- Research
- Open Access
Bifurcations and chaos in a discrete SI epidemic model with fractional order
- Mahmoud A. M. Abdelaziz^{1}Email author,
- Ahmad Izani Ismail^{1},
- Farah A. Abdullah^{1} and
- Mohd Hafiz Mohd^{1}
https://doi.org/10.1186/s13662-018-1481-6
© The Author(s) 2018
- Received: 29 August 2017
- Accepted: 6 January 2018
- Published: 29 January 2018
Abstract
In this study, a new discrete SI epidemic model is proposed and established from SI fractional-order epidemic model. The existence conditions, the stability of the equilibrium points and the occurrence of bifurcation are analyzed. By using the center manifold theorem and bifurcation theory, it is shown that the model undergoes flip and Neimark–Sacker bifurcation. The effects of step size and fractional-order parameters on the dynamics of the model are studied. The bifurcation analysis is also conducted and our numerical results are in agreement with theoretical results.
Keywords
- Discrete SI epidemic model with fractional order
- Center manifold theorem
- Flip bifurcation
- Neimark–Sacker bifurcation
- Chaos
1 Introduction
Mathematical modeling plays an important role in understanding the dynamics of many infectious diseases. Thus, the use of modeling is crucial in order to analyze the spread, control strategies and the mechanisms of transmission of diseases. Over the years, numerous epidemiological models have been formulated mathematically (see, e.g., [1–6]). Although most of these models have been restricted to integer-order differential equations (IDEs), in the last three decades, it has turned out that many problems in different fields such as sciences, engineering, finance, economics and in particular epidemiology can be described successfully by the fractional-order differential equations (FDEs) (see, e.g., [7–12]). A property of these fractional-order models is their nonlocal property which does not exist in IDEs. Nonlocal property means that the next state of a model depends not only upon its current state but also upon all of its historical states [13]. The transformation of an integer-order model into a fractional-order model needs to be precise as to the order of differentiation α: a small change in α may cause a big change in the final results [14]. FDEs can be used to model certain phenomena which cannot be adequately modeled by IDEs [15]. FDEs are commonly used on biological systems since they are related in a natural way to systems with memory. Similar to a nonlinear differential system, a nonlinear fractional differential system may also have complex dynamics, such as chaos and bifurcation. Studying chaos in fractional-order dynamical systems is an attractive and interesting topic [16].
Discrete models constructed by the discretization of continuous models have been used to describe some epidemic models. Many significant and meaningful types of such research can be found in [17–27] and the references therein. The reason for the use of discrete models is that statistical data on epidemics are collected in discrete times and hence comparing data with output of a discrete model may be easier [28]. In general, the dynamical behavior of discrete fractional-order epidemic models may exhibit phenomena such as the period-doubling and chaotic behavior. Iwami et al. [29] have proposed a mathematical model in a continuous-time version to interpret a model of the spread of avian–human influenza epidemic. In [29], the dynamics of the spread into bird population and between bird and human populations have been thoroughly studied. The main objective of the current study is to extend the research done in [29] by employing fractional models with discrete-time systems. In this paper, a discrete-time SI is established by SI fractional-order epidemic model. This model contains two parameters in addition to those already existing in the original SI model proposed in [29]; time step parameter and fractional-order parameter. The occurrence of bifurcations as these parameters are varied is shown in Section 7. The stability of fixed points, the emergence of flip bifurcation and Neimark–Sacker bifurcation are also studied. Using the discretized-time SI model with fractional order is a new topic, thus this paper provides a new contribution to the literature.
This paper is organized as follows. In Section 2, the fractional-time SI epidemic model from its continuous-time counterpart is constructed. In Section 3, the discretized-time SI model with fractional-order parameter is established. Section 4 discusses the existence and stability of fixed points of the discretized-time SI model with fractional order. In Sections 5 and 6, flip and Neimark–Sacker bifurcations are demonstrated, respectively. In Section 7, some numerical examples are shown. A brief discussion of our results is given in Section 8.
2 The FDE epidemic model
This model is constructed by Iwami et al. [29] to explain the spreads of avian influenza through the bird world and describes the interactions between them. The population in this model is divided into susceptible birds with size S and infected birds with size I. The new birds birth rate is expressed by the parameter Λ. Susceptible birds die at the rate μ and infected birds die at the rate \(\mu+r\), where r is the additional death rate mediated by avian influenza. The parameter β is the bilinear incidence rate.
There are several definitions of fractional derivatives [30, 31]. One of the most common definitions is the Caputo definition [32]. This definition is often used in real applications and shown in Definition 1.
