Skip to main content

Ibragimov–Gadjiev operators based on q-integers

Abstract

In this paper, we define the q-analogue of the generalized linear positive operators introduced by Ibragimov and Gadjiev in 1970. We study some approximation properties of these new operators, and we show that this sequence of operators is a generalization of well-known q-Bernstein, q-Chlodowsky, and q-Szász–Mirakyan operators as a particular case.

Introduction

In [1], Ibragimov and Gadjiev defined a general sequence of positive operators and showed that this sequence of linear positive operators contains as a particular case the well-known operators of Bernstein, Bernstein–Chlodowsky, Szász, and Baskakov. They also studied the uniform convergence of these operators in the class of continuous functions \(C [ 0,A ] \), where \(A>0\) is a given number, and the properties of their convexity or concavity.

Now, we recall this construction. Let \(A>0\) be a given number, \(\{ \varphi_{n} ( t ) \} \) and \(\{ \psi_{n} ( t ) \} \) be the sequences of functions in \(C [ 0,A ] \) such that \(\varphi_{n} ( 0 ) =0\), and \(\psi_{n} ( t ) >0\) for each \(t\in [ 0,A ] \). Let also \(\{ \alpha_{n} \} \) be a sequence of positive real numbers such that \(\lim_{n\rightarrow \infty }\frac{\alpha _{n}}{n}=1\), \({\lim_{n\rightarrow \infty }\frac{1}{n^{2}\psi _{n} ( 0 ) }=0}\).

Assume that a sequence of functions of three variables \(\{ K_{n} ( x,t,u ) \} \) (\(x,t\in [ 0,A ] \), \(-\infty < u<\infty \)) satisfies the following conditions:

\(\mathbf{1}^{o}\).:

Each function of this family is an entire analytic function with respect to u for fixed \(x,t\in [ 0,A ] \);

\(\mathbf{2}^{o}\).:

\(K_{n} ( x,0,0 ) =1\) for any \(x\in [ 0,A ] \) and for all \(n\in \mathbb{N} \);

\(\mathbf{3}^{o}\).:

\(\{ ( -1 ) ^{\nu }\frac{\partial ^{\nu }}{\partial u^{\nu }}K_{n} ( x,t,u ) |_{\substack{ u= \alpha_{n}\psi_{n} ( t ) \\ t=0}} \} \geq 0\) (\(\nu ,n=1,2,\ldots\) ; \(x\in [ 0,A ] \));

\(\mathbf{4}^{o}\).:

\(\frac{\partial^{\nu }}{\partial u^{\nu }} K_{n} ( x,t,u ) |_{\substack{ u=\alpha_{n}\psi_{n} ( t ) \\ t=0}}=-nx [ \frac{\partial^{\nu -1}}{\partial u^{\nu -1}}K_{n+m} ( x,t,u ) |_{\substack{ u=\alpha_{n}\psi_{n} ( t ) \\ t=0}} ] \) (\(\nu ,n=1,2,\ldots\) ; \(x\in [ 0,A ] \)), where m is a number such that \(m+n\) is zero or a natural number.

Ibragimov–Gadjiev operators have the following form:

$$ L_{n} ( f;x ) =\sum_{\nu =0}^{\infty }f \biggl( \frac{ \nu }{n^{2}\psi_{n} ( 0 ) } \biggr) \biggl[ \frac{\partial ^{\nu }}{\partial u^{\nu }}K_{n} ( x,t,u ) \bigg|_{\substack{ u= \alpha_{n}\psi_{n} ( t ) \\ t=0}} \biggr] \frac{(-\alpha_{n}\psi_{n} ( 0 ) )^{\nu }}{ \nu !} $$
(1.1)

for \(x\in \mathbb{R}_{+ }\) and any function f defined on \(\mathbb{R}_{+ }\).

By ν-multiple application of property \(\mathbf{4}^{o}\), the operator (1.1) can be reduced to the form

$$\begin{aligned} L_{n} ( f;x ) =&\sum_{\nu =0}^{\infty }f \biggl( \frac{ \nu }{n^{2}\psi_{n} ( 0 ) } \biggr) \frac{n(n+m)\cdots ( n+ ( \nu -1 ) m ) }{\nu !} \\ & {} \times \bigl(x\alpha_{n}\psi_{n} ( 0 ) \bigr)^{\nu }K_{n+\nu m} \bigl( x,0,\alpha_{n} \psi_{n} ( 0 ) \bigr) . \end{aligned}$$

As we mentioned before, these operators contain as a particular case a series of known operators. For instance, by choosing \(K_{n} ( x,t,u ) = ( 1-\frac{ux}{1+t} ) ^{n}\) and \(\alpha_{n}=n\), \(\psi_{n} ( 0 ) =\frac{1}{n}\), the operators defined by (1.1) are transformed into Bernstein polynomials; for \(\alpha_{n}=n\), \(\psi_{n} ( 0 ) =\frac{1}{nb_{n}}\) (\(\lim_{n\rightarrow \infty }b_{n}=\infty \), \(\lim_{n\rightarrow \infty }\frac{b_{n}}{n}=0\)), we get Bernstein–Chlodowsky polynomials; and for \(K_{n} ( x,t,u ) =e ^{-n ( t+ux ) }\), \(\alpha_{n}=n\), \(\psi_{n} ( 0 ) = \frac{1}{n}\), we get Szasz–Mirakjan operators. Moreover, if we choose \(K_{n} ( x,t,u ) =K_{n} ( t+ux ) \), \(\alpha_{n}=n\), \(\psi_{n} ( 0 ) =\frac{1}{n}\), then we obtain Baskakov operators. Ibragimov–Gadjiev operators were studied widely in different papers, see [28].

