Skip to main content

Lyapunov-type inequalities for certain higher-order difference equations with mixed non-linearities

Abstract

In this paper, we establish some new Lyapunov-type inequalities for some higher-order difference equations with boundary conditions. The obtained inequalities generalize the existing results in the literature.

Introduction

During the past decades, continuous and discrete integral inequalities have attracted the attention of many researchers (see [159] and the references therein). Particularly, there have been plenty of references focused on the Lyapunov-type inequality and many of its generalizations due to its broad applications in the study of various properties of solutions of differential and difference equations such as oscillation theory, disconjugacy, and eigenvalue problems (see [1, 2, 57, 9, 13, 15, 21, 24, 2729, 37, 39, 45, 48, 57, 59] and the references therein).

Compared with a large number of references devoted to continuous Lyapunov-type inequalities, there is not much done for discrete Lyapunov-type inequalities (see [6, 13, 21, 29, 39, 59] and the references therein). For example, Zhang and Tang [29] considered the following even order difference equation:

$$ \triangle^{2k} u(n)+(-1)^{k-1}q(n)u(n+1)=0, $$
(1)

where is the usual forward difference operator defined by \(\triangle u(n)=u(n+1)-u(n)\), \({k\in \mathbb{N}}\), \(n\in \mathbb{Z}\) and \(q(n)\) is a real-valued function defined on \(\mathbb{Z}\). Under the following boundary conditions

$$ \triangle^{2i} u(a)=\triangle^{2i} u(b)=0,\quad i=0,1,\ldots ,k-1;\qquad u(n)\not\equiv0, \quad n\in \mathbb{Z}[a,b], $$
(2)

where \(a,b\in \mathbb{N}\), \(\mathbb{Z}[a,b]=\{a,a+1,\ldots,b-1,b\}\), they obtained the following result:

Assume that \(k\in \mathbb{N}\) and \(q(n)\) is a real-valued function on \(\mathbb{Z}\). If (1) has a solution \(u(n)\) satisfying the boundary conditions (2), then

$$ \sum_{n=a}^{b-1}\bigl[ \bigl\vert q(n) \bigr\vert (n-a+1) (b-n-1)\bigr]\geq\frac{2^{3(k-1)}}{(b-a)^{2k-3}} . $$
(3)

Recently, Liu and Tang [21] studied the following m-order difference equation:

$$ \bigl\vert \triangle^{m} u(n) \bigr\vert ^{p-2} \triangle^{m} u(n)+r(n) \bigl\vert u(n) \bigr\vert ^{p-2} u(n)=0, $$
(4)

where \(m\in \mathbb{N}\), \(n\in \mathbb{Z}\) and \(r(n)\) is a real-valued function defined on \(\mathbb{Z}\), \(p>1\) is a constant, and \(u(n)\) satisfies the following anti-periodic boundary conditions:

$$ \triangle^{i} u(a)+\triangle^{i} u(b)=0,\quad i=0,1,\ldots,m-1;\qquad u(n)\not\equiv0,\quad n\in \mathbb{Z}[a,b], $$
(5)

and they obtained the following result:

If (4) has a nonzero solution \(u(n)\) satisfying the anti-periodic boundary conditions (5), then

$$ \sum_{n=a}^{b-1} \bigl\vert r(n) \bigr\vert ^{q}\geq\frac{2^{mp}}{(b-a)^{mp-1}}, $$
(6)

where q is a conjugate exponent of p.

In the present paper, we shall establish a new discrete Lyapunov-type inequality for the following m-order difference equation with mixed nonlinearities:

$$ \bigl\vert \triangle^{m} u(n) \bigr\vert ^{p-2} \triangle^{m} u(n)+\sum_{i=0}^{m-1} r_{i}(n) \bigl\vert \triangle^{i} u(n) \bigr\vert ^{p-2}\triangle^{i} u(n)=0, $$
(7)

with the anti-periodic boundary conditions (5), where \(m\in \mathbb{N}\), \(n\in \mathbb{Z}\), \(p>1\) is a constant and \(r_{i}(n)\) (\(i=0,1,\ldots,m-1\)) are real-valued functions defined on \(\mathbb{Z}\). Further, we will also prove a new Lyapunov-type inequality for the 2m-order difference equation

$$ \bigl\vert \triangle^{2m} u(n) \bigr\vert ^{p-2} \triangle^{2m} u(n)+ (-1)^{m-1}r(n) \bigl\vert u(n+1) \bigr\vert ^{q-2} u(n+1)=0, $$
(8)

with the following boundary conditions:

$$ \triangle^{2i}u(a)=\triangle^{2i}u(b)=0,\quad i=0,1,\ldots ,m-1;\qquad u(n)\not\equiv0,\quad n\in \mathbb{Z}[a,b], $$
(9)

where \(m\in \mathbb{N}\), \(p\geq q>2\) are constants, \(n\in \mathbb{Z}\) and \(r(n)\) is a real-valued function defined on \(\mathbb{Z}\). Our works extend the results in [21] and [29].

Main results

Lemma 2.1

([1])

If A is positive and B, z are nonnegative, then

$$ Az^{2\tau}-Bz^{\sigma}+\Gamma_{\sigma\tau}A^{-\sigma /(2-\sigma)}B^{2\tau/(2-\sigma)} \geq0 $$
(10)

for any \(\sigma\in(0,2\tau)\), where

$$\Gamma_{\sigma\tau}=(2\tau-\sigma)\sigma^{\sigma/(2\tau-\sigma)}\tau ^{-2\tau/(2\tau-\sigma)}2^{-2\tau/(2\tau-\sigma)}>0 $$

with equality holding if and only if \(B=z=0\).

Lemma 2.2

([29])

Assume that \(u(n)\) is a real-valued function on \(\mathbb{Z}[a,b]\), \(u(a)=u(b)=0\). Then

$$\begin{aligned}& \bigl\vert u(n) \bigr\vert \leq\frac{(n-a)(b-n)}{b-a}\sum _{s=a}^{b-1} \bigl\vert \triangle^{2} u(s) \bigr\vert ,\quad \forall n\in \mathbb{Z}(a,b-1), \end{aligned}$$
(11)
$$\begin{aligned}& \sum_{n=a}^{b-1} \bigl\vert u(n) \bigr\vert \leq\frac{1}{2}\sum_{n=a}^{b-1} \bigl[(n-a+1) (b-n-1) \bigl\vert \triangle^{2} u(n) \bigr\vert \bigr] \leq\frac{(b-a)^{2}}{8}\sum_{n=a}^{b-1} \bigl\vert \triangle^{2} u(n) \bigr\vert . \end{aligned}$$
(12)

We now state the main theorem of this paper.

Theorem 2.1

If \(u(n)\) is a nonzero solution of Eq. (7) satisfying the anti-periodic boundary conditions (5), then

$$ \sum_{i=0}^{m-1}\frac{(b-a)^{(m-i-1/p)(p-1)}}{2^{(m-i)(p-1)}} \Biggl( \sum_{n=a}^{b-1} \bigl\vert r_{i}(n) \bigr\vert ^{q} \Biggr)^{1/q} \geq1, $$
(13)

where q is the Hölder conjugate exponent of p, i.e., \(1/p+1/q=1\).

