Skip to main content

Construction and solitary wave solutions of two-mode higher-order Boussinesq-Burger system

Abstract

A new nonlinear partial differential system called two-mode higher-order Boussinesq-Burgers system is established. We aim to use the simplified bilinear method to find the necessary constraint conditions that guarantee the existence of both regular and singular multiple soliton solutions of the model. To study the correctness of the obtained results, we use the hyperbolic-tangent expansion method as an alternative technique to investigate more possible solutions.

Introduction

Nonlinear evolution equations have been used as the models to describe a variety of engineering phenomena and science such as optical fibers, chemical kinetics, fluid dynamics, mathematical biology, chemical reactions, plasma waves and others [14]. The study of nonlinear equations is an interesting topic in solitary waves theory. Many methods are established to find exact solutions for nonlinear partial differential equations (PDEs) such as Lie symmetries method, truncated Painleve expansion method, the inverse scattering method, Hirota’s bilinear method, Darboux transformation, Backlund transformation, simplified Hirota’s method, trigonometric-function series method, modified mapping method, modified (\(G'/G\))-expansion method, tanh-coth expansion method, Jacobi elliptic function expansion method, first integral method and others (see [530] and [3140]). Also, important developments for searching for analytical solitary wave solutions for PDEs can be found in [4150].

The most integrable systems describe unidirectional waves such as the KP equation, Burgers, KdV, mKdV equations and a higher-order Boussinesq-Burgers equation, where these equations are first order PDE in time and model only the right-moving in the positive x-direction. However, the Boussinesq equation models both left- and right-going waves and second-order in time. The two-mode equations are analogous to the two-mode Boussinesq equation and hence are represented by a new nonlinear partial differential equation of second-order in time.

A higher-order Boussinesq-Burgers equation was introduced by Jin-Ming and Yao-Ming (2011) [2] in the form

$$ \begin{gathered} v_{t}-3av^{2}v_{x}+\frac{3}{2}a(vw)_{x}-\frac{1}{4}av_{xxx}=0,\\ w_{t}+\frac{3}{2}aww_{x}-3a(v^{2}w)_{x}+3av_{x}v_{xx}+\frac{3}{2}avv_{xxx}-\frac{1}{4}aw_{xxx}=0, \end{gathered} $$
(1)

where a is a non-zero arbitrary constant.

Wazwaz [5153] and Korsunsky [54] proposed the scaled form of the two-mode equation as follows:

$$ u_{tt}-c^{2}u_{xx}+\biggl(\frac{\partial}{\partial t}-a_{1}c \frac{\partial }{\partial x}\biggr)N(u,u_{x},\ldots)+\biggl(\frac{\partial}{\partial t}-a_{2}c \frac{\partial }{\partial x}\biggr)L(u_{kx})=0, $$
(2)

where \(c>0\) is the phase velocities, \(\vert a_{1} \vert \leq1\), \(\vert a_{2} \vert \leq1\), \(a_{2}\) is the dispersion parameter, \(a_{1}\) is the parameter of nonlinearity, \(N(u,u_{x},\ldots)\) is the nonlinear term and \(L(u_{kx})\) is the linear term in the equation, \(k\geq2\). Based on this argument, Jaradat et al. [5557] used the same sense as Korsunsky [54] and Wazwaz [5153] to establish the two-mode coupled system of n equations

$$\begin{aligned}[b] 0 ={}&(u_{i})_{tt}-c^{2}(u_{i})_{xx}+ \biggl(\frac{\partial}{\partial t}-a_{1} c\frac{\partial}{\partial x} \biggr)N_{i}\bigl(u_{1},\ldots,u_{n},(u_{1})_{x},\ldots,(u_{n})_{x},\ldots \bigr) \\ & +\biggl(\frac{\partial}{\partial t}-a_{2}c\frac{\partial}{\partial x}\biggr)L_{i}\bigl((u_{i})_{kx}\bigr),\quad i=2,3,\ldots,n.\end{aligned} $$
(3)

To establish the two-mode higher-order Boussinesq-Burgers equation (TM-ho-BBE) (1), we have

$$\begin{gathered} N_{1}(v,w,v_{x},w_{x},\ldots) =-3av^{2}v_{x}+\frac {3}{2}a(vw)_{x}, \\ L_{1}(v_{kx}) =-\frac{1}{4}av_{xxx}, \\ N_{2}(v,w,v_{x},w_{x},\ldots) = \frac{3}{2}aww_{x}-3a\bigl(v^{2}w\bigr)_{x}+3av_{x} v_{xx}+\frac{3}{2}avv_{xxx}, \\ L_{2}(v_{kx}) =-\frac{1}{4}aw_{xxx}.\end{gathered} $$

Thus, using equation (3), (TM-ho-BBE) will have the form

$$ \begin{gathered}0 =v_{tt}-c^{2}v_{xx}- \frac{1}{4}a\biggl(\frac{\partial }{\partial t}-a_{2}c\frac{\partial}{\partial x} \biggr)v_{xxx}+\biggl(\frac{\partial }{\partial t}-a_{1}c \frac{\partial}{\partial x}\biggr) \biggl\{ -3av^{2}v_{x}+ \frac{3}{2}a(vw)_{x} \biggr\} , \\ \begin{aligned}0 ={}&w_{tt}-c^{2}w_{xx}-\frac{1}{4}a\biggl( \frac{\partial}{\partial t}-a_{2}c\frac{\partial}{\partial x} \biggr)w_{xxx} \\ & +\biggl(\frac{\partial}{\partial t}-a_{1}c\frac{\partial}{\partial x}\biggr) \biggl\{ \frac{3}{2}aww_{x}-3a\bigl(v^{2}w\bigr)_{x}+3av_{x}v_{xx}+ \frac {3}{2}avv_{xxx} \biggr\} .\end{aligned}\end{gathered} $$
(4)

Note that when \(c=0\) and integrating with respect to t, the two-mode higher-order Boussinesq-Burgers equation (TM-ho-BBE) (4) is reduced to the standard higher-order Boussinesq-Burgers equation (1).

The aim of this study is to find the necessary conditions needed for multiple-soliton solutions and singular multiple-soliton solutions to exist for (TM-ho-BBE) by using the simplified form of Hirota’s method. Moreover, we determine more exact solutions to this new system by using the Tanh method.