Definition 1
3 Discretization process
Remark 3.1
It should be noticed that if \(\alpha\rightarrow1\) in (3.7), the Euler discretization of SI model is obtained.
4 Stability of fixed points
In order to study the stability of the fixed points of the system (3.7), the two following lemmas are employed.
Lemma 4.1
- (i)
If \(\vert \lambda_{1} \vert <1\) and \(\vert \lambda _{2} \vert <1\), then the equilibrium point of \(M ( x^{\ast },y^{\ast } ) \) is locally asymptotically stable (sink).
- (ii)
If \(\vert \lambda_{1} \vert >1\) and \(\vert \lambda _{2} \vert >1\), then the equilibrium point of \(M ( x^{\ast },y^{\ast } ) \) is unstable (source).
- (iii)
If \(\vert \lambda_{1} \vert <1\) and \(\vert \lambda _{2} \vert >1\) (or \(\vert \lambda_{1} \vert >1\) and \(\vert \lambda_{2} \vert <1\)), then the equilibrium point of \(M ( x^{\ast},y^{\ast} ) \) is unstable (saddle).
- (iv)
If \(\vert \lambda_{1} \vert =1\) or \(\vert \lambda _{2} \vert =1\), then the equilibrium point of \(M ( x^{\ast },y^{\ast } ) \) is called non-hyperbolic.
Lemma 4.2
- (i)
\(\vert \lambda_{1} \vert <1\) and \(\vert \lambda _{2} \vert <1\) if and only if \(F ( -1 ) >0\) and \(\mathrm{Det}<1\);
- (ii)
\(\vert \lambda_{1} \vert <1\) and \(\vert \lambda _{2} \vert >1\) or (\(\vert \lambda_{1} \vert >1\) and \(\vert \lambda_{2} \vert <1 \)) if and only if \(F ( -1 ) <0\);
- (iii)
\(\vert \lambda_{1} \vert >1\) and \(\vert \lambda _{2} \vert >1\) if and only if \(F ( -1 ) >0\) and \(\mathrm{Det}>1\);
- (iv)
\(\lambda_{1}=-1\) and \(\lambda_{2}\neq1\) if and only if \(F ( -1 ) =0\) and \(\mathrm{Tr}\neq0,2\);
- (v)
\(\lambda_{1}\) and \(\lambda_{2}\) are complex and \(\vert \lambda _{1} \vert = \vert \lambda_{2} \vert \) if and only if \(\mathrm{Tr}^{2}-4\mathrm{Det}<0\) and \(\mathrm{Det}=1\).
Based on Lemmas 4.1 and 4.2, the following results can be achieved.
Theorem 4.3
- (i)
\(E_{0}\) is a sink if \(0< h<\min \{ \sqrt[\alpha]{\frac{2\Gamma (1+\alpha)}{\mu}},\sqrt[\alpha]{\frac{2\Gamma(1+\alpha)}{ ( \mu +r ) ( 1-\Re_{0} ) }} \} \).
- (ii)
\(E_{0}\) is a source if \(h>\max \{ \sqrt[\alpha]{\frac{2\Gamma (1+\alpha)}{\mu}},\sqrt[\alpha]{\frac{2\Gamma(1+\alpha)}{ ( \mu +r ) ( 1-\Re_{0} ) }} \} \).
- (iii)
\(E_{0}\) is a saddle if \(\sqrt[\alpha]{\frac{2\Gamma(1+\alpha )}{ ( \mu+r ) ( 1-\Re_{0} ) }}< h<\sqrt[\alpha]{\frac {2\Gamma(1+\alpha)}{\mu}}\) or \(\sqrt[\alpha]{\frac{2\Gamma(1+\alpha )}{\mu}}< h<\sqrt[\alpha]{\frac{2\Gamma(1+\alpha)}{ ( \mu+r ) ( 1-\Re_{0} ) }}\).
- (iv)
\(E_{0}\) is non-hyperbolic if \(h=\sqrt[\alpha]{\frac{2\Gamma (1+\alpha )}{\mu}}\) or \(h=\sqrt[\alpha]{\frac{2\Gamma(1+\alpha)}{ ( \mu +r ) ( 1-\Re_{0} ) }}\).
Proof
Theorem 4.4
- (i)\(E_{1}\) is asymptotically stable (sink) if one of the following conditions holds:
- (i.1)
\(\Delta\geqslant0\) and \(0< h< h_{1}\).