After the construction of a generalization of Bernstein polynomials involving q-integers by Lupaş [9] and then by Phillips [10], many authors studied a q-based generalization of the linear positive operators, some of them may be found in [1118]. This is because, the q-generalized operators are more flexible than the classical ones, that is, they coincide with the classical ones, while for \(q=1\) they also possess interesting properties and, depending on the selection of q, can obtain better approximation while \(q\neq 1\). The aim of this paper is to introduce a q-analogue of the Ibragimov–Gadjiev operators defined by (1.1).

Construction and some properties of q-Ibragimov–Gadjiev operators

Before introducing the q-operators, we mention some basic definitions of q-calculus, see [1922].

Let \(q>0\). For any natural number \(n\in \mathbb{N} \cup \{ 0 \} \), the q-integer \([ n ] = [ n ] _{q}\) is defined by

$$ [ n ] =\frac{1-q^{n}}{1-q},\quad\quad [ 0 ] =0, $$

and the q-factorial \([ n ] != [ n ] _{q}!\) by

$$ [ n ] != [ 1 ] [ 2 ] \cdots [ n ] ,\quad\quad [ 0 ] !=1. $$

For integers \(0\leq k\leq n\), the q-binomial coefficient is defined by

[ n k ] = [ n ] ! [ n k ] ! [ k ] ! .

Clearly, for \(q=1\),

[ n ] 1 =n, [ n ] 1 !=n!, [ n k ] 1 = ( n k ) .

The q-derivative of a function \(f:\mathbb{R} \rightarrow \mathbb{R} \) is defined by

$$ D_{q}f ( x ) = \textstyle\begin{cases} \frac{f ( x ) -f ( qx ) }{ ( 1-q ) x}, & x \neq 0 , \\ f^{\prime } ( 0 ) , & x=0, \end{cases} $$

for functions which are differentiable at \(x=0\), and the higher q-derivatives are

$$ D_{q}^{0}f=f, D_{q}^{n}f=D_{q} \bigl( D_{q}^{n-1}f \bigr) , \quad n=1,2,3,\ldots . $$

Note that

$$ \lim_{q\rightarrow 1}D_{q}f ( x ) =\frac{df ( x ) }{dx}. $$

The q-analogue of \(( x-a ) ^{n}\) is the polynomial

$$ ( x-a ) _{q}^{n}= \textstyle\begin{cases} 1 & \text{if }n=0, \\ ( x-a ) ( x-qa ) \cdots ( x-q^{n-1}a ) & \text{if }n\geq 1 . \end{cases} $$

The q-exponential functions are given as follows:

$$\begin{aligned}& e_{q} ( x ) =\sum_{k=0}^{\infty } \frac{x^{k}}{ [ k ] !},\quad \vert x \vert < \frac{1}{1-q}, \vert q \vert < 1, \\& E_{q} ( x ) =\sum_{k=0}^{\infty }q^{\frac{k ( k-1 ) }{2}} \frac{x^{k}}{ [ k ] !},\quad x\in \mathbb{R}, \vert q \vert < 1. \end{aligned}$$

Now, we are ready to introduce a q-analogue of the Ibragimov–Gadjiev operators as follows:

Let \(0< q<1\) and \(A>0\) be a given number and \(\{ \psi_{n} ( t ) \} \) be a sequence of functions in \(C [ 0,A ] \) such that \(\psi_{n} ( t ) >0\) for each \(t\in [ 0,A ] \), \(\lim_{n\rightarrow \infty }\frac{1}{[n]^{2}\psi _{n} ( 0 ) }=0\). Also, let \(\{ \alpha_{n} \} \) be a sequence of positive real numbers such that \(\lim_{n\rightarrow \infty }\frac{\alpha_{n}}{ [ n ] }=1\).

Assume that a function \(K_{n,\nu }^{q} ( x,t,u ) \) (\(x,t\in [ 0,A ] \), \(-\infty < u<\infty \)) depends on the three parameters n, ν, and q, and satisfies the following conditions:

  1. (i)

    The function \(K_{n,\nu }^{q}\) is infinitely q-differentiable with respect to u for fixed \(x,t\in [ 0,A ] \);

  2. (ii)

    For any \(x\in [ 0,A ] \) and for all \(n\in \mathbb{N}\),

    $$ \sum_{\nu =0}^{\infty }q^{\frac{\nu ( \nu -1 ) }{2}} \bigl[ D_{q,u}^{\nu }K_{n,\nu }^{q} ( x,t,u ) \big|_{\substack{ u= \alpha_{n}\psi_{n} ( t ) \\ t=0}} \bigr] \frac{(-q\alpha_{n}\psi_{n} ( 0 ) )^{\nu }}{[ \nu ]!}=1; $$
  3. (iii)

    \(\{ ( -1 ) ^{\nu }D_{q,u}^{ \nu }K_{n,\nu }^{q} ( x,t,u ) |_{\substack{ u=\alpha_{n}\psi_{n} ( t ) \\ t=0}} \} \geq 0\) (\(\nu ,n=1,2,\ldots\) ; \(x\in [ 0,A ] \));

    (This notation means that the q-derivative with respect to u is taken ν times, then one sets \(u=\alpha_{n}\psi_{n} ( t ) \) and \(t=0\).)

  4. (iv)

    \(D_{q,u}^{\nu }K_{n,\nu }^{q} ( x,t,u ) | _{\substack{ u=\alpha_{n}\psi_{n} ( t ) \\ t=0}}=- [ n ] xq^{1-\nu } [ D_{q,u}^{\nu -1}K_{n+m, \nu -1}^{q} ( x,t,u ) | _{\substack{ u=\alpha_{n}\psi_{n} ( t ) \\ t=0}} ] \) (\(\nu ,n=1,2,\ldots\) ; \(x\in [ 0,A ] \)), where m is a number such that \(m+n\) is zero or a natural number.