Multiple soliton solutions and singular multiple soliton solutions

In this section, we used the simplified bilinear method to find the necessary conditions needed to produce single soliton solutions, singular soliton solutions, multiple soliton solutions and singular multiple soliton solutions of (TM-ho-BBE).

Substituting

$$v(x,t)=w(x,t)=e^{\lambda_{i}(x,t)},\quad \lambda_{i}(x,t)=r_{i}x-d_{i}t, $$

into the linear terms of equation (4) and solving the resulting equation gives

$$d_{i}=\frac{-ar_{i}^{3}\pm r_{i}\sqrt{a^{2}r_{i}^{4}-16aa_{2}cr_{i}^{2}+64c^{2}}}{8}.$$

As a result, \(\lambda_{i}(x,t)\) becomes

$$ \lambda_{i}(x,t)=r_{i}x-\frac{-ar_{i}^{3}\pm r_{i}\sqrt{a^{2}r_{i}^{4}-16aa_{2}cr_{i}^{2}+64c^{2}}}{8}t,\quad i=1,2,\ldots. $$
(5)

Now, we propose the solutions to (TM-ho-BBE) (4) in the form

$$\begin{aligned}& v(x,t) =C_{1}\frac{\partial}{\partial x}\bigl(\ln h(x,t)\bigr), \end{aligned}$$
(6)
$$\begin{aligned}& w(x,t) =C_{2}\frac{\partial^{2}}{\partial x^{2}}\bigl(\ln h(x,t)\bigr), \end{aligned}$$
(7)

where \(C_{1}\) and \(C_{2}\) are constants. To find the one-soliton solution, we assume the auxiliary function \(h(x,t)\) to be

$$ h(x,t)=1+\alpha_{1}e^{\lambda_{1}(x,t)}=1+\alpha_{1}e^{r_{1} x-\frac{-ar_{1}^{3}\pm r_{1}\sqrt {a^{2}r_{1}^{4}-16aa_{2}cr_{1}^{2}+64c^{2}}}{8}t }, $$
(8)

where \(\alpha_{1}=\pm1\). Substitute (6), (7) and (8) into (TM-ho-BBE) (4). Then, solving for numerical values \(C_{1}\) and \(C_{2}\), we find that the one-soliton solution of (TM-ho-BBE) (4) exists only if \(a_{1}=a_{2}\). Therefore, two sets of solutions are obtained

$$\begin{aligned}& C_{1} =\frac{\pm1}{2}, \end{aligned}$$
(9)
$$\begin{aligned}& C_{2} =\frac{-1}{2}. \end{aligned}$$
(10)

Then the one-soliton solution of (TM-ho-BBE) (4) is given by

$$\begin{aligned}& v(x,t) =\frac{\pm1}{2}\frac{\alpha_{1}r_{1}e^{r_{1}x-\frac {-ar_{1}^{3}\pm r_{1}\sqrt{a^{2}r_{1}^{4}-16aa_{2}cr_{1}^{2}+64c^{2}}}{8}t }}{1+\alpha_{1}e^{r_{1}x-\frac{-ar_{1}^{3}\pm r_{1}\sqrt{a^{2}r_{1}^{4} -16aa_{2}cr_{1}^{2}+64c^{2}}}{8}t }}, \\& \begin{aligned}w(x,t) ={}&\frac{-1}{2} \biggl( \frac{\alpha_{1}r_{1}^{2}e^{r_{1}x-\frac{-ar_{1}^{3}\pm r_{1}\sqrt {a^{2}r_{1}^{4}-16aa_{2}cr_{1}^{2}+64c^{2}}}{8}t }}{1+\alpha_{1}e^{r_{1}x-\frac{-ar_{1}^{3}\pm r_{1}\sqrt{a^{2}r_{1}^{4}-16aa_{2}cr_{1}^{2}+64c^{2}}}{8}t }} \biggr) \\ & +\frac{1}{2} \biggl( \frac{\alpha_{1}r_{1}e^{r_{1}x-\frac {-ar_{1}^{3}\pm r_{1}\sqrt{a^{2}r_{1}^{4}-16aa_{2}cr_{1}^{2}+64c^{2}}}{8}t }}{1+\alpha_{1}e^{r_{1}x-\frac{-ar_{1}^{3}\pm r_{1}\sqrt{a^{2}r_{1}^{4} -16aa_{2}cr_{1}^{2}+64c^{2}}}{8}t }} \biggr) ^{2},\end{aligned} \end{aligned}$$

where

$$\lambda_{1}(x,t)=r_{1}x-\frac{-ar_{1}^{3}\pm r_{1}\sqrt{a^{2}r_{1}^{4}-16aa_{2}cr_{1}^{2}+64c^{2}}}{8}t. $$

For \(\alpha_{1}=1\), the single soliton solution is

$$\begin{aligned}& \begin{aligned}[b] v(x,t) & =\frac{\pm1}{2}\frac{r_{1}e^{r_{1}x-\frac{-ar_{1}^{3}\pm r_{1}\sqrt{a^{2}r_{1}^{4}-16aa_{2}cr_{1}^{2}+64c^{2}}}{8}t }}{1+e^{r_{1}x-\frac{-ar_{1}^{3}\pm r_{1}\sqrt {a^{2}r_{1}^{4}-16aa_{2}cr_{1}^{2}+64c^{2}}}{8}t }} \\ & =\frac{\pm1}{4}r_{1} \biggl(1+\tanh \biggl( \frac{\lambda _{1}(x,t)}{2} \biggr) \biggr),\end{aligned} \end{aligned}$$
(11)
$$\begin{aligned}& \begin{aligned}[b]w(x,t) ={}& \frac{-1}{2} \biggl( \frac{r_{1}^{2}e^{r_{1}x-\frac {-ar_{1}^{3}\pm r_{1}\sqrt{a^{2}r_{1}^{4}-16aa_{2}cr_{1}^{2}+64c^{2}}}{8}t }}{1+e^{r_{1}x-\frac{-ar_{1}^{3}\pm r_{1}\sqrt {a^{2}r_{1}^{4}-16aa_{2}cr_{1}^{2}+64c^{2}}}{8}t }} \biggr) \\ & +\frac{1}{2} \biggl( \frac{r_{1}e^{r_{1}x-\frac{-ar_{1}^{3}\pm r_{1} \sqrt{a^{2}r_{1}^{4}-16aa_{2}cr_{1}^{2}+64c^{2}}}{8}t }}{1+e^{r_{1}x-\frac{-ar_{1}^{3}\pm r_{1}\sqrt {a^{2}r_{1}^{4}-16aa_{2}cr_{1}^{2}+64c^{2}}}{8}t }} \biggr) ^{2} \\ ={}&\frac{-1}{8}r_{1}^{2}\operatorname {sech}^{2}\hspace {0.03in} \biggl( \frac{\lambda_{1}(x,t)}{2} \biggr).\end{aligned} \end{aligned}$$
(12)