- (i.2)
\(\Delta<0\) and \(0< h< h_{2}\).
- (i.1)
- (ii)\(E_{1}\) is unstable (source) if one of the following conditions holds:
- (ii.1)
\(\Delta\geqslant0\) and \(h>h_{3}\).
- (ii.2)
\(\Delta<0\) and \(h>h_{2}\).
- (ii.1)
- (iii)
\(E_{1}\) is unstable (saddle) if \(\Delta\geqslant0\) and \(h_{1}< h< h_{3}\).
- (iv)\(E_{1}\) is non-hyperbolic if one of the following conditions holds:
- (iv.1)
\(\Delta\geqslant0\) and \(h=h_{1}\) or \(h_{3}\),
- (iv.2)
\(\Delta<0\) and \(h=h_{2}\),
and$$\begin{gathered} h_{1}=\sqrt[\alpha]{\frac{ ( \mu\Re_{0}-\sqrt{\Delta} ) \Gamma(1+\alpha)}{\mu ( \mu+r ) ( \Re_{0}-1 ) }}, \\ h_{2}=\sqrt[\alpha]{\frac{\Re_{0}\Gamma(1+\alpha)}{ ( \mu+r ) ( \Re_{0}-1 ) }}, \\ h_{3}=\sqrt[\alpha]{\frac{ ( \mu\Re_{0}+\sqrt{\Delta} ) \Gamma(1+\alpha)}{\mu ( \mu+r ) ( \Re_{0}-1 ) }},\end{gathered} $$$$\Delta= \bigl[ \mu ( \Re_{0}-2 ) \bigr] ^{2}-4\mu r ( \Re_{0}-1 ) .$$ - (iv.1)
Proof
By applying Lemmas 4.1, 4.2 and the Jury conditions [45], the stability conditions (i)–(iv) can be achieved. □
If the parameter h varies in the neighborhood of \(h_{1}\) and \(( \alpha,h,\beta,\Lambda,\mu,r ) \in\Omega_{1}\) or \(h_{3}\) and \(( \alpha,h,\beta,\Lambda,\mu,r ) \in\Omega_{2}\), the system (3.7) may undergo a flip bifurcation of equilibrium \(E_{1}\).
If the parameter h varies in the neighborhood of \(h_{2}\) and \(( \alpha,h,\beta,\Lambda,\mu,r ) \in\Omega_{3}\), the system (3.7) may undergo a Neimark–Sacker bifurcation of equilibrium \(E_{1}\).
5 Flip bifurcation analysis
Thus, \(\chi_{1}=\varphi_{1}\) and \(\chi_{2}=\varphi_{5}+\varphi_{3}^{2}\). Therefore according to flip bifurcation conditions in [46], the following theorem can be stated.
Theorem 5.1
If \(\chi_{2}\neq0\), and the parameter \(A_{\ast}\) alters in the limiting region of the point \(( 0,0 ) \), then the system (5.1) passes through a flip bifurcation at the point \(E_{1} ( S^{\ast},I^{\ast} ) \). Further, the period-2 points that bifurcate from the fixed point \(E_{1} ( S^{\ast},I^{\ast} ) \) are stable if \(\chi_{2}>0\) and unstable if \(\chi_{2}<0\).
6 Neimark–Sacker bifurcation
Therefore, the eigenvalues \(\omega_{1,2}\) of fixed point \(( 0,0 ) \) of (6.2) does not lie on the intersection of the unit circle with the coordinate axes when \(A^{\ast}=0\).
From the above analysis and the theorem in [47], Theorem 6.1 can be stated.
Theorem 6.1
If conditions (6.4) and (6.10) hold, then the system (3.7) undergoes Neimark–Sacker bifurcation at the positive fixed point \(E_{1} ( S^{\ast },I^{\ast} ) \) when the parameter \(A^{\ast}\) varies in the small neighborhood of \(A_{2}\). Furthermore if (\(\hslash<0\), \(\hslash >0 \)) then (an attracting, a repelling) invariant closed curve bifurcates from the fixed point \(E_{1} ( S^{\ast},I^{\ast} ) \) for (\(A_{2}>A^{\ast}\), \(A_{2}< A^{\ast}\)), respectively.
7 Numerical examples
This section shows the bifurcation diagrams, phase portraits and maximum Lyapunov exponents for the model (3.7) to confirm the above theoretical analysis and to illustrate the complex dynamics of our model using numerical continuation. Bifurcation occurs when the stability of an equilibrium point changes [48]. In general, the dynamics of a discrete SI model with integer-order has been examined by Hu et al. [42]. As discussed earlier in Section 1, this paper focuses on varying the time step size parameter h and the fractional-order parameter α in the model (3.7), which can be seen as extension of the corresponding results given in [29, 42]. Based on the previous analysis, the parameters of the model (3.7) can be examined in the following two cases.