According to these conditions, we define q-Ibragimov–Gadjiev operators as follows:

$$ L_{n} ( f;q;x ) =\sum_{\nu =0}^{\infty }q^{\frac{ \nu ( \nu -1 ) }{2}}f \biggl( \frac{[\nu ]}{[n]^{2}\psi_{n} ( 0 ) } \biggr) \bigl[ D_{q,u}^{\nu }K_{n,\nu }^{q} ( x,t,u ) \big|_{\substack{ u=\alpha_{n}\psi_{n} ( t ) \\ t=0}} \bigr] \frac{(-q\alpha_{n}\psi_{n} ( 0 ) )^{\nu }}{[ \nu ]!} $$
(2.1)

for \(x\in \mathbb{R}_{+ }\) and any function f defined on \(\mathbb{R} _{+ }\).

By ν-multiple application of property (iv), \(L_{n} ( f;q;x ) \) can be reduced to the form

$$\begin{aligned} L_{n} ( f;q;x ) =&\sum_{\nu =0}^{\infty }f \biggl( \frac{[ \nu ]}{[n]^{2}\psi_{n} ( 0 ) } \biggr) \frac{[n][n+m][n+2m]\cdots [ n+ ( \nu -1 ) m ] }{[\nu ]!} \\ & {} \times \bigl(xq\alpha_{n}\psi_{n} ( 0 ) \bigr)^{\nu }K_{n+\nu m,0} ^{q} \bigl( x,0, \alpha_{n}\psi_{n} ( 0 ) \bigr) . \end{aligned}$$
(2.2)

Note that for \(q=1\), the operators \(L_{n} ( f;q;x ) \) are classical Ibragimov–Gadjiev operators. It is easily verified that these operators are linear and positive from (iii).

In this section we give the following moment estimate, which is necessary to prove our theorems.

Lemma 1

For \(L_{n} ( t^{s};q;x ) \), \(s=0,1,2\), one has

$$\begin{aligned}& L_{n} ( 1;q;x ) =1, \end{aligned}$$
(2.3)
$$\begin{aligned}& L_{n} ( t;q;x ) =\frac{q\alpha_{n}}{ [ n ] }x, \end{aligned}$$
(2.4)
$$\begin{aligned}& L_{n} \bigl( t^{2};q;x \bigr) = \biggl( \frac{q\alpha_{n}}{ [ n ] }x \biggr) ^{2} \biggl( \frac{ [ n+m+1 ] }{ [ n ] }-\frac{1}{ [ n ] } \biggr) + \biggl( \frac{q\alpha_{n}}{ [ n ] }x \biggr) \frac{1}{[n]^{2}\psi_{n} ( 0 ) }. \end{aligned}$$
(2.5)

Proof

Using the definition (2.1) of \(L_{n} ( f;q;x ) \) and from condition (ii), we have

$$\begin{aligned} L_{n} ( 1;q;x ) =&\sum_{\nu =0}^{\infty }q^{\frac{ \nu ( \nu -1 ) }{2}}D_{q,u}^{\nu }K_{n,\nu }^{q} ( x,t,u ) \big| _{\substack{ u=\alpha_{n}\psi_{n} ( t ) \\ t=0}}\frac{ ( -q\alpha_{n}\psi_{n} ( 0 ) ) ^{ \nu }}{ [ \nu ] !} \\ =&1. \end{aligned}$$

Therefore, we can see that the result can be verified for \(s=0\). Next we consider the case \(s=1\) as follows:

$$\begin{aligned} L_{n} ( t;q;x ) =&\sum_{\nu =1}^{\infty }q^{\frac{ \nu ( \nu -1 ) }{2}} \frac{[\nu ]}{[n]^{2}\psi_{n} ( 0 ) } \bigl[ D_{q,u}^{\nu }K_{n,\nu }^{q} ( x,t,u ) \big|_{\substack{ u=\alpha_{n}\psi_{n} ( t ) \\ t=0}} \bigr] \frac{(-q\alpha_{n}\psi_{n} ( 0 ) )^{\nu }}{[ \nu ]!} \\ =&-\frac{q\alpha_{n}}{[n]^{2}}\sum_{\nu =1}^{\infty }q^{\frac{( \nu -2) ( \nu -1 ) }{2}}q^{\nu -1} \bigl[ D_{q,u}^{\nu }K_{n, \nu }^{q} ( x,t,u ) \big|_{\substack{ u=\alpha_{n}\psi_{n} ( t ) \\ t=0}} \bigr] \frac{(-q\alpha_{n}\psi_{n} ( 0 ) )^{\nu -1}}{[ \nu -1]!}. \end{aligned}$$

By using conditions (ii) and (iv), we have

$$\begin{aligned} L_{n} ( t;q;x ) =&\frac{q\alpha_{n}x}{[n]}\sum _{ \nu =0}^{\infty }q^{\frac{\nu ( \nu -1 ) }{2}} \bigl[ D_{q,u} ^{\nu }K_{n+m,\nu }^{q} ( x,t,u ) \big|_{\substack{ u=\alpha_{n} \psi_{n} ( t ) \\ t=0}} \bigr] \frac{(-q\alpha_{n}\psi_{n} ( 0 ) )^{\nu }}{[ \nu ]!} \\ =&\frac{q\alpha_{n}x}{[n]}. \end{aligned}$$