For \(\alpha_{1}=-1\), the singular single soliton solution is

$$\begin{aligned}& \begin{aligned}[b] v(x,t) & =\frac{\mp1}{2}\frac{r_{1}e^{r_{1}x-\frac{-ar_{1}^{3}\pm r_{1}\sqrt{a^{2}r_{1}^{4}-16aa_{2}cr_{1}^{2}+64c^{2}}}{8}t }}{1-e^{r_{1}x-\frac{-ar_{1}^{3}\pm r_{1}\sqrt {a^{2}r_{1}^{4}-16aa_{2}cr_{1}^{2}+64c^{2}}}{8}t }} \\ & =\frac{\pm1}{4}r_{1} \biggl(1+\coth \biggl( \frac{\lambda _{1}(x,t)}{2} \biggr) \biggr),\end{aligned} \end{aligned}$$
(13)
$$\begin{aligned}& \begin{aligned}[b]w(x,t) ={}&\frac{1}{2} \biggl( \frac{r_{1}^{2}e^{r_{1}x-\frac {-ar_{1}^{3}\pm r_{1}\sqrt{a^{2}r_{1}^{4}-16aa_{2}cr_{1}^{2}+64c^{2}}}{8}t }}{1-e^{r_{1}x-\frac{-ar_{1}^{3}\pm r_{1}\sqrt {a^{2}r_{1}^{4}-16aa_{2}cr_{1}^{2}+64c^{2}}}{8}t }} \biggr) \\ & +\frac{1}{2} \biggl( \frac{r_{1}e^{r_{1}x-\frac{-ar_{1}^{3}\pm r_{1} \sqrt{a^{2}r_{1}^{4}-16aa_{2}cr_{1}^{2}+64c^{2}}}{8}t }}{1-e^{r_{1}x-\frac{-ar_{1}^{3}\pm r_{1}\sqrt {a^{2}r_{1}^{4}-16aa_{2}cr_{1}^{2}+64c^{2}}}{8}t }} \biggr) ^{2} \\ ={}&\frac{1}{8}r_{1}^{2} \operatorname {csch}^{2}\hspace {0.03in} \biggl( \frac{\lambda_{1}(x,t)}{2} \biggr) .\end{aligned} \end{aligned}$$
(14)

To find the two-wave solutions, we assume

$$ h(x,t)=1+\alpha_{1}e^{\lambda_{1}(x,t)}+\alpha_{2}e^{\lambda _{2}(x,t)}+c_{12} \alpha_{1}\alpha_{2}e^{\lambda_{1}(x,t)+\lambda_{2}(x,t)}. $$
(15)

Insert (9), (10) and (15) in (4) and solve for \(c_{12}\). Then two-soliton solutions exist only if \(a_{1}=a_{2}=\pm1\) and

$$ c_{12}=0. $$
(16)

This can be generalized to

$$ c_{ij}=0,\quad 1\leq i< j\leq3. $$
(17)

Also, inserting (16), (15), (9), (10) in (6) and (7) and under the constraint condition \(a_{1}=a_{2}=\pm1\), we obtain the following two-soliton solutions:

$$\begin{gathered} v(x,t) =\frac{\pm1}{2}\frac{r_{1}\alpha_{1}e^{\lambda _{1}}+r_{2}\alpha _{2}e^{\lambda_{2}}}{1+\alpha_{1}e^{\lambda_{1}}+\alpha _{2}e^{\lambda _{2}}}, \\ w(x,t) =\frac{-1}{2} \biggl( \frac{\alpha_{1}r_{1}^{2}e^{\lambda _{1}}+\alpha_{2}r_{2}^{2}e^{\lambda_{2}}}{1+\alpha_{1}e^{\lambda _{1}}+\alpha _{2}e^{\lambda_{2}}}- \biggl( \frac{\alpha_{1}r_{1}e^{\lambda _{1}}+r_{2}\alpha_{2}e^{\lambda_{2}}}{1+\alpha_{1}e^{\lambda_{1}}+\alpha_{2}e^{\lambda_{2}}} \biggr) ^{2} \biggr),\end{gathered} $$

where

$$\begin{gathered} \lambda_{1} =r_{1}x-\frac{-ar_{1}^{3}\pm(ar_{1}^{3}\pm 8cr_{1})}{8}t, \\ \lambda_{2} =r_{2}x-\frac{-ar_{2}^{3}\pm(ar_{2}^{3}\pm8cr_{2})}{8}t.\end{gathered} $$

For \(\alpha_{1}=\alpha_{2}=1\), the two-soliton solution is

$$\begin{gathered} v(x,t) =\frac{\pm1}{2}\frac{r_{1}e^{\lambda_{1}}+r_{2}e^{\lambda _{2}}}{1+e^{\lambda_{1}}+e^{\lambda_{2}}}, \\ w(x,t) =\frac{-1}{2} \biggl( \frac{r_{1}^{2}e^{\lambda_{1}}+r_{2}^{2}e^{\lambda_{2}}}{1+e^{\lambda_{1}}+e^{\lambda_{2}}}- \biggl( \frac {r_{1}e^{\lambda_{1}}+r_{2}e^{\lambda_{2}}}{1+e^{\lambda _{1}}+e^{\lambda _{2}}} \biggr) ^{2} \biggr).\end{gathered} $$

For \(\alpha_{1}=\alpha_{2}=-1\), the two-singular-soliton solution is

$$\begin{gathered} v(x,t) =\frac{\mp1}{2}\frac{r_{1}e^{\lambda_{1}}+r_{2}e^{\lambda _{2}}}{1-e^{\lambda_{1}}-e^{\lambda_{2}}}, \\ w(x,t) =\frac{1}{2} \biggl( \frac{r_{1}^{2}e^{\lambda_{1}}+r_{2}^{2}e^{\lambda_{2}}}{1-e^{\lambda_{1}}-e^{\lambda_{2}}}+ \biggl( \frac {r_{1}e^{\lambda_{1}}+r_{2}e^{\lambda_{2}}}{1-e^{\lambda _{1}}-e^{\lambda _{2}}} \biggr) ^{2} \biggr).\end{gathered} $$