Proof

Since the nonzero solution \(u(n)\) of Eq. (7) satisfies the anti-periodic boundary conditions (5), then \(u(a)+u(b)=0\). For \(n\in \mathbb{Z}[a,b]\), we have

$$\begin{aligned}[b] u(n)&=u(n)-\frac{1}{2}\bigl[u(a)+u(b)\bigr]=\frac{1}{2}\sum _{k=a}^{n-1}\bigl[u(k+1)-u(k)\bigr]- \frac{1}{2}\sum_{k=n}^{b-1} \bigl[u(k+1)-u(k)\bigr] \\ &=\frac{1}{2}\sum_{k=a}^{n-1}\triangle u(k)-\frac{1}{2}\sum_{k=n}^{b-1}\triangle u(k).\end{aligned} $$
(14)

Then

$$ \bigl\vert u(n) \bigr\vert \leq\frac{1}{2}\sum _{k=a}^{b-1} \bigl\vert \triangle u(k) \bigr\vert . $$
(15)

Applying discrete Hölder’s inequality

$$ \sum_{k=a}^{b-1} \bigl\vert f(k)g(k) \bigr\vert \leq \Biggl(\sum_{k=a}^{b-1} \bigl\vert f(k) \bigr\vert ^{\alpha}\Biggr)^{1/\alpha} \Biggl(\sum _{k=a}^{b-1} \bigl\vert g(k) \bigr\vert ^{\beta}\Biggr)^{1/\beta} $$
(16)

to (15) with \(f(k)=1\), \(g(k)=|\triangle u(k)|\), \(\alpha=q\), and \(\beta=p\), we obtain that

$$ \bigl\vert u(n) \bigr\vert \leq\frac{1}{2}\sum _{k=a}^{b-1} \bigl\vert \triangle u(k) \bigr\vert \leq \frac{1}{2}(b-a)^{1/q} \Biggl(\sum_{k=a}^{b-1} \bigl\vert \triangle u(k) \bigr\vert ^{p} \Biggr)^{1/p}. $$
(17)

Similarly, we get

$$\begin{aligned}[b] \bigl\vert \triangle^{i}u(n) \bigr\vert &\leq\frac{1}{2} \sum_{k=a}^{b-1} \bigl\vert \triangle^{i+1} u(k) \bigr\vert \\ &\leq \frac{1}{2}(b-a)^{1/q} \Biggl(\sum _{k=a}^{b-1} \bigl\vert \triangle ^{i+1}u(k) \bigr\vert ^{p} \Biggr)^{1/p},\quad i=1,2,\ldots,m-1.\end{aligned} $$
(18)

Then

$$ \bigl\vert \triangle^{i}u(n) \bigr\vert ^{p}\leq \biggl( \frac{1}{2} \biggr)^{p}(b-a)^{p/q}\sum _{k=a}^{b-1} \bigl\vert \triangle^{i+1}u(k) \bigr\vert ^{p},\quad i=1,2,\ldots,m-1. $$
(19)

Summing (19) from a to \(b-1\), we have

$$ \sum_{n=a}^{b-1} \bigl\vert \triangle^{i}u(n) \bigr\vert ^{p}\leq(b-a) \biggl( \frac {1}{2} \biggr)^{p}(b-a)^{p/q}\sum _{k=a}^{b-1} \bigl\vert \triangle^{i+1}u(k) \bigr\vert ^{p},\quad i=1,2,\ldots,m-1, $$
(20)

i.e.,

$$ \Biggl(\sum_{n=a}^{b-1} \bigl\vert \triangle^{i}u(n) \bigr\vert ^{p} \Biggr)^{1/p}\leq \frac{b-a}{2} \Biggl(\sum_{k=a}^{b-1} \bigl\vert \triangle^{i+1}u(k) \bigr\vert ^{p} \Biggr)^{1/p},\quad i=1,2,\ldots,m-1. $$
(21)

From (21), we obtain

$$\begin{aligned}[b] & \Biggl(\sum_{n=a}^{b-1} \bigl\vert \triangle^{i}u(n) \bigr\vert ^{p} \Biggr)^{1/p} \\ &\quad\leq\frac{b-a}{2} \Biggl(\sum_{k=a}^{b-1} \bigl\vert \triangle^{i+1}u(k) \bigr\vert ^{p} \Biggr)^{1/p} \\ &\quad\leq \biggl(\frac{b-a}{2} \biggr)^{2} \Biggl(\sum _{k=a}^{b-1} \bigl\vert \triangle ^{i+2}u(k) \bigr\vert ^{p} \Biggr)^{1/p} \\ &\quad\leq\cdots \\ &\quad\leq \biggl(\frac{b-a}{2} \biggr)^{m-i} \Biggl(\sum _{k=a}^{b-1} \bigl\vert \triangle ^{m}u(k) \bigr\vert ^{p} \Biggr)^{1/p} ,\quad i=1,2,\ldots,m-1.\end{aligned} $$
(22)

Then, from (17) and (22) for \(i=1\), we obtain

$$ \bigl\vert u(n) \bigr\vert \leq\frac{1}{2}(b-a)^{1/q} \biggl( \frac{b-a}{2} \biggr)^{m-1} \Biggl(\sum_{k=a}^{b-1} \bigl\vert \triangle^{m}u(k) \bigr\vert ^{p} \Biggr)^{1/p}, $$
(23)

and by (18) and (22), we get

$$ \bigl\vert \triangle^{i}u(n) \bigr\vert \leq\frac{1}{2}(b-a)^{1/q} \biggl(\frac {b-a}{2} \biggr)^{m-i-1} \Biggl(\sum _{k=a}^{b-1} \bigl\vert \triangle^{m}u(k) \bigr\vert ^{p} \Biggr)^{1/p}, \quad i=1,2,\ldots,m-1. $$
(24)

Multiplying (7) by \(\triangle^{m}u(n)\), we have

$$ \bigl\vert \triangle^{m} u(n) \bigr\vert ^{p}+\sum _{i=0}^{m-1} r_{i}(n) \bigl\vert \triangle ^{i} u(n) \bigr\vert ^{p-2}\triangle^{i} u(n)\triangle^{m}u(n)=0. $$
(25)

Then we get

$$\begin{aligned}[b] \bigl\vert \triangle^{m} u(n) \bigr\vert ^{p}&=-\sum _{i=0}^{m-1} r_{i}(n) \bigl\vert \triangle^{i} u(n) \bigr\vert ^{p-2}\triangle^{i} u(n)\triangle^{m}u(n) \\ &\leq\sum_{i=0}^{m-1} \bigl\vert r_{i}(n) \bigr\vert \bigl\vert \triangle^{i} u(n) \bigr\vert ^{p-2} \bigl\vert \triangle^{i} u(n) \bigr\vert \bigl\vert \triangle^{m}u(n) \bigr\vert \\ &=\sum_{i=0}^{m-1} \bigl\vert r_{i}(n) \bigr\vert \bigl\vert \triangle^{i} u(n) \bigr\vert ^{p-1} \bigl\vert \triangle^{m}u(n) \bigr\vert .\end{aligned} $$
(26)