Finally, for \(s=2\),

$$\begin{aligned} L_{n} \bigl( t^{2};q;x \bigr) =&\sum _{\nu =1}^{\infty }q^{\frac{ \nu ( \nu -1 ) }{2}}\frac{[\nu ]^{2}}{[n]^{4}\psi_{n}^{2} ( 0 ) } \bigl[ D_{q,u}^{\nu }K_{n,\nu }^{q} ( x,t,u ) \big| _{\substack{ u=\alpha_{n}\psi_{n} ( t ) \\ t=0}} \bigr] \frac{(-q\alpha_{n}\psi_{n} ( 0 ) )^{\nu }}{[ \nu ]!} \\ =&-\frac{q\alpha_{n}}{[n]^{4}}\sum_{\nu =1}^{\infty }q^{\frac{ \nu ( \nu -1 ) }{2}} \frac{[\nu ]}{\psi_{n} ( 0 ) } \bigl[ D_{q,u}^{\nu }K_{n,\nu }^{q} ( x,t,u ) \big|_{\substack{ u= \alpha_{n}\psi_{n} ( t ) \\ t=0}} \bigr] \frac{(-q\alpha_{n}\psi_{n} ( 0 ) )^{\nu -1}}{[ \nu -1]!} \\ =&-\frac{q\alpha_{n}}{[n]^{4}}\sum_{\nu =1}^{\infty }q^{\frac{ \nu ( \nu -1 ) }{2}} \frac{[\nu ]-1}{\psi_{n} ( 0 ) } \bigl[ D_{q,u}^{\nu }K_{n,\nu }^{q} ( x,t,u ) \big|_{\substack{ u=\alpha_{n}\psi_{n} ( t ) \\ t=0}} \bigr] \frac{(-q\alpha_{n}\psi_{n} ( 0 ) )^{\nu -1}}{[ \nu -1]!} \\ &{}-\frac{q\alpha_{n}}{[n]^{4}}\sum_{\nu =1}^{\infty }q^{\frac{ \nu ( \nu -1 ) }{2}} \frac{1}{\psi_{n} ( 0 ) } \bigl[ D_{q,u}^{\nu }K_{n,\nu }^{q} ( x,t,u ) \big|_{\substack{ u=\alpha_{n} \psi_{n} ( t ) \\ t=0}} \bigr] \frac{(-q\alpha_{n}\psi_{n} ( 0 ) )^{\nu -1}}{[ \nu -1]!} \\ =&-\frac{q\alpha_{n}}{[n]^{4}}\sum_{\nu =2}^{\infty }q^{\frac{ \nu ( \nu -1 ) }{2}} \frac{q[\nu -1]}{\psi_{n} ( 0 ) } \bigl[ D_{q,u}^{\nu }K_{n,\nu }^{q} ( x,t,u ) \big|_{\substack{ u=\alpha_{n}\psi_{n} ( t ) \\ t=0}} \bigr] \frac{(-q\alpha_{n}\psi_{n} ( 0 ) )^{\nu -1}}{[ \nu -1]!} \\ & {} -\frac{q\alpha_{n}}{[n]^{4}\psi_{n} ( 0 ) }\sum_{ \nu =1}^{\infty }q^{\frac{(\nu -2) ( \nu -1 ) }{2}}q^{\nu -1} \bigl[ D_{q,u}^{\nu }K_{n,\nu }^{q} ( x,t,u ) \big|_{\substack{ u= \alpha_{n}\psi_{n} ( t ) \\ t=0}} \bigr] \\ & {} \times \frac{(-q\alpha_{n}\psi_{n} ( 0 ) )^{\nu -1}}{[ \nu -1]!} \\ =&\frac{q^{2}\alpha_{n}^{2}}{[n]^{4}}\sum_{\nu =2}^{\infty }q ^{\frac{(\nu -3) ( \nu -2 ) }{2}}q^{2\nu -3}q \bigl[ D_{q,u} ^{\nu }K_{n,\nu }^{q} ( x,t,u ) \big|_{\substack{ u=\alpha_{n} \psi_{n} ( t ) \\ t=0}} \bigr] \\ & {} \times \frac{(-q\alpha_{n}\psi_{n} ( 0 ) )^{\nu -2}}{[ \nu -2]!} \\ & {} -\frac{q\alpha_{n}}{[n]^{4}}\frac{1}{\psi_{n} ( 0 ) } \sum_{\nu =1}^{\infty }q^{ \frac{(\nu -2) ( \nu -1 ) }{2}}q^{\nu -1} \bigl[ D_{q,u} ^{\nu }K_{n,\nu }^{q} ( x,t,u ) \big| _{\substack{ u=\alpha_{n} \psi_{n} ( t ) \\ t=0}} \bigr] \\ & {} \times \frac{(-q\alpha_{n}\psi_{n} ( 0 ) )^{\nu -1}}{[ \nu -1]!}. \end{aligned}$$

Using conditions (ii) and (iv), we have

$$\begin{aligned} L_{n} \bigl( t^{2};q;x \bigr) =&-\frac{q^{2}\alpha_{n}^{2}x}{[n]^{3}} \sum _{\nu =2}^{\infty }q^{ \frac{(\nu -3) ( \nu -2 ) }{2}}q^{\nu -1} \bigl[ D_{q,u} ^{\nu -1}K_{n+m,\nu -1}^{q} ( x,t,u ) \big| _{\substack{ u=\alpha _{n}\psi_{n} ( t ) \\ t=0}} \bigr] \\ & {} \times \frac{(-q\alpha_{n}\psi_{n} ( 0 ) )^{\nu -2}}{[ \nu -2]!} \\ & {} +\frac{q\alpha_{n}x}{[n]^{3}\psi_{n} ( 0 ) }\sum_{\nu =1}^{\infty }q^{\frac{(\nu -2) ( \nu -1 ) }{2}} \bigl[ D_{q,u}^{\nu -1}K_{n+m,\nu -1}^{q} ( x,t,u ) \big|_{\substack{ u=\alpha_{n}\psi_{n} ( t ) \\ t=0}} \bigr] \\ & {} \times \frac{(-q\alpha_{n}\psi_{n} ( 0 ) )^{\nu -1}}{[ \nu -1]!} \\ =&-\frac{q^{2}\alpha_{n}^{2}x}{[n]^{3}}\sum_{\nu =2}^{\infty }q^{\frac{(\nu -3) ( \nu -2 ) }{2}}q^{\nu -1} \bigl[ D_{q,u} ^{\nu -1}K_{n+m,\nu -1}^{q} ( x,t,u ) \big|_{\substack{ u=\alpha _{n}\psi_{n} ( t ) \\ t=0}} \bigr] \\ & {} \times \frac{(-q\alpha_{n}\psi_{n} ( 0 ) )^{\nu -2}}{[ \nu -2]!}+\frac{q\alpha_{n}x}{[n]^{3}\psi_{n} ( 0 ) }. \end{aligned}$$