To find three-soliton solutions, we assume

$$ h(x,t)=1+\alpha_{1}e^{\lambda_{1}(x,t)}+\alpha_{2}e^{\lambda _{2}(x,t)}+ \alpha_{3}e^{\lambda_{3}(x,t)}+c_{123}\alpha_{1} \alpha_{2}\alpha _{3}e^{\lambda_{1}(x,t)+\lambda_{2}(x,t)+\lambda_{3}(x,t)}, $$
(18)

where

$$\lambda_{i}=r_{i}x-\frac{-ar_{i}^{3}\pm(ar_{i}^{3}\pm8cr_{i})}{8}t,\quad i=1,2,3. $$

Substituting (6), (7) and (18) into (4) and solving for \(c_{123}\), we find

$$c_{123}=0. $$

Accordingly, we obtain the following three-wave solutions:

$$\begin{gathered} v(x,t) =\frac{\pm1}{2}\frac{\alpha_{1}r_{1}e^{\lambda _{1}}+r_{2}\alpha _{2}e^{\lambda_{2}}+r_{3}\alpha_{3}e^{\lambda_{3}}}{1+\alpha _{1}e^{\lambda _{1}}+\alpha_{2}e^{\lambda_{2}}+\alpha_{3}e^{\lambda_{3}}}, \\ w(x,t) =\frac{-1}{2} \biggl( \frac{r_{1}^{2}\alpha_{1}e^{\lambda _{1}}+r_{2}^{2}\alpha_{2}e^{\lambda_{2}}+r_{3}^{2}\alpha_{3}e^{\lambda _{3}}}{1+\alpha_{1}e^{\lambda_{1}}+\alpha_{2}e^{\lambda_{2}}+\alpha_{3}e^{\lambda_{3}}}- \biggl( \frac{r_{1}\alpha_{1}e^{\lambda_{1}}+r_{2}\alpha _{2}e^{\lambda_{2}}+r_{3}\alpha_{3}e^{\lambda_{3}}}{1+\alpha _{1}e^{\lambda _{1}}+\alpha_{2}e^{\lambda_{2}}+\alpha_{3}e^{\lambda_{3}}} \biggr) ^{2} \biggr).\end{gathered} $$

For \(\alpha_{1}=\alpha_{2}=\alpha_{3}=1\), the three-wave solution is

$$\begin{gathered} v(x,t) =\frac{\pm1}{2}\frac{r_{1}e^{\lambda_{1}}+r_{2}e^{\lambda _{2}}+r_{3}e^{\lambda_{3}}}{1+e^{\lambda_{1}}+e^{\lambda_{2}}+e^{\lambda _{3}}}, \\ w(x,t) =\frac{-1}{2} \biggl( \frac{r_{1}^{2}e^{\lambda_{1}}+r_{2}^{2}e^{\lambda_{2}}+r_{3}^{2}e^{\lambda_{3}}}{1+e^{\lambda _{1}}+e^{\lambda _{2}}+e^{\lambda_{3}}}- \biggl( \frac{r_{1}e^{\lambda _{1}}+r_{2}e^{\lambda _{2}}+r_{3}e^{\lambda_{3}}}{1+e^{\lambda_{1}}+e^{\lambda_{2}}+e^{\lambda _{3}}} \biggr)^{2} \biggr).\end{gathered} $$

For \(\alpha_{1}=\alpha_{2}=\alpha_{3}=-1\), the singular three-soliton solution is

$$\begin{gathered} v(x,t) =\frac{\mp1}{2}\frac{r_{1}e^{\lambda_{1}}-r_{2}e^{\lambda _{2}}-r_{3}e^{\lambda_{3}}}{1-e^{\lambda_{1}}-e^{\lambda_{2}}-e^{\lambda _{3}}}, \\ w(x,t) =\frac{1}{2} \biggl( \frac{r_{1}^{2}e^{\lambda_{1}}+r_{2}^{2}e^{\lambda_{2}}+r_{3}^{2}e^{\lambda_{3}}}{1-e^{\lambda _{1}}-e^{\lambda _{2}}-e^{\lambda_{3}}}+ \biggl( \frac{r_{1}e^{\lambda _{1}}+r_{2}e^{\lambda _{2}}+r_{3}e^{\lambda_{3}}}{1-e^{\lambda_{1}}-e^{\lambda_{2}}-e^{\lambda _{3}}} \biggr) ^{2} \biggr).\end{gathered} $$

Finally, we reach the fact that (TM-ho-BBE) has N-soliton solutions under the necessary condition \(a_{1}=a_{2}=\pm1\), where \(N\geq1\) [16, 58]. They are given by

$$\begin{gathered} v(x,t) =\frac{\pm1}{2}\frac{{ \sum_{k=1}^{N}} r_{k}e^{r_{k}x-\frac{-ar_{k}^{3}\pm(ar_{k}^{3}\pm8cr_{k})}{8}t }}{1+{ \sum_{k=1}^{N}} e^{r_{k}x-\frac{-ar_{k}^{3}\pm(ar_{k}^{3}\pm8cr_{k})}{8}t }}, \\ w(x,t) =\frac{-1}{2} \biggl( \frac{{ \sum_{k=1}^{N}} r_{k}^{2}e^{r_{k}x-\frac{-ar_{k}^{3}\pm(ar_{k}^{3}\pm8cr_{k})}{8}t }}{1+ { \sum_{k=1}^{N}} e^{r_{k}x-\frac{-ar_{k}^{3}\pm(ar_{k}^{3}\pm8cr_{k})}{8}t }}- \biggl( \frac{{ \sum_{k=1}^{N}} r_{k}e^{r_{k}x-\frac{-ar_{k}^{3}\pm(ar_{k}^{3}\pm8cr_{k})}{8}t }}{1+{ \sum_{k=1}^{N}} e^{r_{k}x-\frac{-ar_{k}^{3}\pm(ar_{k}^{3}\pm8cr_{k})}{8}t }} \biggr) ^{2} \biggr).\end{gathered} $$