Case 1. Varying h in range \(2\leqslant h\leqslant2.85\) and fixing \(\Lambda=3.5\), \(\mu=0.145\), \(r=0.12\), \(\beta=0.09\), \(\alpha=0.99\) with initial conditions \(( S_{0},I_{0} ) = ( 3.1,7.8 ) \).
Case 2. Varying α in range \(0.8\leqslant\alpha\leqslant0.99\) and fixing \(\Lambda=1.5\), \(\mu=0.2\), \(r=0.3\), \(\beta=0.1\), \(h=8.1\), \(( S_{0},I_{0} ) = ( 5.1,0.9 ) \).
8 Discussion and conclusion
A new discrete-time SI epidemic model has been discussed in this paper. Such a discrete-time model is obtained from the discretization of the fractional-time SI model. The discretization process provides crucial terms such as h (time step parameter) and α (fractional-order parameter), which are then varied in order to describe the dynamical behaviors of the model. As h and α are varied, the model exhibits several complicated dynamical behaviors including the emergence of flip and N-S bifurcations, period-2, 4, 8, 12, 13, 16 orbits, quasi-periodic orbits, attracting invariant circle and chaotic sets. Analytically, necessary and sufficient conditions on the parameters for the occurrence of flip and N-S bifurcations are derived. Moreover, numerical continuation is carried out to illustrate the validity of the analytical results and it is observed that both numerical and analytical findings are in good agreement. In conclusion, the proposed fractional-time SI model can engender more complex dynamical behaviors than its continuous model counterpart. Studying the dynamical behaviors of the full avian–human influenza SIR epidemic model described by a discrete-time with fractional-order version will be our future work.
Declarations
Acknowledgements
The authors would like to thank the editor and the referees for their helpful comments and suggestions. The authors acknowledge financial support from FRGS grant 203/PMATHS/6711570.
Authors’ contributions
The main idea of this paper was proposed by MAMA. The manuscript prepared initially and all steps of the proof performed by MAMA, AII, FAA, and MHM. All authors read and approved the final manuscript.
Competing interests
The authors declare that they have no competing interests.
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
Authors’ Affiliations
References
- Kermack, W.O., McKendrick, A.G.: A contribution to the mathematical theory of epidemics. Proc. R. Soc. A, Math. Phys. Eng. Sci. 115, 700–721 (1927) View ArticleMATHGoogle Scholar
- Mena-Lorca, J., Hethcote, H.W.: Dynamic models of infectious diseases as regulators of population sizes. J. Math. Biol. 30, 693–716 (1992) MathSciNetMATHGoogle Scholar
- Heesterbeek, J., Metz, J.: The saturating contact rate in marrige and epidemic models. J. Math. Biol. 31, 529–539 (1993) MathSciNetView ArticleMATHGoogle Scholar
- Kuznetsov, Y.A., Piccardi, C.: Bifurcation analysis of periodic SEIR and SIR epidemic models. J. Math. Biol. 32, 109–121 (1994) MathSciNetView ArticleMATHGoogle Scholar
- Feng, Z., Thieme, H.R.: Recurrent outbreaks of childhood diseases revisited: the impact of isolation. Math. Biosci. 128, 93–130 (1995) MathSciNetView ArticleMATHGoogle Scholar
- Hethcote, H.W., Driessche, P.V.: An SIS epidemic model with variable population size and delay. J. Math. Biol. 34, 177–194 (1995) MathSciNetView ArticleMATHGoogle Scholar
- Magin, R., Ortigueira, M.D., Podlubny, I., Trujillo, J.: On the fractional signals and systems. Signal Process. 91, 350–371 (2011) View ArticleMATHGoogle Scholar
- Huang, C., Cao, J., Xiao, M., Alsaedi, A., Hayat, T.: Bifurcations in a delayed fractional complex-valued neural network. Appl. Math. Comput. 292, 210–227 (2017) MathSciNetGoogle Scholar