Using condition (iv) for the second time, we obtain

$$\begin{aligned} L_{n} \bigl( t^{2};q;x \bigr) =&\frac{q^{2}\alpha_{n}^{2} [ n+m ] x^{2}}{[n]^{3}}\sum _{\nu =2}^{\infty }q^{\frac{( \nu -3) ( \nu -2 ) }{2}}q \bigl[ D_{q,u}^{\nu -2}K_{n+2m, \nu -2}^{q} ( x,t,u ) \big|_{\substack{ u=\alpha_{n}\psi_{n} ( t ) \\ t=0}} \bigr] \\ & {} \times \frac{(-q\alpha_{n}\psi_{n} ( 0 ) )^{\nu -2}}{[ \nu -2]!}+\frac{q\alpha_{n}x}{[n]^{3}\psi_{n} ( 0 ) } \\ =&\frac{q^{3}\alpha_{n}^{2} [ n+m ] x^{2}}{[n]^{3}}\sum_{\nu =0}^{\infty }q^{\frac{\nu ( \nu -1 ) }{2}} \bigl[ D_{q,u}^{\nu }K_{n+2m,\nu }^{q} ( x,t,u ) \big|_{\substack{ u=\alpha_{n}\psi_{n} ( t ) \\ t=0}} \bigr] \\ & {} \times \frac{(-q\alpha_{n}\psi_{n} ( 0 ) )^{\nu }}{[\nu ]!}+\frac{q \alpha_{n}x}{[n]^{3}\psi_{n} ( 0 ) } \\ =&\frac{q^{3}\alpha_{n}^{2} [ n+m ] x^{2}}{[n]^{3}}+\frac{q \alpha_{n}x}{[n]^{3}\psi_{n} ( 0 ) } \\ =& \biggl( \frac{q\alpha_{n}x}{ [ n ] } \biggr) ^{2}\frac{ [ n+m ] q}{ [ n ] }+ \biggl( \frac{q\alpha_{n}x}{ [ n ] } \biggr) \frac{1}{[n]^{2}\psi_{n} ( 0 ) } \\ =& \biggl( \frac{q\alpha_{n}x}{ [ n ] } \biggr) ^{2} \biggl( \frac{ [ n+m+1 ] }{ [ n ] }-\frac{1}{ [ n ] } \biggr) + \biggl( \frac{q\alpha_{n}x}{ [ n ] } \biggr) \frac{1}{[n]^{2} \psi_{n} ( 0 ) }. \end{aligned}$$

 □

If we denote kth order central moment of the operator (2.1) as \(\mu_{n,k} ( x ) =L_{n}((t-x)^{k};q;x)\), for abbreviation, we obtain the following from the equalities in (2.3)–(2.5) by direct computation:

$$\begin{aligned}& \mu_{n,1} ( x ) =x \biggl( \frac{q\alpha_{n}}{ [ n ] }-1 \biggr) , \end{aligned}$$
(2.6)
$$\begin{aligned}& \begin{aligned}[b] \mu_{n,2} ( x ) &=x^{2} \biggl[ \biggl( \frac{q\alpha_{n}}{ [ n ] } \biggr) ^{2} \biggl( \frac{ [ n+m+1 ] }{ [ n ] }-\frac{1}{ [ n ] } \biggr) -2 \frac{q\alpha_{n}}{ [ n ] }+1 \biggr] \\ &\quad {} +\frac{xq\alpha_{n}}{ [ n ] }\frac{1}{[n]^{2}\psi_{n} ( 0 ) }. \end{aligned} \end{aligned}$$
(2.7)

Examining relations (2.4) and (2.5), it is observed that for \(0< q<1\), one has \(\lim_{n\rightarrow \infty }\frac{1}{ [ n ] }=1-q\). This implies that the sequence of the operators in (2.1) does not satisfy the conditions of the Bohman–Korovkin-type theorem. For this reason, we consider a sequence \(( q_{n} ) \), \(0< q_{n}<1\), such that \(\lim_{n\rightarrow \infty }q_{n}=1\). We can now give the following Bohman–Korovkin-type theorem.

Theorem 1

Let \(( q_{n} ) \) be a sequence of real numbers such that \(0< q_{n}<1\) and \(\lim_{n\rightarrow \infty }q_{n}=1\). Then, for \(f\in C [ 0,A ] \), the sequence of \(\{ L_{n} ( f;q _{n};\cdot ) \} \) converges uniformly to f on any closed interval \([ 0,A ] \), where A is a fixed positive real number.

Proof

Replacing q by a sequence \(( q_{n} ) \) with the given conditions, the result follows from (2.3)–(2.5) and the Bohman–Korovkin theorem. □

Rate of convergence

Using the standard methods, we will estimate the rate of convergence in terms of the modulus of continuity and the Peetre-K functional.