Summing (26) from a to \(b-1\), we have

$$\begin{aligned}[b] \sum_{n=a}^{b-1} \bigl\vert \triangle^{m} u(n) \bigr\vert ^{p} &\leq\sum _{i=0}^{m-1}\sum_{n=a}^{b-1} \bigl\vert r_{i}(n) \bigr\vert \bigl\vert \triangle^{i} u(n) \bigr\vert ^{p-1} \bigl\vert \triangle^{m}u(n) \bigr\vert \\ &=\sum_{n=a}^{b-1} \bigl\vert r_{0}(n) \bigr\vert \bigl\vert u(n) \bigr\vert ^{p-1} \bigl\vert \triangle^{m}u(n) \bigr\vert \\ &\quad{}+\sum_{i=1}^{m-1}\sum _{n=a}^{b-1} \bigl\vert r_{i}(n) \bigr\vert \bigl\vert \triangle^{i} u(n) \bigr\vert ^{p-1} \bigl\vert \triangle^{m}u(n) \bigr\vert .\end{aligned} $$
(27)

For the first summation on the right-hand side of (27), from (23) and Hölder’s inequality (16), we obtain that

$$\begin{aligned}[b] &\sum_{n=a}^{b-1} \bigl\vert r_{0}(n) \bigr\vert \bigl\vert u(n) \bigr\vert ^{p-1} \bigl\vert \triangle^{m}u(n) \bigr\vert \\ &\quad\leq \biggl(\frac{1}{2} \biggr)^{p-1}(b-a)^{(p-1)/q} \biggl(\frac{b-a}{2} \biggr)^{(m-1)(p-1)} \\ &\quad\quad{} \cdot\Biggl(\sum_{n=a}^{b-1} \bigl\vert \triangle^{m}u(n) \bigr\vert ^{p} \Biggr)^{(p-1)/p} \sum _{n=a}^{b-1} \bigl\vert r_{0}(n) \bigr\vert \bigl\vert \triangle^{m}u(n) \bigr\vert \\ &\quad=\frac{(b-a)^{(m-1/p)(p-1)}}{2^{m(p-1)}} \Biggl(\sum_{n=a}^{b-1} \bigl\vert \triangle ^{m}u(n) \bigr\vert ^{p} \Biggr)^{(p-1)/p} \sum_{n=a}^{b-1} \bigl\vert r_{0}(n) \bigr\vert \bigl\vert \triangle^{m}u(n) \bigr\vert \\ &\quad\leq\frac{(b-a)^{(m-1/p)(p-1)}}{2^{m(p-1)}} \Biggl(\sum_{n=a}^{b-1} \bigl\vert \triangle^{m}u(n) \bigr\vert ^{p} \Biggr)^{(p-1)/p} \\ &\qquad{}\cdot \Biggl(\sum_{n=a}^{b-1} \bigl\vert r_{0}(n) \bigr\vert ^{q} \Biggr)^{1/q} \Biggl( \sum_{n=a}^{b-1} \bigl\vert \triangle^{m}u(n) \bigr\vert ^{p} \Biggr)^{1/p} \\ &\quad=\frac{(b-a)^{(m-1/p)(p-1)}}{2^{m(p-1)}} \Biggl(\sum_{n=a}^{b-1} \bigl\vert \triangle ^{m}u(n) \bigr\vert ^{p} \Biggr) \Biggl(\sum_{n=a}^{b-1} \bigl\vert r_{0}(n) \bigr\vert ^{q} \Biggr)^{1/q}.\end{aligned} $$
(28)

On the other hand, for the second summation on the right-hand side of (27), from (24) and Hölder’s inequality (16), we have that

$$\begin{aligned}[b] &\sum_{n=a}^{b-1} \bigl\vert r_{i}(n) \bigr\vert \bigl\vert \triangle^{i} u(n) \bigr\vert ^{p-1} \bigl\vert \triangle ^{m}u(n) \bigr\vert \\ &\quad\leq \biggl(\frac{1}{2} \biggr)^{p-1}(b-a)^{(p-1)/q} \biggl(\frac{b-a}{2} \biggr)^{(m-i-1)(p-1)} \\ &\qquad{}\cdot \Biggl(\sum_{n=a}^{b-1} \bigl\vert \triangle^{m}u(n) \bigr\vert ^{p} \Biggr)^{(p-1)/p} \sum _{n=a}^{b-1} \bigl\vert r_{i}(n) \bigr\vert \bigl\vert \triangle^{m}u(n) \bigr\vert \\ &\quad=\frac{(b-a)^{(m-i-1/p)(p-1)}}{2^{(m-i)(p-1)}} \Biggl(\sum_{n=a}^{b-1} \bigl\vert \triangle^{m}u(n) \bigr\vert ^{p} \Biggr)^{(p-1)/p} \sum_{n=a}^{b-1} \bigl\vert r_{i}(n) \bigr\vert \bigl\vert \triangle^{m}u(n) \bigr\vert \\ &\quad\leq\frac{(b-a)^{(m-i-1/p)(p-1)}}{2^{(m-i)(p-1)}} \Biggl(\sum_{n=a}^{b-1} \bigl\vert \triangle^{m}u(n) \bigr\vert ^{p} \Biggr)^{(p-1)/p} \\ &\qquad{} \cdot\Biggl(\sum_{n=a}^{b-1} \bigl\vert r_{i}(n) \bigr\vert ^{q} \Biggr)^{1/q} \Biggl(\sum _{n=a}^{b-1} \bigl\vert \triangle^{m}u(n) \bigr\vert ^{p} \Biggr)^{1/p} \\ &\quad=\frac{(b-a)^{(m-i-1/p)(p-1)}}{2^{(m-i)(p-1)}} \Biggl(\sum_{n=a}^{b-1} \bigl\vert \triangle^{m}u(n) \bigr\vert ^{p} \Biggr) \Biggl( \sum_{n=a}^{b-1} \bigl\vert r_{i}(n) \bigr\vert ^{q} \Biggr)^{1/q},\quad i=1,2, \ldots,m-1, \end{aligned} $$
(29)

and then

$$\begin{aligned}[b] &\sum_{i=1}^{m-1}\sum _{n=a}^{b-1} \bigl\vert r_{i}(n) \bigr\vert \bigl\vert \triangle^{i} u(n) \bigr\vert ^{p-1} \bigl\vert \triangle^{m}u(n) \bigr\vert \\ &\quad\leq \sum_{i=1}^{m-1}\frac{(b-a)^{(m-i-1/p)(p-1)}}{2^{(m-i)(p-1)}} \Biggl(\sum_{n=a}^{b-1} \bigl\vert \triangle^{m}u(n) \bigr\vert ^{p} \Biggr) \Biggl(\sum _{n=a}^{b-1} \bigl\vert r_{i}(n) \bigr\vert ^{q} \Biggr)^{1/q} \\ &\quad= \Biggl(\sum_{n=a}^{b-1} \bigl\vert \triangle^{m}u(n) \bigr\vert ^{p} \Biggr)\sum _{i=1}^{m-1}\frac {(b-a)^{(m-i-1/p)(p-1)}}{2^{(m-i)(p-1)}} \Biggl(\sum _{n=a}^{b-1} \bigl\vert r_{i}(n) \bigr\vert ^{q} \Biggr)^{1/q} . \end{aligned} $$
(30)