- Huang, C., Cao, J., Xiao, M., Alsaedi, A., Alsaedi, E.F.: Controlling bifurcation in a delayed fractional predator–prey system with incommensurate orders. Appl. Math. Comput. 293, 293–310 (2017) MathSciNetGoogle Scholar
- Abd-Elouahab, M.S., Hamri, N., Wang, J.: Chaos control of a fractional-order financial system. Math. Probl. Eng. 2010, Article ID 270646 (2010) MathSciNetView ArticleMATHGoogle Scholar
- Huang, C., Cao, J., Xiao, M., Alsaedi, A., Hayat, T.: Effects of time delays on stability and Hopf bifurcation in a fractional ring-structured network with arbitrary neurons. Commun. Nonlinear Sci. Numer. Simul. 57, 1–13 (2018) MathSciNetView ArticleGoogle Scholar
- Huang, C., Meng, Y., Cao, J., Alsaedi, A., Alsaadi, F.E.: New bifurcation results for fractional BAM neural network with leakage delay. Chaos Solitons Fractals 100, 31–44 (2017) MathSciNetView ArticleMATHGoogle Scholar
- Al-Khaled, K., Alquran, M.: An approximate solution for a fractional model of generalized Harry Dym equation. J. Math. Sci. 8, 125–130 (2014) MathSciNetView ArticleGoogle Scholar
- Bagley, R.L., Calico, R.A.: Fractional order state equations for the control of viscoelastically damped structures. J. Guid. Control Dyn. 14, 304–311 (1991) View ArticleGoogle Scholar
- Ichise, M., Nagayanagi, Y., Kojima, T.: An analog simulation of non-integer order transfer functions for analysis of electrode process. J. Electroanal. Chem. Interfacial Electrochem. 33, 253–265 (1971) View ArticleGoogle Scholar
- Ahmad, W.M., Sprott, J.C.: Chaos in fractional-order autonomous nonlinear systems. Chaos Solitons Fractals 16, 339–351 (2003) View ArticleMATHGoogle Scholar
- Mendez, V., Fort, J.: Dynamical evolution of discrete epidemic models. Physica A 284, 309–317 (2000) View ArticleGoogle Scholar
- Chalub, F.A.C.C., Souza, M.O.: Discrete and continuous SIS epidemic models: a unifying approach. Ecol. Complex. 18, 83–95 (2014) View ArticleGoogle Scholar
- Wu, C.: Existence of traveling waves with the critical speed for a discrete diffusive epidemic model. J. Differ. Equ. 262, 272–282 (2017) MathSciNetView ArticleMATHGoogle Scholar
- Krishnapriya, P., Pitchaimani, M., Witten, T.M.: Mathematical analysis of an influenza A epidemic model with discrete delay. J. Comput. Appl. Math. 324, 155–172 (2017) MathSciNetView ArticleMATHGoogle Scholar
- Liu, J., Peng, B., Zhang, T.: Effect of discretization on dynamical behavior of SEIR and SIR models with nonlinear incidence. Appl. Math. Lett. 39, 60–66 (2015) MathSciNetView ArticleMATHGoogle Scholar
- Aranda, D.F., Trejos, D.Y., Valverde, J.C.: A discrete epidemic model for bovine Babesiosis disease and tick populations. Open Phys. 15, 360–369 (2017) View ArticleGoogle Scholar
- Suryanto, A., Kusumawinahyu, W.M., Darti, I., Yanti, I.: Dynamically consistent discrete epidemic model with modified saturated incidence rate. Comput. Appl. Math. 32, 373–383 (2013) MathSciNetView ArticleMATHGoogle Scholar
- Chen, Q., Teng, Z., Wang, L., Jiang, H.: The existence of codimension-two bifurcation in a discrete SIS epidemic model with standard incidence. Nonlinear Dyn. 71, 55–73 (2013) MathSciNetView ArticleMATHGoogle Scholar
- Ma, X., Zhou, Y., Cao, H.: Global stability of the endemic equilibrium of a discrete SIR epidemic model. Adv. Differ. Equ. 2013, Article ID 42 (2013) MathSciNetView ArticleMATHGoogle Scholar
- Franke, J.E., Abdul-Aziz, Y.: Disease-induced mortality in density-dependent discrete-time S-I-S epidemic models. J. Math. Biol. 57, 755–790 (2008) MathSciNetView ArticleMATHGoogle Scholar
- Jian-quan, L., Jie, L., Mei-zhi, L.: Some discrete SI and SIS epidemic models. Appl. Math. Mech. 29, 113–119 (2008) MathSciNetView ArticleMATHGoogle Scholar
- Brauer, F., Feng, Z., Castillo-Chavez, C.: Discrete epidemic models. Math. Biosci. Eng. 7, 1–15 (2010) MathSciNetView ArticleMATHGoogle Scholar