Also, the singular N-soliton solutions under the same condition are given by

$$\begin{gathered} v(x,t) =\frac{\mp1}{2}\frac{{ \sum_{k=1}^{N}} r_{k}e^{r_{k}x-\frac{-ar_{k}^{3}\pm(ar_{k}^{3}\pm8cr_{k})}{8}t }}{1-{ \sum_{k=1}^{N}} e^{r_{k}x-\frac{-ar_{k}^{3}\pm(ar_{k}^{3}\pm8cr_{k})}{8}t }}, \\ w(x,t) =\frac{1}{2} \biggl( \frac{{ \sum_{k=1}^{N}} r_{k}^{2}e^{r_{k}x-\frac{-ar_{k}^{3}\pm(ar_{k}^{3}\pm8cr_{k})}{8}t }}{1- { \sum_{k=1}^{N}} e^{r_{k}x-\frac{-ar_{k}^{3}\pm(ar_{k}^{3}\pm8cr_{k})}{8}t }}+ \biggl( \frac{{ \sum_{k=1}^{N}} r_{k}e^{r_{k}x-\frac{-ar_{k}^{3}\pm(ar_{k}^{3}\pm8cr_{k})}{8}t }}{1-{ \sum_{k=1}^{N}} e^{r_{k}x-\frac{-ar_{k}^{3}\pm(ar_{k}^{3}\pm8cr_{k})}{8}t }} \biggr) ^{2} \biggr) .\end{gathered} $$

Finally, we would like to present two plots of the obtained solutions of (TM-ho-BBE). Figure 1 is the one-soliton solution and Figure 2 is the two-soliton solution.

Figure 1
figure1

The one-soliton solution of \(\pmb{u_{1}}\) when \(\pmb{{r_{1}=3}}\) , \(\pmb{a=-2}\) , \(\pmb{c=1}\) , \(\pmb{a_{1}=a_{2}=1.5}\) , \(\pmb{C_{1}=0.5}\) , \(\pmb{{C_{2}=-0.5}}\) .

Figure 2
figure2

The two-soliton solution of \(\pmb{u_{2}}\) when \(\pmb{{r_{1}=2.5}}\) , \(\pmb{r_{2}=1.5}\) , \(\pmb{a=-1}\) , \(\pmb{c=a_{1}=a_{2}=1}\) , \(\pmb{C_{1}=0.5}\) , \(\pmb{C_{2}=-0.5}\) .

Alternative method: hyperbolic tangent expansion

In this section, we aim to validate the necessary conditions that guarantee the existence of solutions to (TM-ho-BBE). To achieve this goal, we propose an alternative method, the hyperbolic tangent expansion [5963], to construct solitary wave solutions of problem (4). We first consider the wave transform \(z=x- \lambda t\) to reduce (4) into the following ordinary differential equations:

$$ \begin{gathered} 0 =\bigl(\lambda^{2}-c^{2}\bigr)v+ \frac{1}{4}a (\lambda+a_{2} c)v^{\prime\prime}+3a( \lambda+a_{1} c) \biggl( \frac {1}{3}v^{3}- \frac{1}{2}v w \biggr) , \\ \begin{aligned}0 ={}&\bigl(\lambda^{2}-c^{2}\bigr)w^{\prime}+ \frac{1}{4}a (\lambda+a_{2} c)w^{\prime\prime\prime} \\ & +3a(\lambda+a_{1} c) \biggl( \bigl(v^{2} w \bigr)^{\prime}-\frac{1}{2}w w^{\prime }-v^{\prime}v^{\prime\prime}- \frac{1}{2}v v^{\prime\prime\prime } \biggr) ,\end{aligned}\end{gathered} $$
(19)

where \(v=v(z)\) and \(w=w(z)\).

Finite polynomials in terms of hyperbolic functions are to be considered as favorable suggested solutions of (19). Thus, we assume that

$$ \begin{gathered} v(z) =\sum_{i=0}^{n_{1}}c_{i}Y^{i}, \\ w(z) =\sum_{j=0}^{n_{2}}d_{j}Y^{j},\end{gathered} $$
(20)

where

$$ Y=Y(z)=\tanh(\mu z). $$
(21)

Balancing the behavior of Y in the highest derivative against its counterpart within the nonlinear terms appearing in (19) leads to \(n_{1}+2=3 n_{1}=n_{1}+n_{2}\) or \(n_{2}+3=2n_{1}+3=2n_{2}+1=2n_{1}+n_{2}+1\). Thus, \(n_{1}=1\), \(n_{2}=2\). Accordingly, the solution of (19) in deterministic form is

$$ \begin{gathered}v(z) =c_{0} + c_{1} Y, \\ w(z) =d_{0} + d_{1} Y + d_{2} Y^{2}.\end{gathered} $$
(22)

The task now is to determine the values of the parameters \(c_{0}\), \(c_{1}\), \(d_{0}\), \(d_{1}\), \(d_{2}\) and λ, μ. To achieve this, we first substitute (22) in (19), then we collect all coefficients of powers of Y in the resulting equations and set them to zero. Finally, we solve the prescribed algebraic system to retrieve the values of the required parameters. The algebraic calculations have been executed by Mathematica and the following obtained solutions have been verified as well. The first solution of (4) is

$$ \begin{gathered}v(x,t) =\mp\mu\tanh\bigl(\mu(x-\lambda_{1} t)\bigr), \\ w(x,t) =-\mu^{2} + \mu^{2} \tanh^{2}\bigl(\mu(x- \lambda_{1} t)\bigr),\end{gathered} $$
(23)

where \(\lambda_{1}=\frac{1}{2} ( -a \mu^{2} \mp\sqrt{4c^{2}-4a a_{2} c \mu^{2}+a^{2} \mu^{4}} ) \).

The second solution is

$$ \begin{gathered}v(x,t) =\mp\frac{\mu}{2} \tanh\bigl(\mu(x- \lambda_{2} t)\bigr), \\ w(x,t) =-\frac{\mu^{2}}{2} + \frac{\mu^{2}}{2} \tanh^{2}\bigl(\mu (x-\lambda_{2} t)\bigr),\end{gathered} $$
(24)

where \(\lambda_{2}=\frac{1}{8} ( -a \mu^{2} - \sqrt{64c^{2}-16 a a_{2} c \mu^{2}+a^{2} \mu^{4}} ) \).