By (27), (28), and (30), we get

$$\begin{aligned}[b] &\sum_{n=a}^{b-1} \bigl\vert \triangle^{m} u(n) \bigr\vert ^{p} \\ &\quad\leq\frac{(b-a)^{(m-1/p)(p-1)}}{2^{m(p-1)}} \Biggl(\sum_{n=a}^{b-1} \bigl\vert \triangle^{m}u(n) \bigr\vert ^{p} \Biggr) \Biggl(\sum_{n=a}^{b-1} \bigl\vert r_{0}(n) \bigr\vert ^{q} \Biggr)^{1/q} \\ &\quad\quad{}+ \Biggl(\sum_{n=a}^{b-1} \bigl\vert \triangle^{m}u(n) \bigr\vert ^{p} \Biggr)\sum _{i=1}^{m-1}\frac {(b-a)^{(m-i-1/p)(p-1)}}{2^{(m-i)(p-1)}} \Biggl(\sum _{n=a}^{b-1} \bigl\vert r_{i}(n) \bigr\vert ^{q} \Biggr)^{1/q}. \end{aligned} $$
(31)

Now, we claim that \(\sum_{n=a}^{b-1}|\triangle u(n)|^{p}>0\). In fact, if the above inequality is not true, we have \(\sum_{n=a}^{b-1}| \triangle u(n)|^{p}=0\), then \(\triangle u(n)=0\) for \(n\in \mathbb{Z}[a,b-1]\). By the anti-periodic conditions (5), we obtain \(u(n)=0\) for \(n\in \mathbb{Z}[a,b]\), which contradicts \(u(n)\not\equiv0\), \(n\in \mathbb{Z}[a,b]\). From (22), we get \(\sum_{n=a}^{b-1}| \triangle^{m}u(n)|^{p}>0\). Thus, dividing both sides of (31) by \(\sum_{n=a}^{b-1}| \triangle^{m}u(n)|^{p}\), we obtain

$$\begin{aligned} 1\leq{}&\frac{(b-a)^{(m-1/p)(p-1)}}{2^{m(p-1)}} \Biggl(\sum_{n=a}^{b-1} \bigl\vert r_{0}(n) \bigr\vert ^{q} \Biggr)^{1/q} \\ &+\sum_{i=1}^{m-1}\frac{(b-a)^{(m-i-1/p)(p-1)}}{2^{(m-i)(p-1)}} \Biggl( \sum_{n=a}^{b-1} \bigl\vert r_{i}(n) \bigr\vert ^{q} \Biggr)^{1/q} \\ ={}&\sum_{i=0}^{m-1}\frac{(b-a)^{(m-i-1/p)(p-1)}}{2^{(m-i)(p-1)}} \Biggl( \sum_{n=a}^{b-1} \bigl\vert r_{i}(n) \bigr\vert ^{q} \Biggr)^{1/q}.\end{aligned} $$

This completes the proof of Theorem 2.1. □

Remark

If \(r_{i}(n)\equiv0\), \(i=1,2,\ldots,m-1\), then Theorem 2.1 coincides with Theorem 1 in [21].

Let \(p=2\), \(m=2k\), \(k\in \mathbb{N}\) in Theorem 2.1, we have the following corollary.

Corollary 2.1

If \(u(n)\) is a nonzero solution of

$$ \triangle^{2k} u(n)+\sum_{i=0}^{2k-1} r_{i}(n)\triangle^{i} u(n)=0 $$
(32)

and satisfies the anti-periodic boundary conditions

$$ \triangle^{i} u(a)+\triangle^{i} u(b)=0,\quad i=0,1,\ldots,2k-1;\qquad u(n)\not\equiv0,\quad n\in \mathbb{Z}[a,b], $$
(33)

then

$$ \sum_{i=0}^{2k-1}\frac{(b-a)^{2k-i-1/2}}{2^{2k-i}} \Biggl( \sum_{n=a}^{b-1} \bigl\vert r_{i}(n) \bigr\vert ^{2} \Biggr)^{1/2}\geq1. $$

Let \(p=2\), \(m=2k-1\), \(k\in \mathbb{N}\) in Theorem 2.1, we have the following corollary.

Corollary 2.2

If \(u(n)\) is a nonzero solution of

$$ \triangle^{2k-1} u(n)+\sum_{i=0}^{2k-2} r_{i}(n)\triangle ^{i} u(n)=0 $$
(34)

and satisfies the anti-periodic boundary conditions

$$ \triangle^{i} u(a)+\triangle^{i} u(b)=0,\quad i=0,1,\ldots,2k-2;\qquad u(n)\not\equiv0,\quad n\in \mathbb{Z}[a,b], $$
(35)

then

$$ \sum_{i=0}^{2k-2}\frac{(b-a)^{2k-i-3/2}}{2^{2k-1-i}} \Biggl( \sum_{n=a}^{b-1} \bigl\vert r_{i}(n) \bigr\vert ^{2} \Biggr)^{1/2}\geq1. $$

Let \(m=2\) in Theorem 2.1, we have the following corollary.

Corollary 2.3

If \(u(n)\) is a nonzero solution of

$$ \bigl\vert \triangle^{2} u(n) \bigr\vert ^{p-2} \triangle^{2} u(n)+\sum_{i=0}^{1} r_{i}(n) \bigl\vert \triangle^{i} u(n) \bigr\vert ^{p-2}\triangle^{i} u(n)=0 $$
(36)

and satisfies the anti-periodic boundary conditions

$$ \triangle^{i} u(a)+\triangle^{i} u(b)=0,\quad i=0,1;\qquad u(n)\not \equiv0, \quad n\in \mathbb{Z}[a,b], $$
(37)

then

$$ \sum_{i=0}^{1}\frac{(b-a)^{(2-i-1/p)(p-1)}}{2^{(2-i)(p-1)}} \Biggl( \sum_{n=a}^{b-1} \bigl\vert r_{i}(n) \bigr\vert ^{q} \Biggr)^{1/q}\geq1. $$

Next, we establish a Lyapunov-type inequality for Eq. (8).

