Skip to main content

Theory and Modern Applications

Table 4 Equilibria \(E_{i}, i=0,1,2\), of system (4) with \(a>d\)

From: Stability and bifurcation in a Holling type II predator–prey model with Allee effect and time delay

\(Q_{0}\leq 0\)

\(0< A< A_{1}\)

\(E_{0}\) LAS, \(E_{1}\) LAS, \(E_{2}\) unstable

\(Q_{0}>0\)

\(x^{*}\geq \frac{a-d}{b}\)

\(A<\frac{b(x^{*})^{2}}{d}\)

\(0< A< A_{1}\)

\(E_{0}\) LAS, \(E_{1}\) LAS, \(E_{2}\) unstable

\(A\geq \frac{b(x^{*})^{2}}{d}\)

\(0< A< A_{1}\)

\(E_{0}\) LAS, \(E_{1}\) unstable, \(E_{2}\) unstable

\(x^{*}<\frac{a-d}{b}, x^{*}\neq x_{0}^{*}\)

\(A<\frac{b(x^{*})^{2}}{d}\)

\(0< A< A_{2}\)

\(E_{0}\) LAS, \(E_{1}\) unstable, \(E_{2}\) unstable

\(A_{2}< A< A_{1}\)

\(E_{0}\) LAS, \(E_{1}\) LAS, \(E_{2}\) unstable

\(A\geq \frac{b(x^{*})^{2}}{d}\)

\(0< A< A_{1}\)

\(E_{0}\) LAS, \(E_{1}\) unstable, \(E_{2}\) unstable

\(x^{*}=x_{0}^{*}\)

\(0< A< A_{1}\)

\(E_{0}\) LAS, \(E_{1}\) unstable, \(E_{2}\) unstable

\(A> A_{1}\)

\(E_{0}\) GAS, \(E_{1}\) and \(E_{2}\) do not exist