The third solution is

$$ \begin{gathered}v(x,t) =\mp\frac{\mu}{2}\mp\frac{\mu}{2} \tanh \bigl( \mu(x-\lambda_{k} t)\bigr), \\ w(x,t) =-\frac{\mu^{2}}{2} + \frac{\mu^{2}}{2} \tanh^{2}\bigl(\mu (x-\lambda_{k} t)\bigr),\quad k=3, 4,\end{gathered} $$
(25)

where

$$\begin{gathered} \lambda_{3} =\frac{1}{2} \bigl( -a \mu^{2} - \sqrt{4c^{2}-4a a_{2} c \mu^{2}+a^{2} \mu^{4}} \bigr) , \\ \lambda_{4} =\frac{1}{2} \bigl( -a \mu^{2} + \sqrt{4c^{2}-4a a_{2} c \mu^{2}+a^{2} \mu^{4}} \bigr) .\end{gathered} $$

Conclusion

In this paper, we established a new nonlinear two-mode higher-order Boussinesq-Burgers equation (TM-ho-BBE). By using a simplified form of Hirota’s method we reached the following two facts:

  • Single soliton and singular soliton solutions exist for (TM-ho-BBE) if \(a_{1}=a_{2}\).

  • Multiple soliton and multiple singular soliton solutions exist only under the condition \(a_{1}=a_{2}=\mp1\).

Also, we applied an alternative method called hyperbolic tangent expansion to validate the necessary conditions needed for solitary solutions to exist.

References

  1. 1.

    Chen, A, Li, X: Darboux transformation and soliton solutions for Boussinesq-Burgers equation. Chaos Solitons Fractals 27, 43-49 (2006)

    MathSciNet  Article  MATH  Google Scholar 

  2. 2.

    Jin-Ming, Z, Yao-Ming, Z: The Hirota bilinear method for the coupled Burgers equation and the high-order Boussinesq-Burgers equation. Chin. Phys. B 20, Article ID 010205 (2011)

    Article  Google Scholar 

  3. 3.

    Kamchatnov, A, Kraenkel, A, Umarov, B: Asymptotic soliton train solutions of Kaup-Boussinesq equations. Wave Motion 38, 355-365 (2003)

    MathSciNet  Article  MATH  Google Scholar 

  4. 4.

    Mhlanga, I, Khalique, CM: Exact solutions of generalized Boussinesq-Burgers equations and \((2+1)\)-dimensional Davey-Stewartson equations. J. Appl. Math. 2012, Article ID 389017 (2012)

    MathSciNet  MATH  Google Scholar 

  5. 5.

    Khalique, CM: Exact solutions and conservation laws of a coupled integrable dispersionless system. Filomat 26, 957-964 (2012)

    MathSciNet  Article  MATH  Google Scholar 

  6. 6.

    Matveev, V, Salle, M: Darboux Transformation and Solitons. Springer, Berlin (1991)

    Google Scholar 

  7. 7.

    Wang, Z, Chen, A: Explicit solutions of Boussinesq-Burgers equation. Chin. Phys. 16, 1233-1238 (2007)

    Article  Google Scholar 

  8. 8.

    Wazwaz, AM: Two integrable extensions of the Kadomtsev-Petviashvili equation. Cent. Eur. J. Phys. 91, 49-56 (2011)

    Google Scholar 

  9. 9.

    Wazwaz, AM: Solitons and singular solitons for a variety of Boussinesq-like equations. Ocean Eng. 53, 1-5 (2012)

    Article  Google Scholar 

  10. 10.

    Wazwaz, AM: Multiple kink solutions and multiple singular kink solutions for two systems of coupled Burgers’ type equations. Commun. Nonlinear Sci. Numer. Simul. 14, 2962-2970 (2009)

    MathSciNet  Article  MATH  Google Scholar 

  11. 11.

    Wazwaz, AM: A study on the \((2+1)\)-dimensional and the \((2+1)\)-dimensional higher-order Burgers equations. Appl. Math. Lett. 25, 1495-1499 (2012)

    MathSciNet  Article  MATH  Google Scholar 

  12. 12.

    Wazwaz, AM: Combined equations of the Burgers hierarchy: multiple kink solutions and multiple singular kink solutions. Phys. Scr. 82, Article ID 025001 (2010)

    Article  MATH  Google Scholar 

  13. 13.

    Wazwaz, AM: Kinks and travelling wave solutions for Burgers-like equations. Appl. Math. Lett. 38, 174-179 (2014)

    MathSciNet  Article  MATH  Google Scholar 

  14. 14.

    Wazwaz, AM: Gaussian solitary wave solutions for nonlinear evolution equations with logarithmic nonlinearities. Nonlinear Dyn. 83, 591-596 (2016)

    MathSciNet  Article  MATH  Google Scholar 

  15. 15.

    Wazwaz, AM: Multiple kink solutions for two coupled integrable \((2 + 1)\)-dimensional systems. Appl. Math. Lett. 58, 1-6 (2016)

    MathSciNet  Article  MATH  Google Scholar 

  16. 16.

    Hirota, R: Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons. Phys. Rev. Lett. 27, 1192-1194 (1971)

    Article  MATH  Google Scholar 

  17. 17.

    Hirota, R: Exact N-soliton solutions of a nonlinear wave equation. J. Math. Phys. 14, 805-809 (1973)

    MathSciNet  Article  MATH  Google Scholar 

  18. 18.

    Jaradat, HM, Al-Shara’, S, Awawdeh, F, Alquran, M: Variable coefficient equations of the Kadomtsev-Petviashvili hierarchy: multiple soliton solutions and singular multiple soliton solutions. Phys. Scr. 85, Article ID 035001 (2012)

    Article  MATH  Google Scholar 

  19. 19.

    Jaradat, HM, Awawdeh, F, Al-Shara’, S, Alquran, M, Momani, S: Controllable dynamical behaviors and the analysis of fractal Burgers hierarchy with the full effects of inhomogeneities of media. Rom. J. Phys. 60(3-4), 324-343 (2015)

    Google Scholar 

  20. 20.

    Awawdeh, F, Jaradat, HM, Al-Shara’, S: Applications of a simplified bilinear method to ion-acoustic solitary waves in plasma. Eur. Phys. J. D 66, 1-8 (2012)

    Google Scholar 

  21. 21.

    Awawdeh, F, Al-Shara’, S, Jaradat, HM, Alomari, AK, Alshorman, R: Symbolic computation on soliton solutions for variable coefficient quantum Zakharov-Kuznetsov equation in magnetized dense plasmas. Int. J. Nonlinear Sci. Numer. Simul. 15(1), 35-45 (2014)

    MathSciNet  Article  Google Scholar 

  22. 22.