Let \(f\in C [ 0,A ] \). The modulus of continuity of f denoted by \(\omega ( f;\delta ) \) gives the maximum oscillation of f in any interval of length not exceeding \(\delta >0\) and given by the relation

$$ \omega ( f;\delta ) = \sup_{ \vert t-x \vert \leq \delta } \bigl\vert f ( t ) -f ( x ) \bigr\vert , \quad t,x\in [ 0,A ] . $$

For \(f\in C [ 0,A ] \) and \(\delta >0\), the Peetre K-functional is defined by

$$ K ( f;\delta ) =\inf_{g\in C^{2} [ 0,A ] } \bigl\{ \Vert f-g \Vert _{C [ 0,A ] }+\delta \Vert g \Vert _{C^{2} [ 0,A ] } \bigr\} . $$

Here we note that

$$ \Vert g \Vert _{C^{2} [ 0,A ] }= \Vert g \Vert _{C [ 0,A ] }+ \bigl\Vert g^{\prime } \bigr\Vert _{C [ 0,A ] }+ \bigl\Vert g^{\prime \prime } \bigr\Vert _{C [ 0,A ] }. $$

Theorem 2

Let \(( q_{n} ) \) be a sequence of real numbers such that \(0< q_{n}<1\) and \(\lim_{n\rightarrow \infty }q_{n}=1\). If \(f\in C [ 0,A ] \), then we have

$$ \bigl\vert L_{n} ( f;q_{n};x ) -f ( x ) \bigr\vert \leq 2\omega \bigl( f;\sqrt{\mu_{n,2} ( x ) } \bigr) , $$
(3.1)

where \(\mu_{n,2} ( x ) \) is given by (2.7).

Proof

By using the well-known technique of Popoviciu, we have

$$ \bigl\vert L_{n} ( f;q_{n};x ) -f ( x ) \bigr\vert \leq \omega ( f;\delta ) \biggl[ 1+\frac{1}{\delta }\sqrt{ \mu_{n,2} ( x ) } \biggr] . $$

By choosing \(\delta =\sqrt{\mu_{n,2} ( x ) }\), we obtain the quantitative estimate in (3.1). Since \(\sqrt{\mu_{n,2} ( x ) }\rightarrow 0\) for \(n\rightarrow \infty \), the estimation in (3.1) gives the rate of approximation for the operators (2.1). □

Theorem 3

Let \(( q_{n} ) \) be a sequence of real numbers such that \(0< q_{n}<1\) and \(\lim_{n\rightarrow \infty }q_{n}=1\). If \(f\in C [ 0,A ] \), then

$$ \bigl\Vert L_{n} ( f;q_{n};\cdot ) -f \bigr\Vert _{C [ 0,A ] }\leq 2K ( f;\delta_{n} ) , $$

where

$$\begin{aligned} \delta_{n} =&\frac{A}{2} \biggl( \frac{q_{n}\alpha_{n}}{ [ n ] }-1 \biggr) +\frac{A^{2}}{4} \biggl[ \biggl( \frac{q_{n}\alpha_{n}}{ [ n ] } \biggr) ^{2} \biggl( \frac{ [ n+m+1 ] }{ [ n ] }-\frac{1}{ [ n ] } \biggr) -2\frac{q_{n}\alpha_{n}}{ [ n ] }+1 \biggr] \\ & {} +\frac{A}{4}\frac{q_{n}\alpha_{n}}{ [ n ] }\frac{1}{[n]^{2} \psi_{n} ( 0 ) }. \end{aligned}$$

Proof

Let \(g\in C^{2} [ 0,A ] \), from Taylor’s expansion we have

$$ g ( t ) -g ( x ) =g^{\prime } ( x ) ( t-x ) + \int _{x}^{t}g^{\prime \prime } ( s ) ( t-s ) \,ds. $$

Applying operators (2.1) on both sides of the above equation, we get

$$\begin{aligned} \bigl\vert L_{n} ( g;q_{n};x ) -g ( x ) \bigr\vert =& \biggl\vert L_{n} \bigl( g^{\prime } ( x ) ( t-x ) ;q _{n};x \bigr) +L_{n} \biggl( \int _{x}^{t}g^{\prime \prime } ( s ) ( t-s ) \,ds;q_{n};x \biggr) \biggr\vert \\ \leq & \bigl\Vert g^{\prime } \bigr\Vert _{C [ 0,A ] } \bigl\vert L _{n} \bigl( ( t-x ) ;q_{n};x \bigr) \bigr\vert + \bigl\Vert g ^{\prime \prime } \bigr\Vert _{C [ 0,A ] } \\ & {} \times \biggl\vert L_{n} \biggl( \int _{x}^{t} ( t-s ) \,ds;q _{n};x \biggr) \biggr\vert . \end{aligned}$$

Since

$$ \int _{x}^{t} ( t-s ) \,ds= \frac{ ( t-x ) ^{2}}{2}, $$

one obtains from (2.6) and (2.7)

$$ \bigl\vert L_{n} ( g;q_{n};x ) -g ( x ) \bigr\vert \leq \bigl\Vert g^{\prime } \bigr\Vert _{C [ 0,A ] } \bigl\vert \mu_{n,1} ( x ) \bigr\vert +\frac{1}{2} \bigl\Vert g^{\prime \prime } \bigr\Vert _{C [ 0,A ] } \bigl\vert \mu_{n,2} ( x ) \bigr\vert . $$

Finally we have

$$\begin{aligned} \bigl\vert L_{n} ( g;q_{n};x ) -g ( x ) \bigr\vert \leq & \Vert g \Vert _{C^{2} [ 0,A ] } \biggl\{ x \biggl( \frac{q_{n}\alpha_{n}}{ [ n ] }-1 \biggr) + \frac{x^{2}}{2} \biggl[ \biggl( \frac{q_{n}\alpha_{n}}{ [ n ] } \biggr) ^{2} \biggl( \frac{ [ n+m+1 ] }{ [ n ] }-\frac{1}{ [ n ] } \biggr) \\ & {} -2\frac{q_{n}\alpha_{n}}{ [ n ] }+1 \biggr] +\frac{xq _{n}\alpha_{n}}{2 [ n ] }\frac{1}{[n]^{2}\psi_{n} ( 0 ) } \biggr\} . \end{aligned}$$
(3.2)