Theorem 2.2

If \(u(n)\) is a nonzero solution of Eq. (8) satisfying the anti-periodic boundary conditions (9), then

$$ \Biggl(\sum_{n=a}^{b-1} \bigl\vert r(n) \bigr\vert \Biggr)^{1/(p-1)}>\frac {2^{3m-2}}{(b-a)^{2m-1/(p-1)}}\frac{1}{\sqrt{\Gamma_{\frac {q-1}{p-1}1}}}, $$
(38)

where

$$ \Gamma_{\frac{q-1}{p-1}1}= \biggl(\frac{2p-q-1}{p-1} \biggr) \biggl( \frac{q-1}{p-1} \biggr)^{(q-1)/(2p-q-1)}2^{2(1-p)/(2p-q-1)}. $$
(39)

Proof

Choose \(c\in \mathbb{Z}[a, b]\) such that \(|u(c)|=\max_{n\in \mathbb{Z}[a,b]}|u(n)|\). Since (9), it follows from Lemma 2.2 that

$$ \bigl\vert u(c) \bigr\vert \leq\frac{(c-a)(b-c)}{b-a}\sum _{n=a}^{b-1} \bigl\vert \triangle^{2} u(n) \bigr\vert \leq\frac{b-a}{4}\sum_{n=a}^{b-1} \bigl\vert \triangle^{2} u(n) \bigr\vert $$
(40)

and

$$ \sum_{n=a}^{b-1} \bigl\vert \triangle^{2i}u(n) \bigr\vert \leq\frac {(b-a)^{2}}{8}\sum _{n=a}^{b-1} \bigl\vert \triangle^{2i+2} u(n) \bigr\vert ,\quad i=1,2,\ldots,m-1. $$
(41)

From (40) and (41), we obtain

$$\begin{aligned} \bigl\vert u(c) \bigr\vert \leq&\frac{b-a}{4}\sum _{n=a}^{b-1} \bigl\vert \triangle^{2} u(n) \bigr\vert \\ \leq&\frac{b-a}{4}\frac{(b-a)^{2}}{8}\sum_{n=a}^{b-1} \bigl\vert \triangle^{4} u(n) \bigr\vert \\ \leq&\frac{b-a}{4} \biggl(\frac{(b-a)^{2}}{8} \biggr)^{2}\sum _{n=a}^{b-1} \bigl\vert \triangle^{6} u(n) \bigr\vert \\ \leq&\cdots \\ \leq&\frac{b-a}{4} \biggl(\frac{(b-a)^{2}}{8} \biggr)^{m-1}\sum _{n=a}^{b-1} \bigl\vert \triangle^{2m} u(n) \bigr\vert . \end{aligned}$$
(42)

Applying discrete Hölder’s inequality (16) to the summation on the right-hand side of (42) with \(f(n)=1\), \(g(n)=|\triangle^{2m} u(n)|\), \(\alpha=\frac {p-1}{p-2}\), and \(\beta=p-1\), we obtain that

$$\begin{aligned}[b] \bigl\vert u(c) \bigr\vert &\leq \frac{b-a}{4} \biggl( \frac{(b-a)^{2}}{8} \biggr)^{m-1}(b-a)^{(p-2)/(p-1)} \Biggl(\sum _{k=a}^{b-1} \bigl\vert \triangle^{2m} u(n) \bigr\vert ^{p-1} \Biggr)^{1/(p-1)} \\ &=\frac{(b-a)^{2m-1/(p-1)}}{2^{3m-1}} \Biggl(\sum_{k=a}^{b-1} \bigl\vert \triangle ^{2m} u(n) \bigr\vert ^{p-1} \Biggr)^{1/(p-1)}. \end{aligned} $$
(43)

On the other hand, from (8), we have

$$ \bigl\vert \triangle^{2m} u(n) \bigr\vert ^{p-2} \triangle^{2m} u(n)=(-1)^{m}r(n) \bigl\vert u(n+1) \bigr\vert ^{q-2} u(n+1), $$
(44)

then

$$ \bigl\vert \triangle^{2m} u(n) \bigr\vert ^{p-1}= \bigl\vert r(n) \bigr\vert \bigl\vert u(n+1) \bigr\vert ^{q-1}. $$
(45)

Summing (45) from a to \(b-1\), we have

$$ \sum_{n=a}^{b-1} \bigl\vert \triangle^{2m} u(n) \bigr\vert ^{p-1} =\sum _{n=a}^{b-1} \bigl\vert r(n) \bigr\vert \bigl\vert u(n+1) \bigr\vert ^{q-1}, $$
(46)

then

$$ \Biggl(\sum_{n=a}^{b-1} \bigl\vert \triangle^{2m} u(n) \bigr\vert ^{p-1} \Biggr)^{1/(p-1)} = \Biggl(\sum_{n=a}^{b-1} \bigl\vert r(n) \bigr\vert \bigl\vert u(n+1) \bigr\vert ^{q-1} \Biggr)^{1/(p-1)}. $$
(47)

From (43) and (47), we have

$$\begin{aligned}[b] \bigl\vert u(c) \bigr\vert &\leq \frac{(b-a)^{2m-1/(p-1)}}{2^{3m-1}} \Biggl(\sum _{n=a}^{b-1} \bigl\vert r(n) \bigr\vert \bigl\vert u(n+1) \bigr\vert ^{q-1} \Biggr)^{1/(p-1)} \\ &\leq \frac{(b-a)^{2m-1/(p-1)}}{2^{3m-1}} \Biggl(\sum_{n=a}^{b-1} \bigl\vert r(n) \bigr\vert \Biggr)^{1/(p-1)} \bigl\vert u(c) \bigr\vert ^{(q-1)/(p-1)} \\ &\leq\mathcal{K} \bigl\vert u(c) \bigr\vert ^{(q-1)/(p-1)},\end{aligned} $$
(48)

where

$$ \mathcal{K}=\frac{(b-a)^{2m-1/(p-1)}}{2^{3m-1}} \Biggl(\sum_{n=a}^{b-1} \bigl\vert r(n) \bigr\vert \Biggr)^{1/(p-1)}. $$
(49)

Using inequality (10) in Lemma 2.1 with \(A=B=1\), \(z=|u(c)|\), \(\tau =1\), \(\sigma=\frac{q-1}{p-1}\), we have

$$ \bigl\vert u(c) \bigr\vert ^{2}- \bigl\vert u(c) \bigr\vert ^{(q-1)/(p-1)}+\Gamma_{\frac {q-1}{p-1}1}>0. $$
(50)

From (48) and (50), we get

$$ \bigl\vert u(c) \bigr\vert ^{2}-\frac{1}{\mathcal{K}} \bigl\vert u(c) \bigr\vert +\Gamma_{\frac {q-1}{p-1}1}>0. $$
(51)

This is possible only if

$$ \frac{1}{\mathcal{K}^{2}}-4\Gamma_{\frac {q-1}{p-1}1}< 0, $$
(52)

i.e.,

$$ \mathcal{K}>\frac{1}{2\sqrt{\Gamma_{\frac {q-1}{p-1}1}}}. $$
(53)

From (49) and (53), we obtain

$$ \frac{(b-a)^{2m-1/(p-1)}}{2^{3m-1}} \Biggl(\sum_{n=a}^{b-1} \bigl\vert r(n) \bigr\vert \Biggr)^{1/(p-1)}>\frac{1}{2\sqrt{\Gamma_{\frac {q-1}{p-1}1}}}. $$
(54)

Thus, (38) holds. This completes the proof of Theorem 2.2. □

For \(p>q=2\), using a method similar to Theorem 2.2, we have the following theorem.

Theorem 2.3

If \(u(n)\) is a nonzero solution of

$$ \bigl\vert \triangle^{2m} u(n) \bigr\vert ^{p-2} \triangle^{2m} u(n)+ (-1)^{m-1}r(n) u(n+1)=0, $$
(55)

satisfying the anti-periodic boundary conditions (9), then

$$ \Biggl(\sum_{n=a}^{b-1} \bigl\vert r(n) \bigr\vert \Biggr)^{1/(p-1)}>\frac {2^{3m-2}}{(b-a)^{2m-1/(p-1)}}\frac{1}{\sqrt{\Gamma_{\frac {1}{p-1}1}}}, $$
(56)

where

$$ \Gamma_{\frac{1}{p-1}1}= \biggl(\frac{2p-3}{p-1} \biggr) \biggl( \frac{1}{p-1} \biggr)^{1/(2p-3)}2^{2(1-p)/(2p-3)}. $$
(57)

Remark

For \(p=q=2\), using a method similar to Theorem 2.2, we have that the result coincides with Corollary 2.3 in [29].