    Wazwaz, AM: Multiple soliton solutions for the \((2+1)\)-dimensional asymmetric Nizhnik Novikov Veselov equation. Nonlinear Anal. 72, 1314-1318 (2010)

    MathSciNet  Article  MATH  Google Scholar 

  23. 23.

    Wazwaz, AM: Multiple-soliton solutions for the Boussinesq equation. Appl. Math. Comput. 192, 479-486 (2007)

    MathSciNet  MATH  Google Scholar 

  24. 24.

    Jaradat, HM: New solitary wave and multiple soliton solutions for the time-space fractional Boussinesq equation. Ital. J. Pure Appl. Math. 36, 367-376 (2016)

    MathSciNet  MATH  Google Scholar 

  25. 25.

    Alsayyed, O, Jaradat, HM, Jaradat, MMM, Mustafa, Z, Shatat, F: Multi-soliton solutions of the BBM equation arisen in shallow water. J. Nonlinear Sci. Appl. 9(4), 1807-1814 (2016)

    MathSciNet  MATH  Google Scholar 

  26. 26.

    Jaradat, HM: Dynamic behavior of traveling wave solutions for a class for the time-space coupled fractional kdV system with time-dependent coefficients. Ital. J. Pure Appl. Math. 36, 945-958 (2016)

    MathSciNet  MATH  Google Scholar 

  27. 27.

    Alquran, M, Jaradat, HM, Al-Shara’, S, Awawdeh, F: A new simplified bilinear method for the N-soliton solutions for a generalized FmKdV equation with time-dependent variable coefficients. Int. J. Nonlinear Sci. Numer. Simul. 16, 259-269 (2015)

    MathSciNet  Google Scholar 

  28. 28.

    Jaradat, HM: Dynamic behavior of traveling wave solutions for new couplings of the Burgers equations with time-dependent variable coefficients. Adv. Differ. Equ. 2017, Article ID 167 (2017). doi:10.1186/s13662-017-1223-1

    MathSciNet  Article  Google Scholar 

  29. 29.

    Jaradat, HM, Al-Shara’, S, Jaradat, MMM, Mustafa, Z, Alsayyed, O, Alquran, M, Abohassan, KM, Momani, S: New solitary wave and multiple soliton solutions for the time-space coupled fractional mKdV system with time-dependent coefficients. J. Comput. Theor. Nanosci. 13(12), 1-8 (2016)

    Article  Google Scholar 

  30. 30.

    Jaradat, HM, Syam, M, Alquran, M: Necessary conditions of coupled mkdV-BLMP system for multiple-soliton solutions to exist. Alex. Eng. J. (2017). doi:10.1016/j.aej.2017.06.012

    Google Scholar 

  31. 31.

    Zhang, ZY: New exact traveling wave solutions for the nonlinear Klein-Gordon equation. Turk. J. Phys. 32, 235-240 (2008)

    Google Scholar 

  32. 32.

    Zhang, ZY, Liu, ZH, Miao, XJ, Chen, YZ: New exact solutions to the perturbed nonlinear Schrodinger’s equation with Kerr law nonlinearity. Appl. Math. Comput. 216, 3064-3072 (2010)

    MathSciNet  MATH  Google Scholar 

  33. 33.

    Zhang, ZY, Li, YX, Liu, ZH, Miao, XJ: New exact solutions to the perturbed nonlinear Schrodinger’s equation with Kerr law nonlinearity via modified trigonometric function series method. Commun. Nonlinear Sci. Numer. Simul. 16(8), 3097-3106 (2011)

    MathSciNet  Article  MATH  Google Scholar 

  34. 34.

    Zhang, ZY, Zhang, YH, Gan, XY, Yu, DM: A note on exact traveling wave solutions for the Klein-Gordon-Zakharov equations. Z. Naturforsch. A 67(3-4), 167-172 (2014)

    Google Scholar 

  35. 35.

    Zhang, ZY, Liu, ZH, Miao, XJ, Chen, YZ: Qualitative analysis and traveling wave solutions for the perturbed nonlinear Schrodinger’s equation with Kerr law nonlinearity. Phys. Lett. A 375, 1275-1280 (2011)

    MathSciNet  Article  MATH  Google Scholar 

  36. 36.

    Zhang, ZY, Gan, XY, Yu, DM: Bifurcation behavior of the traveling wave solutions of nonlinear the perturbed nonlinear Schrodinger equation with Kerr law nonlinearity. Z. Naturforsch. A 66(12), 721-727 (2014)

    Google Scholar 

  37. 37.

    Zhang, ZY, Zhong, J, Dou, S, Liu, J, Peng, D, Gao, T: A new method to construct traveling wave solutions for the Klein-Gordon-Zakharov equations. Rom. J. Phys. 58(7-8), 766-777 (2013)

    Google Scholar 

  38. 38.

    Zhang, ZY, Huang, J, Zhong, J, Dou, SS, Liu, J, Peng, D, Gao, T: The extended \((G'/G)\)-expansion method and travelling wave solutions for the perturbed nonlinear Schrodinger’s equation with Kerr law nonlinearity. Pramana 82(6), 1011-1029 (2014)

    Article  Google Scholar 

  39. 39.

    Zhang, ZY, Zhong, J, Dou, SS, Liu, J, Peng, D, Gao, T: Abundant exact traveling wave solutions for the Klein-Gordon-Zakharov equations via the tanh-coth expansion method and Jacobi elliptic function expansion method. Rom. J. Phys. 58(7-8), 749-765 (2013)

    Google Scholar 

  40. 40.

    Zhang, ZY, Zhong, J, Dou, SS, Liu, J, Peng, D, Gao, T: First integral method and exact solutions to nonlinear partial differential equations arising in mathematical physics. Rom. Rep. Phys. 65(4), 1155-1169 (2013)

    Google Scholar 

  41. 41.

    Khater, AH, Callebaut, DK, Malfliet, W, Seadawy, AR: Nonlinear dispersive Rayleigh-Taylor instabilities in magnetohydrodynamic flows. Phys. Scr. 64, 533-547 (2001)

    Article  MATH  Google Scholar 

  42. 42.