On the other hand, by the linearity property of (2.1), we get

$$\begin{aligned} \bigl\vert L_{n} ( f;q_{n};x ) -f ( x ) \bigr\vert \leq & \bigl\vert L_{n} ( f;q_{n};x ) -L_{n} ( g;q_{n};x ) \bigr\vert + \bigl\vert L_{n} ( g;q_{n};x ) -g ( x ) \bigr\vert \\ & {} + \bigl\vert g ( x ) -f ( x ) \bigr\vert \\ \leq & \Vert f-g \Vert _{C [ 0,A ] } \bigl\vert L _{n} ( 1;q_{n};x ) \bigr\vert + \Vert f-g \Vert _{C [ 0,A ] } \\ & {} + \bigl\vert L_{n} ( g;q_{n};x ) -g ( x ) \bigr\vert . \end{aligned}$$

From inequality (3.2), one has

$$\begin{aligned} \bigl\vert L_{n} ( f;q_{n};x ) -f ( x ) \bigr\vert \leq &2 \Vert f-g \Vert _{C [ 0,A ] }+ \Vert g \Vert _{C^{2} [ 0,A ] } \biggl\{ x \biggl( \frac{q_{n}\alpha_{n}}{ [ n ] }-1 \biggr) \\ & {} +\frac{x^{2}}{2} \biggl[ \biggl( \frac{q_{n}\alpha_{n}}{ [ n ] } \biggr) ^{2} \biggl( \frac{ [ n+m+1 ] }{ [ n ] }-\frac{1}{ [ n ] } \biggr) -2 \frac{q_{n}\alpha_{n}}{ [ n ] }+1 \biggr] \\ & {} +\frac{xq_{n}\alpha_{n}}{2 [ n ] }\frac{1}{[n]^{2} \psi_{n} ( 0 ) } \biggr\} . \end{aligned}$$

Taking the infimum on the right-hand side of the above inequality over all \(g\in C^{2} [ 0,A ] \), we obtain

$$ \bigl\Vert L_{n} ( f;q_{n};\cdot ) -f \bigr\Vert _{C [ 0,A ] }\leq 2K ( f;\delta_{n} ) , $$

where

$$\begin{aligned} \delta_{n} =&\frac{A}{2} \biggl( \frac{q_{n}\alpha_{n}}{ [ n ] }-1 \biggr) +\frac{A^{2}}{4} \biggl[ \biggl( \frac{q_{n}\alpha_{n}}{ [ n ] } \biggr) ^{2} \biggl( \frac{ [ n+m+1 ] }{ [ n ] }-\frac{1}{ [ n ] } \biggr) -2\frac{q_{n}\alpha_{n}}{ [ n ] }+1 \biggr] \\ & {} +\frac{A}{4}\frac{q_{n}\alpha_{n}}{ [ n ] }\frac{1}{[n]^{2} \psi_{n} ( 0 ) }. \end{aligned}$$

This completes the proof. □

An application of q-Ibragimov–Gadjiev operators

It should be emphasized that the operator (2.1), in a special case, consists of some well-known operators related to q-integers:

1.:

In the case

$$ K_{n,\nu }^{q} ( x,t,u ) = \biggl( 1-\frac{q^{1-\nu }ux}{1+t} \biggr) _{q}^{n} , $$

the operator (2.1) assumes the form

L n (f;q;x)= ν = 0 n f ( [ ν ] [ n ] 2 ψ n ( 0 ) ) [ n ν ] ( x q α n ψ n ( 0 ) ) ν ( 1 q x α n ψ n ( 0 ) ) q n ν .
(4.1)

Conditions (i)–(iv) are fulfilled and \(m=-1\). For \(\alpha_{n}=\frac{ [ n ] }{q}\), \(\psi_{n} ( 0 ) =\frac{1}{ [ n ] }\), we have q-Bernstein polynomials

L n 1 (f;q;x)= ν = 0 n f ( [ ν ] [ n ] ) [ n ν ] x ν ( 1 x ) q ν

which are introduced by Phillips [10].

2.:

In (4.1) for \(\alpha_{n}= \frac{ [ n ] }{q}\), \(\psi_{n} ( 0 ) =\frac{1}{ [ n ] b_{n}}\) (\(\lim_{n\rightarrow \infty }b_{n}= \infty \), \(\lim_{n\rightarrow \infty }\frac{b_{n}}{ [ n ] }=0\)), the operators become q-Chlodowsky polynomials

L n 2 (f;q;x)= ν = 0 n f ( [ ν ] [ n ] b n ) [ n ν ] ( x b n ) ν ( 1 x b n ) q n ν

defined by Karslıand Gupta [14].

3.:

By choosing

$$ K_{n,\nu }^{q} ( x,t,u ) =E_{q} \bigl( - [ n ] \bigl( t+q^{1-\nu }ux \bigr) \bigr) , $$

conditions (i)–(iv) are fulfilled and \(m=0\). The operator (2.1) becomes

$$\begin{aligned} L_{n} ( f;q;x ) =&\sum_{\nu =0}^{\infty }f \biggl( \frac{[ \nu ]}{[n]^{2}\psi_{n} ( 0 ) } \biggr) \frac{[n][n]\cdots [ n ] }{[\nu ]!} \\ & {} \times \bigl(qx\alpha_{n}\psi_{n} ( 0 ) \bigr)^{\nu }E_{q} \bigl( - [ n ] xq\alpha_{n} \psi_{n} ( 0 ) \bigr) . \end{aligned}$$

If we choose \(\alpha_{n}=\frac{ [ n ] }{q}\), \(\psi_{n} ( 0 ) =\frac{1}{[n]b_{n}}\) (\(\lim_{n\rightarrow \infty }b_{n}=\infty \), \(\lim_{n\rightarrow \infty }\frac{b_{n}}{ [ n ] }=0\)), we get the q-analogue of the classical Szász–Mirakjan operators

$$ L_{n}^{\langle 3\rangle } ( f;q;x ) =\sum_{\nu =0}^{\infty }f \biggl( \frac{[\nu ]b_{n}}{[n]} \biggr) \frac{ ( [ n ] x ) ^{\nu }}{[\nu ]! ( b_{n} ) ^{\nu }}E_{q} \biggl( - [ n ] \frac{x}{b_{n}} \biggr) . $$

These operators were defined by Aral [11].