Let \(m=1\) in Theorem 2.2, we have the following corollary.

Corollary 2.4

If \(u(n)\) is a nonzero solution of

$$ \bigl\vert \triangle^{2} u(n) \bigr\vert ^{p-2} \triangle^{2} u(n)+ r(n) \bigl\vert u(n+1) \bigr\vert ^{q-2} u(n+1)=0 $$
(58)

and satisfies the anti-periodic boundary conditions

$$ u(a)= u(b)=0,\qquad u(n)\not\equiv0,\quad n\in \mathbb{Z}[a,b], $$
(59)

then

$$ \Biggl(\sum_{n=a}^{b-1} \bigl\vert r(n) \bigr\vert \Biggr)^{1/(p-1)}>\frac {2}{(b-a)^{2-1/(p-1)}}\frac{1}{\sqrt{\Gamma_{\frac {q-1}{p-1}1}}}, $$

where \(\Gamma_{\frac{q-1}{p-1}1}\) is defined as in (39).

Let \(m=1\) in Theorem 2.3, we have the following corollary.

Corollary 2.5

If \(u(n)\) is a nonzero solution of

$$ \bigl\vert \triangle^{2} u(n) \bigr\vert ^{p-2} \triangle^{2} u(n)+ r(n)u(n+1)=0 $$
(60)

and satisfies the anti-periodic boundary conditions

$$ u(a)= u(b)=0,\qquad u(n)\not\equiv0,\quad n\in \mathbb{Z}[a,b], $$
(61)

then

$$ \Biggl(\sum_{n=a}^{b-1} \bigl\vert r(n) \bigr\vert \Biggr)^{1/(p-1)}>\frac {2}{(b-a)^{2-1/(p-1)}}\frac{1}{\sqrt{\Gamma_{\frac{1}{p-1}1}}}, $$

where \(\Gamma_{\frac{1}{p-1}1}\) is defined as in (57).

Applications

In this section, we investigate the nonexistence and uniqueness for solutions of certain BVPs. First, we consider the nonexistence for solutions of the BVP consisting of (7) and the boundary conditions (5).

Theorem 3.1

Assume

$$ \sum_{i=0}^{m-1}\frac{(b-a)^{(m-i-1/p)(p-1)}}{2^{(m-i)(p-1)}} \Biggl( \sum_{n=a}^{b-1} \bigl\vert r_{i}(n) \bigr\vert ^{q} \Biggr)^{1/q}< 1, $$
(62)

where q is the Hölder conjugate exponent of p, i.e., \(1/p+1/q=1\). Then BVP (7), (5) has no nontrivial solution.

Proof

Assume the contrary. Then BVP (7), (5) has a nontrivial solution \(u(n)\). By Theorem 2.1, inequality (13) holds. This contradicts assumption (62). □

Next, we consider the uniqueness for solutions of nonhomogeneous BVP consisting of the equation

$$ \triangle^{2k} u(n)+\sum_{i=0}^{2k-1} r_{i}(n)\triangle^{i} u(n)=f(n),\quad n\in \mathbb{Z}[A,B], $$
(63)

and the boundary conditions

$$ \triangle^{i} u(a)+\triangle^{i} u(b)=M_{i},\quad i=0,1, \ldots ,2k-1;\qquad n\in \mathbb{Z}[a,b], $$
(64)

where \(k\in \mathbb{N}\), \(n\in \mathbb{Z}\), and f, \(r_{i}(n)\) (\(i=0,1,\ldots,2k-1\)) are real-valued functions defined on \(\mathbb{Z}\), \(A, B,a,b\in \mathbb{N}\), \(A< a< b< B\), and \(M_{i}\in \mathbb{R}\), \(i=0,1,\ldots,2k-1\).

Theorem 3.2

Assume

$$ \sum_{i=0}^{2k-1}\frac{(B-A)^{(2k-i-1/2)}}{2^{(2k-i)}} \Biggl( \sum_{n=A}^{B-1} \bigl\vert r_{i}(n) \bigr\vert ^{2} \Biggr)^{1/2}< 1. $$
(65)

Then BVP (63), (64) has at most one solution on \((A,B)\) for any \(a,b\in(A,B)\), \(M_{i}\in \mathbb{R}\), \({i=0,1,\ldots,2k-1}\).

Proof

Let \(u_{1}(n)\) and \(u_{2}(n)\) be two solutions of BVP (63), (64) in \((A,B)\). Define \(u(n)= {u_{1}(n)-u_{2}(n)}\). Then \(u(n)\) is a solution of BVP (32), (33). Then, by Theorem 3.1 with \(p=2\) and \(m=2k\), we have \(u(n)\equiv0\), i.e., \(u_{1}(n)\equiv u_{2}(n)\). This shows that BVP (63), (64) has at most one solution on \((A,B)\). □

References

  1. 1.

    Agarwal, R.P., Özbekler, A.: Disconjugacy via Lyapunov and Vallée–Poussin type inequalities for forced differential equations. Appl. Math. Comput. 265, 456–468 (2015)

    MathSciNet  Google Scholar 

  2. 2.

    Agarwal, R.P., Özbekler, A.: Lyapunov type inequalities for even order differential equations with mixed nonlinearities. J. Inequal. Appl. 2015, Article ID 142 (2015)

    MathSciNet  Article  MATH  Google Scholar 

  3. 3.

    Feng, Q.H., Meng, F.W., Zhang, Y.M., Zheng, B., Zhou, J.C.: Some nonlinear delay integral inequalities on time scales arising in the theory of dynamics equations. J. Inequal. Appl. 2011, Article ID 29 (2011)

    MathSciNet  Article  MATH  Google Scholar 

  4. 4.

    Feng, Q.H., Meng, F.W., Zhang, Y.M.: Generalized Gronwall–Bellman-type discrete inequalities and their applications. J. Inequal. Appl. 2011, Article ID 47 (2011)

    MathSciNet  Article  MATH  Google Scholar 

  5. 5.

    Çakmak, D.: Lyapunov-type integral inequalities for certain higher order differential equations. Appl. Math. Comput. 216, 368–373 (2010)

    MathSciNet  MATH  Google Scholar 

  6. 6.

    Cheng, S.S.: Lyapunov inequalities for differential and difference equations. Fasc. Math. 23, 25–41 (1991)

    MathSciNet  MATH  Google Scholar 

  7. 7.

    Dhar, S., Kong, Q.K.: Lyapunov-type inequalities for α-th order fractional differential equations with \(2<\alpha\leq3\) and fractional boundary conditions. Electron. J. Differ. Equ. 2017, Article ID 203 (2017)

    MathSciNet  Article  MATH  Google Scholar 

  8. 8.

