Skip to main content

Theory and Modern Applications

Table 3 Comparisons for solving Example 5.1 by the LU method and the PCGNR/PBiCRSTAB method with two circulant preconditioners, where \(\beta = 1.3, 1.5, 1.8\), \(\alpha = 0.5\), \(q = 10\), and \(T =0.75\)

From: A fast implicit difference scheme for a new class of time distributed-order and space fractional diffusion equations with variable coefficients

β

M

N

LU

\(\mathrm{PCGNR(S)}\)

\(\mathrm{PCGNR(C)}\)

\(\mathrm{PBiCRSTAB(S)}\)

\(\mathrm{PBiCRSTAB(C)}\)

\(\mathrm{CPU(s)}\)

\(\mathrm{CPU(s)}\)

Iter

\(\mathrm{CPU(s)}\)

Iter

\(\mathrm{CPU(s)}\)

Iter

\(\mathrm{CPU(s)}\)

Iter

1.3

26

22

0.01

0.02

18.0

0.01

16.8

0.02

14.0

0.02

14.0

27

23

0.01

0.04

20.0

0.04

20.4

0.04

18.6

0.04

18.9

28

24

0.13

0.09

22.9

0.09

24.8

0.11

22.3

0.10

21.7

29

25

1.36

0.38

25.4

0.44

30.2

0.45

26.3

0.42

25.3

210

26

16.72

1.20

27.5

1.72

40.9

1.47

30.5

1.39

29.0

211

27

213.81

7.99

28.8

16.74

63.1

9.60

33.5

16.23

58.7

1.5

26

22

0.01

0.03

18.0

0.03

14.0

0.01

12.0

0.01

11.8

27

23

0.01

0.03

19.3

0.03

17.0

0.03

14.0

0.03

14.0

28

24

0.14

0.08

21.8

0.08

19.2

0.08

16.4

0.08

16.0

29

25

1.40

0.34

23.3

0.32

21.6

0.32

18.4

0.32

18.7

210

26

16.86

1.05

24.1

1.06

24.2

1.01

20.6

1.00

20.3

211

27

217.19

6.69

24.2

7.20

25.9

6.16

21.3

6.34

22.0

1.8

26

22

0.01

0.04

18.5

0.03

16.0

0.01

8.0

0.01

9.0

27

23

0.01

0.04

22.0

0.03

18.8

0.02

9.0

0.03

10.6

28

24

0.14

0.09

24.0

0.09

22.9

0.06

10.0

0.07

12.8

29

25

1.43

0.36

26.1

0.41

27.8

0.21

11.0

0.26

14.9

210

26

17.16

1.21

27.3

1.47

34.4

0.61

11.0

0.86

17.0

211

27

221.05

8.22

29.7

12.02

44.7

3.66

11.6

5.86

20.0