References

  1. 1.

    Ibragimov, I.I., Gadjiev, A.D.: On a sequence of linear positive operators. Sov. Math. Dokl. 11(4), 1092–1095 (1970)

    MATH  Google Scholar 

  2. 2.

    Acar, T.: Rate of convergence for Ibragimov–Gadjiev–Durrmeyer operators. Demonstr. Math. 50(1), 119–129 (2017)

    MathSciNet  Article  MATH  Google Scholar 

  3. 3.

    Altin, A., Dogru, O.: Direct and inverse estimations for a generalization of positive linear operators. WSEAS Trans. Math. 3(3), 602–606 (2004)

    MathSciNet  MATH  Google Scholar 

  4. 4.

    Aral, A.: Approximation by Ibragimov–Gadjiev operators in polynomial weighted space. Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb. 19, 35–44 (2003)

    MathSciNet  MATH  Google Scholar 

  5. 5.

    Aral, A.: Approximation properties of Kantorovich extension of Ibragimov–Gadjiev operators. WSEAS Trans. Math. 4(4), 474–479 (2005)

    MathSciNet  MATH  Google Scholar 

  6. 6.

    Aral, A., Acar, T.: On approximation properties of generalized Durrmeyer operators. In: Proceedings of the Inter. Conf. on Modern Math. Methods and High Performance Computing in Science and Tech., pp. 1–15, Chap. 1. Springer

  7. 7.

    Gadjiev, A.D., Ispir, N.: On a sequence of linear positive operators in weighted space. Proc. Inst. Math. Mech. Acad. Sci. Azerb. 11, 45–56 (1999)

    MathSciNet  MATH  Google Scholar 

  8. 8.

    Ispir, N., Aral, A., Dogru, O.: On Kantorovich process of a sequence of the generalized linear positive operators. Numer. Funct. Anal. Optim. 29(5), 574–589 (2008)

    MathSciNet  Article  MATH  Google Scholar 

  9. 9.

    Lupas, A.: A q-analogue of the Bernstein operator. In: Seminar on Numerical and Statistical Calculus 9, University of Cluj-Napoca, pp. 85–92 (1987)

    Google Scholar 

  10. 10.

    Phillips, G.M.: Bernstein polynomials based on the q-integers. Ann. Numer. Math. 4, 511–518 (1997)

    MathSciNet  MATH  Google Scholar 

  11. 11.

    Aral, A.: A generalization of Szász–Mirakyan operators based on q-integers. Math. Comput. Model. 47(9–10), 1052–1062 (2008)

    MathSciNet  Article  MATH  Google Scholar 

  12. 12.

    Aral, A., Gupta, V., Agrawal, R.: Applications of q-Calculus in Operator Theory. Springer, London (2013)

    Google Scholar 

  13. 13.

    Gupta, V., Agrawal, R.: Convergence Estimates in Approximation Theory. SpringerLink: Bücher. Springer, London (2014)

    Google Scholar 

  14. 14.

    Karsli, H., Gupta, V.: Some approximation properties of q-Chlodowsky operators. Appl. Math. Comput. 195, 220–229 (2008)

    MathSciNet  MATH  Google Scholar 

  15. 15.

    Mahmudov, N.I., Sabancigil, P.: q-Parametric Bleimann Butzer and Hahn operators. J. Inequal. Appl. 2008, Article ID 816367 (2008)

    MathSciNet  Article  MATH  Google Scholar 

  16. 16.

    Mahmudov, N.I.: On q-parametric Szász–Mirakjan operators. Mediterr. J. Math. 7, 297–311 (2010)

    MathSciNet  Article  MATH  Google Scholar 

  17. 17.

    Mahmudov, N.I.: Approximation properties of complex q-Szász–Mirakjan operators in compact disks. Comput. Math. Appl. 60, 1784–1791 (2010)

    MathSciNet  Article  MATH  Google Scholar 

  18. 18.

    Trif, T.: Meyer-Konig and Zeller operators based on the q-integers. Rev. Anal. Numér. Théor. Approx. 29, 221–229 (2000)

    MathSciNet  MATH  Google Scholar 

  19. 19.

    Agarwal, P., Jain, S., Choi, J.: Certain q-series identities. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 111(1), 139–146 (2017)

    MathSciNet  Article  MATH  Google Scholar 

  20. 20.

    Ernst, T.: The History of q-Calculus and a New Method. Department of Mathematics, Uppsala University, Sweden (2000)

    Google Scholar 

  21. 21.

    Kac, V., Cheung, P.: Quantum Calculus. Springer, New York (2002)

    Google Scholar 

  22. 22.

    Ruzhansky, M., Cho, Y.J., Agarwal, P., et al.: Advances in Real and Complex Analysis with Applications. Springer, Singapore (2017)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referees for their valuable comments and suggestions which have helped improve this article.

Funding

The authors declare that they got no funding on any part of this research.

Author information

Affiliations

Authors

Contributions

All authors contributed to each part of this paper equally. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Serap Herdem.

Ethics declarations

Competing interests

The authors declare that they have no competing interests concerning any issue on this manuscript.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Herdem, S., Büyükyazıcı, I. Ibragimov–Gadjiev operators based on q-integers. Adv Differ Equ 2018, 304 (2018). https://doi.org/10.1186/s13662-018-1766-9

Download citation

MSC

  • 41A25
  • 41A36

Keywords

  • q-calculus
  • q-Ibragimov–Gadjiev operators
  • Rate of convergence
  • Modulus of continuity
  • Peetre K-functional
\