    Du, L.W., Xu, R.: Some new Pachpatte type inequalities on time scales and their applications. J. Math. Inequal. 6(2), 229–240 (2012)

    MathSciNet  Article  MATH  Google Scholar 

  9. 9.

    Eliason, S.B.: Lyapunov inequalities and bounds on solutions of certain second order equations. Can. Math. Bull. 17(4), 499–504 (1974)

    MathSciNet  Article  MATH  Google Scholar 

  10. 10.

    Feng, Q.H., Meng, F.W., Zhang, Y.M.: Some new finite difference inequalities arising in the theory of difference equations. Adv. Differ. Equ. 2011, Article ID 21 (2011)

    MathSciNet  Article  MATH  Google Scholar 

  11. 11.

    Feng, Q.H., Meng, F.W.: Some generalized Ostrowski–Gruss type integral inequalities. Comput. Math. Appl. 63(3), 652–659 (2012)

    MathSciNet  Article  MATH  Google Scholar 

  12. 12.

    Gu, J., Meng, F.W.: Some new nonlinear Volterra–Fredholm type dynamic integral inequalities on time scales. Appl. Math. Comput. 245, 235–242 (2014)

    MathSciNet  MATH  Google Scholar 

  13. 13.

    Guseinov, G.S., Kaymakcalan, B.: Lyapunov inequalities for discrete linear Hamiltonian systems. Comput. Math. Appl. 45, 1399–1416 (2003)

    MathSciNet  Article  MATH  Google Scholar 

  14. 14.

    Liu, H.D., Meng,F.W., Liu, P.C.: Oscillation and asymptotic analysis on a new generalized Emden–Fowler equation. Appl. Math. Comput. 219(5), 2739–2748 (2012)

    MathSciNet  MATH  Google Scholar 

  15. 15.

    Lee, C., Yeh, C., Hong, C., Agarwal, R.P.: Lyapunov and Wirtinger inequalities. Appl. Math. Lett. 17, 847–853 (2004)

    MathSciNet  Article  MATH  Google Scholar 

  16. 16.

    Li, L.Z., Meng, F.W., He, L.L.: Some generalized integral inequalities and their applications. J. Math. Anal. Appl. 372(1), 339–349 (2010)

    MathSciNet  Article  MATH  Google Scholar 

  17. 17.

    Liu, H.D., Meng, F.W.: Oscillation criteria for second order linear matrix differential systems with damping. J. Comput. Appl. Math. 229(1), 222–229 (2009)

    MathSciNet  Article  MATH  Google Scholar 

  18. 18.

    Li, L.Z., Meng, F.W., Ju, P.J.: Some new integral inequalities and their applications in studying the stability of nonlinear integro-differential equations with time delay. J. Math. Anal. Appl. 377(2), 853–862 (2011)

    MathSciNet  Article  MATH  Google Scholar 

  19. 19.

    Feng, Q.H., Meng, F.W.: Generalized Ostrowski type inequalities for multiple points on time scales involving functions of two independent variables. J. Inequal. Appl., 2012, Article ID 74 (2012)

    MathSciNet  Article  MATH  Google Scholar 

  20. 20.

    Liu, H.D.: Some new integral inequalities with mixed nonlinearities for discontinuous functions. Adv. Differ. Equ. 2018, Article ID 22 (2018)

    MathSciNet  Article  Google Scholar 

  21. 21.

    Liu, X.G., Tang, M.L.: Lyapunov-type inequality for higher order difference equations. Appl. Math. Comput. 232, 666–669 (2014)

    MathSciNet  MATH  Google Scholar 

  22. 22.

    Liu, H.D., Meng, F.W.: Some new nonlinear integral inequalities with weakly singular kernel and their applications to FDEs. J. Inequal. Appl. 2015, Article ID 209 (2015)

    MathSciNet  Article  MATH  Google Scholar 

  23. 23.

    Feng, Q.H., Meng, F.W., Zheng, B.: Gronwall–Bellman type nonlinear delay integral inequalities on time scales. J. Math. Anal. Appl. 382(2), 772–784 (2011)

    MathSciNet  Article  MATH  Google Scholar 

  24. 24.

    Lyapunov, A.M.: Probleme général de la stabilité du mouvement. Ann. Fac. Sci. Univ. Toulouse 2, 27–247 (1907) (French translation of a Russian paper dated 1893); reprinted as Ann. Math. Stud. 17 (1947)

    Google Scholar 

  25. 25.

    Meng, F.W., Shao, J.: Some new Volterra–Fredholm type dynamic integral inequalities on time scales. Appl. Math. Comput. 223, 444–451 (2013)

    MathSciNet  MATH  Google Scholar 

  26. 26.

    Liu, H.D., Ma, C.Q.: Oscillation criteria for second-order neutral delay dynamic equations with nonlinearities given by Riemann–Stieltjes integrals. Abstr. Appl. Anal. 2013, Article ID 530457 (2013)

    MathSciNet  MATH  Google Scholar 

  27. 27.

    O’Regan, D., Samet, B.: Lyapunov-type inequalities for a class of fractional differential equations. J. Inequal. Appl. 2015, Article ID 247 (2015)

    MathSciNet  Article  MATH  Google Scholar 

  28. 28.

    Tang, X.-H., Zhang, M.: Lyapunov inequalities and stability for linear Hamiltonian systems. J. Differ. Equ. 252, 358–381 (2012)

    MathSciNet  Article  MATH  Google Scholar 

  29. 29.

    Zhang, Q.M., Tang, X.H.: Lyapunov-type inequalities for even order difference equations. Appl. Math. Lett. 25, 1830–1834 (2012)

    MathSciNet  Article  MATH  Google Scholar 

  30. 30.

    Liu, H.D., Meng, F.W.: Nonlinear retarded integral inequalities on time scales and their applications. J. Math. Inequal. 12(1), 219–234 (2018)

    MathSciNet  MATH  Google Scholar 

  31. 31.

    Feng, Q.H., Meng, F.W., Fu, B.S.: Some new generalized Volterra–Fredholm type finite difference inequalities involving four iterated sums. Appl. Math. Comput. 219(15), 8247–8258 (2013)

    MathSciNet  MATH  Google Scholar 

  32. 32.

    Liu, H.D., Meng, F.W.: Some new generalized Volterra–Fredholm type discrete fractional sum inequalities and their applications. J. Inequal. Appl. 2016, Article ID 213 (2016)

    MathSciNet  Article  MATH  Google Scholar 

  33. 33.

    Xu, R., Ma, X.T.: Some new retarded nonlinear Volterra–Fredholm type integral inequalities with maxima in two variables and their applications. J. Inequal. Appl. 2017, Article ID 187 (2017)

    MathSciNet  Article  MATH  Google Scholar 

  34. 34.

    Xu, R., Zhang, Y.: Generalized Gronwall fractional summation inequalities and their applications. J. Inequal. Appl. 2015, Article ID 242 (2015)

    MathSciNet  Article  MATH  Google Scholar 

  35. 35.

    Liu, H.D.: A class of retarded Volterra–Fredholm type integral inequalities on time scales and their applications. J. Inequal. Appl. 2017, Article ID 293 (2017)

    MathSciNet  Article  MATH  Google Scholar 

  36. 36.