    Khater, AH, Callebaut, DK, Seadawy, AR: Nonlinear dispersive instabilities in Kelvin-Helmholtz magnetohydrodynamic flows. Phys. Scr. 67, 340-349 (2003)

    Article  MATH  Google Scholar 

  43. 43.

    Khater, AH, Callebaut, DK, Seadawy, AR: General soliton solutions of an n-dimensional complex Ginzburg-Landau equation. Phys. Scr. 62, 353-357 (2000)

    MathSciNet  Article  Google Scholar 

  44. 44.

    Khater, AH, Callebaut, DK, Helal, MA, Seadawy, AR: Variational method for the nonlinear dynamics of an elliptic magnetic stagnation line. Eur. Phys. J. D 39, 237-245 (2006)

    Google Scholar 

  45. 45.

    Khater, AH, Callebaut, DK, Seadawy, AR: General soliton solutions for nonlinear dispersive waves in convective type instabilities. Phys. Scr. 74, 384-393 (2006)

    MathSciNet  Article  MATH  Google Scholar 

  46. 46.

    Seadawy, AR: New exact solutions for the KdV equation with higher order nonlinearity by using the variational method. Comput. Math. Appl. 62, 3741-3755 (2011)

    MathSciNet  Article  MATH  Google Scholar 

  47. 47.

    Helal, MA, Seadawy, AR: Benjamin-Feir instability in nonlinear dispersive waves. Comput. Math. Appl. 64, 3557-3568 (2012)

    MathSciNet  Article  MATH  Google Scholar 

  48. 48.

    Seadawy, AR: Solitary wave solutions of two-dimensional nonlinear Kadomtsev-Petviashvili dynamic equation in dust-acoustic plasmas. Pramana J. Phys. 89(3), Article ID 49 (2017)

    Article  Google Scholar 

  49. 49.

    Seadawy, AR: Modulation instability analysis for the generalized derivative higher order nonlinear Schrodinger equation and its the bright and dark soliton solutions. J. Electromagn. Waves Appl. 31(14), 1353-1362 (2017)

    Article  Google Scholar 

  50. 50.

    Seadawy, AR: Traveling-wave solutions of a weakly nonlinear two-dimensional higher-order Kadomtsev-Petviashvili dynamical equation for dispersive shallow-water waves. Eur. Phys. J. Plus 132(29), 1-13 (2017)

    Google Scholar 

  51. 51.

    Wazwaz, AM: Multiple soliton solutions and other exact solutions for a two-mode KdV equation. Math. Methods Appl. Sci. 40, 2277-2283 (2017). doi:10.1002/mma.4138

    MathSciNet  Article  MATH  Google Scholar 

  52. 52.

    Wazwaz, AM: A two-mode Burgers equation of weak shock waves in a fluid: multiple kink solutions and other exact solutions. Int. J. Appl. Comput. Math. 3, 3977-3985 (2017). doi:10.1007/s40819-016-0302-4

    MathSciNet  Article  Google Scholar 

  53. 53.

    Wazwaz, AM: Two-mode fifth-order KdV equations: necessary conditions for multiple-soliton solutions to exist. Nonlinear Dyn. 87, 1685-1691 (2017). doi:10.1007/s11071-016-3144-z

    MathSciNet  Article  Google Scholar 

  54. 54.

    Korsunsky, SV: Soliton solutions for a second-order KdV equation. Phys. Lett. A 185, 174-176 (1994)

    MathSciNet  Article  MATH  Google Scholar 

  55. 55.

    Syam, M, Jaradat, H, Alquran, M: A study on the two-mode coupled modified Korteweg-de Vries using the simplified bilinear and the trigonometric-function methods. Nonlinear Dyn. 90(2), 1363-1371 (2017)

    MathSciNet  Article  Google Scholar 

  56. 56.

    Jaradat, HM, Syam, M, Alquran, M: A two-mode coupled Korteweg-de Vries: multiple-soliton solutions and other exact solutions. Nonlinear Dyn. 90(1), 371-377 (2017)

    MathSciNet  Article  Google Scholar 

  57. 57.

    Jaradat, HM: Two-mode coupled Burgers equation: multiple-kink solutions and other exact solutions. Alex. Eng. J. (2017). doi:10.1016/j.aej.2017.06.014

    Google Scholar 

  58. 58.

    Hirota, R: Exact solution of the modified Korteweg-de Vries equation for multiple collisions of solitons. J. Phys. Soc. Jpn. 33, 1456-1458 (1972)

    Article  Google Scholar 

  59. 59.

    Shukri, S, Al-Khaled, K: The extended tanh method for solving systems of nonlinear wave equations. Appl. Math. Comput. 217(5), 1997-2006 (2010)

    MathSciNet  MATH  Google Scholar 

  60. 60.

    Qawasmeh, A, Alquran, M: Reliable study of some new fifth-order nonlinear equations by means of \((G^{\prime}/G)\)-expansion method and rational sine-cosine method. Appl. Math. Sci. 8(120), 5985-5994 (2014)

    Google Scholar 

  61. 61.

    Qawasmeh, A, Alquran, M: Soliton and periodic solutions for \((2+1)\)-dimensional dispersive long water-wave system. Appl. Math. Sci. 8(50), 2455-2463 (2014)

    MathSciNet  Google Scholar 

  62. 62.

    Alquran, M, Al-Khaled, K: The tanh and sine-cosine methods for higher order equations of Korteweg-de Vries type. Phys. Scr. 84, Article ID 025010 (2011)

    Article  MATH  Google Scholar 

  63. 63.

    Alquran, M, Al-Khaled, K: Sinc and solitary wave solutions to the generalized Benjamin-Bona-Mahony-Burgers equations. Phys. Scr. 83, Article ID 065010 (2011)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The first and second authors are financially supported by UKM Grant: DIP-2017-011 and Ministry of Education Malaysia Grant FRGS/1/2017/STG06/UKM/01/1.

Author information

Affiliations

Authors

Contributions

The main idea of this paper was proposed and performed by all authors. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ali Jaradat.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jaradat, A., Noorani, M.S.M., Alquran, M. et al. Construction and solitary wave solutions of two-mode higher-order Boussinesq-Burger system. Adv Differ Equ 2017, 376 (2017). https://doi.org/10.1186/s13662-017-1431-8

Download citation

Keywords

  • two-mode higher-order Boussinesq-Burgers system
  • simplified Hirota method
  • N-soliton solutions
  • hyperbolic tangent expansion
\