation criteria for delay and advanced differential equations with nonmonotone arguments. Complexity 2018, 1–18 (2018)

    Article  Google Scholar 

  13. Li, T., Agarwal, R.P., Bohner, M.: Some oscillation results for second-order neutral dynamic equations. Hacet. J. Math. Stat. 41, 715–721 (2012)

    MathSciNet  MATH  Google Scholar 

  14. Li, T., Rogovchenko, Yu.V.: Oscillation of second-order neutral differential equations. Math. Nachr. 288, 1150–1162 (2015)

    Article  MathSciNet  Google Scholar 

  15. Li, T., Rogovchenko, Yu.V.: Oscillation criteria for even-order neutral differential equations. Appl. Math. Lett. 61, 35–41 (2016)

    Article  MathSciNet  Google Scholar 

  16. Li, T., Rogovchenko, Yu.V.: Oscillation criteria for second-order superlinear Emden–Fowler neutral differential equations. Monatshefte Math. 184, 489–500 (2017)

    Article  MathSciNet  Google Scholar 

  17. Li, T., Zhang, C., Thandapani, E.: Asymptotic behavior of fourth-order neutral dynamic equations with noncanonical operators. Taiwan. J. Math. 18, 1003–1019 (2014)

    Article  MathSciNet  Google Scholar 

  18. Zhang, C., Agarwal, R.P., Bohner, M., Li, T.: Oscillation of second-order nonlinear neutral dynamic equations with noncanonical operators. Bull. Malays. Math. Sci. Soc. 38, 761–778 (2015)

    Article  MathSciNet  Google Scholar 

  19. Li, T., Saker, S.H.: A note on oscillation criteria for second-order neutral dynamic equations on isolated time scales. Commun. Nonlinear Sci. Numer. Simul. 19, 4185–4188 (2014)

    Article  MathSciNet  Google Scholar 

  20. Li, T., Rogovchenko, Yu.V., Zhang, C.: Oscillation results for second-order nonlinear neutral differential equations. Adv. Differ. Equ. 2013, 336 (2013)

    Article  MathSciNet  Google Scholar 

  21. Agarwal, R.P., Zhang, C., Li, T.: Some remarks on oscillation of second order neutral differential equations. Appl. Math. Comput. 274, 178–181 (2016)

    MathSciNet  Google Scholar 

  22. Zhang, S., Wang, Q.: Oscillation of second-order nonlinear neutral dynamic equations on time scales. Appl. Math. Comput. 216, 2837–2848 (2010)

    MathSciNet  MATH  Google Scholar 

  23. Bohner, M., Peterson, A.: Dynamic Equations on Time Scales, an Introduction with Applications. Birkhäuser, Boston (2001)

    Book  Google Scholar 

  24. Han, Z.L., Li, T., Sun, S.: Oscillation for second-order nonlinear delay dynamic equations on time scales. Adv. Differ. Equ. 2009, 756171 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank the reviewers for their valuable suggestions and useful comments that have led to the present improved version of the original manuscript.

Funding

This research is supported by the Natural Science Foundation of China (61703180), and supported by Shandong Provincial Natural Science Foundation (ZR2017MA043).

Author information

Authors and Affiliations

Authors

Contributions

The authors declare that the study was realized in collaboration with the same responsibility. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Zhenlai Han.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sui, Y., Han, Z. Oscillation of second order neutral dynamic equations with deviating arguments on time scales. Adv Differ Equ 2018, 337 (2018). https://doi.org/10.1186/s13662-018-1773-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13662-018-1773-x

MSC

Keywords