- Iwami, S., Takeuchi, Y., Liu, X.: Avian–human influenza epidemic model. Math. Biosci. 207, 1–25 (2007) MathSciNetView ArticleMATHGoogle Scholar
- Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Application Fractional Differential Equations. Elsevier, Amsterdam (2006) MATHGoogle Scholar
- Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1998) MATHGoogle Scholar
- Caputo, M.: Linear models of dissipation whose Q is almost frequency independent: II. Geophys. J. R. Astron. Soc. 13, 529–539 (1976) MathSciNetView ArticleGoogle Scholar
- Arenas, A.J., Gonzalez-Parra, G., Chen-Charpentier, B.M.: A nonstandard numerical scheme of predictor–corrector type for epidemic models. Comput. Math. Appl. 59(12), 3740–3749 (2010) MathSciNetView ArticleMATHGoogle Scholar
- Jodar, L., Villanueva, R.J., Arenas, A.J., Gonzalez, G.C.: Nonstandard numerical methods for a mathematical model for influenza disease. Math. Comput. Simul. 79(3), 622–633 (2008) MathSciNetView ArticleMATHGoogle Scholar
- Izzo, G., Muroya, Y., Vecchio, A.: A general discrete-time model of population dynamics in the presence of an infection. Discrete Dyn. Nat. Soc. 2009, Article ID 143019 (2009) MathSciNetView ArticleMATHGoogle Scholar
- Hu, Z., Teng, Z., Jiang, H.: Stability analysis in a class of discrete SIRS epidemic models. Nonlinear Anal., Real World Appl. 13(5), 2017–2033 (2012) MathSciNetView ArticleMATHGoogle Scholar
- Micken, R.E.: Numerical integration of population models satisfying conservation laws: NSFD methods. J. Biol. Dyn. 1(4), 427–436 (2007) MathSciNetView ArticleMATHGoogle Scholar
- El-Sayed, A.M.A., Salman, S.M.: On a discretization process of fractional order Riccati differential equation. J. Fract. Calc. Appl. 4, 251–259 (2013) Google Scholar
- Agarwal, R.P., El-Sayed, A.M.A., Salman, S.M.: Fractional-order Chua’s system: discretization, bifurcation and chaos. Adv. Differ. Equ. 2013, Article ID 320 (2013) MathSciNetView ArticleGoogle Scholar
- Elsadany, A.A., Matouk, A.E.: Dynamical behaviors of fractional-order Lotka–Voltera predator–prey model and its discretization. J. Appl. Math. Comput. 49, 269–283 (2015) MathSciNetView ArticleMATHGoogle Scholar
- Agiza, H.N., Elabbasy, E.M., El-Metwally, H., Elsadany, A.A.: Chaotic dynamics of a discrete prey–predator model with Holling type II. Nonlinear Anal., Real World Appl. 10, 116–129 (2009) MathSciNetView ArticleMATHGoogle Scholar
- Hu, Z., Teng, Z., Zhang, L.: Stability and bifurcation analysis in a discrete SIR epidemic model. Math. Comput. Simul. 97, 80–93 (2014) MathSciNetView ArticleGoogle Scholar
- Liu, X., Xiao, D.: Complex dynamic behaviors of a discrete-time predator–prey system. Chaos Solitons Fractals 32, 80–94 (2007) MathSciNetView ArticleMATHGoogle Scholar
- Hu, Z., Teng, Z., Zhang, L.: Stability and bifurcation analysis of a discrete predator–prey model with nonmonotonic functional response. Nonlinear Anal., Real World Appl. 12, 2356–2377 (2011) MathSciNetView ArticleMATHGoogle Scholar
- Jury, E.I.: Inners and Stability of Dynamic Systems. Wiley, New York (1974) MATHGoogle Scholar
- Yuan, L.G., Yang, Q.G.: Bifurcation, invariant curve and hybrid control in a discrete-time predator–prey system. Appl. Math. Model. 39, 2345–2362 (2015) MathSciNetView ArticleGoogle Scholar
- He, Z., Lai, X.: Bifurcation and chaotic behavior of a discrete-time predator–prey system. Nonlinear Anal., Real World Appl. 12, 403–417 (2011) MathSciNetView ArticleMATHGoogle Scholar
- Cao, H., Yue, Z., Zhou, Y.: The stability and bifurcation analysis of a discrete Holling–Tanner model. Adv. Differ. Equ. 2013, Article ID 330 (2013) MathSciNetView ArticleGoogle Scholar