    Tian, Y.Z., Fan, M., Meng, F.W.: A generalization of retarded integral inequalities in two independent variables and their applications. Appl. Math. Comput. 221, 239–248 (2013)

    MathSciNet  MATH  Google Scholar 

  37. 37.

    Tiryaki, A., Çakmak, D., Aktas, M.F.: Lyapunov-type inequalities for a certain class of nonlinear systems. Comput. Math. Appl. 64, 1804–1811 (2012)

    MathSciNet  Article  MATH  Google Scholar 

  38. 38.

    Liu, H.D., Ma, C.Q.: Oscillation criteria of even order delay dynamic equations with nonlinearities given by Riemann–Stieltjes integrals. Abstr. Appl. Anal. 2014, Article ID 395381 (2014)

    MathSciNet  Google Scholar 

  39. 39.

    Unal, M., Çakmak, D., Tiryaki, A.: A discrete analogue of Lyapunov-type inequalities for nonlinear systems. Comput. Math. Appl. 55, 2631–2642 (2008)

    MathSciNet  Article  MATH  Google Scholar 

  40. 40.

    Wang, J.F., Meng, F.W., Gu, J.: Estimates on some power nonlinear Volterra–Fredholm type dynamic integral inequalities on time scales. Adv. Differ. Equ. 2017, Article ID 257 (2017)

    MathSciNet  Article  Google Scholar 

  41. 41.

    Wang, T.L., Xu, R.: Some integral inequalities in two independent variables on time scales. J. Math. Inequal. 6(1), 107–118 (2012)

    MathSciNet  Article  MATH  Google Scholar 

  42. 42.

    Liu, H.D., Liu, P.C.: Oscillation and asymptotic analysis on a new generalized Emden–Fowler equation. Abstr. Appl. Anal. 2013, Article ID 962590 (2013)

    MATH  Google Scholar 

  43. 43.

    Wang, T.L., Xu, R.: Bounds for some new integral inequalities with delay on time scales. J. Math. Inequal. 6(3), 355–366 (2012)

    MathSciNet  Article  MATH  Google Scholar 

  44. 44.

    Liu, H.D., Meng, F.W.: Interval oscillation criteria for second-order nonlinear forced differential equations involving variable exponent. Adv. Differ. Equ. 2016, Article ID 291 (2016)

    MathSciNet  Article  Google Scholar 

  45. 45.

    Watanabe, K., Yamagishi, H., Kametaka, Y.: Riemann zeta function and Lyapunov-type inequalities for certain higher order differential equations. Appl. Math. Comput. 218, 3950–3953 (2011)

    MathSciNet  MATH  Google Scholar 

  46. 46.

    Xu, R., Meng, F.W., Song, C.H.: On some integral inequalities on time scales and their applications. J. Inequal. Appl. 2010, Article ID 464976 (2010)

    MathSciNet  Article  MATH  Google Scholar 

  47. 47.

    Tunç, E., Liu, H.D.: Oscillatory behavior for second-order damped differential equation with nonlinearities including Riemann–Stieltjes integrals. Electron. J. Differ. Equ. 2018, Article ID 54 (2018)

    Article  MATH  Google Scholar 

  48. 48.

    Yang, X.J., Lo, K.M.: Lyapunov-type inequalities for a class of higher-order linear differential equations with anti-periodic boundary conditions. Appl. Math. Lett. 34, 33–36 (2014)

    MathSciNet  Article  MATH  Google Scholar 

  49. 49.

    Yuan, Z.L., Yuan, X.W., Meng, F.W., Zhang, H.X.: Some new delay integral inequalities and their applications. Appl. Math. Comput. 208, 231–237 (2009)

    MathSciNet  MATH  Google Scholar 

  50. 50.

    Bai, Y.Z.: Backward solutions to nonlinear integro-differential systems. Cent. Eur. J. Math. 8(4), 807–815 (2010)

    MathSciNet  MATH  Google Scholar 

  51. 51.

    Xu, R.: Some new nonlinear weakly singular integral inequalities and their applications. J. Math. Inequal. 11(4), 1007–1018 (2017)

    MathSciNet  Article  MATH  Google Scholar 

  52. 52.

    Liu, L.H., Bai, Y.Z.: New oscillation criteria for second-order nonlinear neutral delay differential equations. J. Comput. Appl. Math. 231(2), 657–663 (2009)

    MathSciNet  Article  MATH  Google Scholar 

  53. 53.

    Bai, Y.Z., Zhang, P.P.: On a class of Volterra nonlinear equations of parabolic type. Appl. Math. Comput. 216(1), 236–240 (2010)

    MathSciNet  MATH  Google Scholar 

  54. 54.

    Zheng, Z.W.: Invariance of deficiency indices under perturbation for discrete Hamiltonian systems. J. Differ. Equ. Appl. 19(8), 1243–1250 (2013)

    MathSciNet  Article  MATH  Google Scholar 

  55. 55.

    Zheng, Z.W., Wang, X., Han, H.M.: Oscillation criteria for forced second order differential equations with mixed nonlinearities. Appl. Math. Lett. 22(7), 1096–1101 (2009)

    MathSciNet  Article  MATH  Google Scholar 

  56. 56.

    Xu, R., Meng, F.W.: Some new weakly singular integral inequalities and their applications to fractional differential equations. J. Inequal. Appl. 2016, Article ID 78 (2016)

    MathSciNet  Article  MATH  Google Scholar 

  57. 57.

    Zhang, L.H., Zheng, Z.W.: Lyapunov type inequalities for the Riemann–Liouville fractional differential equations of higher order. Adv. Differ. Equ. 2017, Article ID 270 (2017)

    MathSciNet  Article  Google Scholar 

  58. 58.

    Zheng, Z.W., Gao, X., Shao, J.: Some new generalized retarded inequalities for discontinuous functions and their applications. J. Inequal. Appl. 2016, Article ID 7 (2016)

    MathSciNet  Article  MATH  Google Scholar 

  59. 59.

    Zhang, Q.M., Tang, X.H.: Lyapunov inequalities and stability for discrete linear Hamiltonian system. Appl. Math. Comput. 218, 574–582 (2011)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author is indebted to the anonymous referees for their valuable suggestions and helpful comments which helped improve the paper significantly.

Funding

This research was supported by the Natural Science Foundation of Shandong Province (China) (Grant No. ZR2018MA018), A Project of Shandong Province Higher Educational Science and Technology Program (China) (Grant No. J14LI09), and the National Natural Science Foundation of China (Grant No. 11671227).

Author information

Affiliations

Authors

Contributions

HDL organized and wrote this paper. Further, he examined all the steps of the proofs in this research. The author read and approved the final manuscript.

Corresponding author

Correspondence to Haidong Liu.

Ethics declarations

Competing interests

The author declares that there is no conflict of interests regarding the publication of this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, H. Lyapunov-type inequalities for certain higher-order difference equations with mixed non-linearities. Adv Differ Equ 2018, 229 (2018). https://doi.org/10.1186/s13662-018-1688-6

Download citation

Keywords

  • Lyapunov-type inequality
  • Difference equation
  • Higher-order
  • Anti-periodic boundary conditions