Skip to main content

Sums of finite products of Genocchi functions

Abstract

In a previous work, it was shown that Faber-Pandharipande-Zagier and Miki’s identities can be derived from a polynomial identity which in turn follows from a Fourier series expansion of sums of products of Bernoulli functions. Motivated by this work, we consider three types of sums of finite products of Genocchi functions and derive Fourier series expansions for them. Moreover, we will be able to express each of them in terms of Bernoulli functions.

Introduction

As is well known, the Bernoulli polynomials \(B_{m}(x)\) are given by the generating function

$$ \frac{t}{e^{t}-1}e^{xt}=\sum_{m=0} ^{\infty}B_{m}(x)\frac{t^{m}}{m!}. $$

The Genocchi polynomials \(G_{m}(x)\) are given by the generating function

$$ \frac{2t}{e^{t}+1}e^{xt} =\sum _{m=0}^{\infty}G_{m}(x) \frac{t^{m}}{m!} \quad(\mbox{see [1--12]}). $$
(1.1)

The first few Genocchi polynomials are as follows:

$$ \begin{aligned}&G_{0}(x)=0,\qquad G_{1}(x)=1,\qquad G_{2}(x)=2x-1, \\ &G_{3}(x)=3x^{2}-3x,\qquad G_{4}(x)=4x^{3}-6x^{2}+1, \\ &G_{5}(x)=5x^{4}-10x^{3}+5x, \qquad G_{6}(x)=6x^{5}-15x^{4}+15x^{2}-3. \end{aligned} $$
(1.2)

From the relation \(G_{m}(x)=mE_{m-1}(x) (m\geq1)\), the following facts are obtained:

$$ \begin{aligned}& \deg G_{m}(x)=m-1\quad (m\geq1), \qquad G_{m}=mE_{m-1}\quad (m\geq1), \\ & G_{0}=0, \qquad G_{1} =1,\qquad G_{2m+1}=0\quad (m \geq1),\quad \mbox{and}\quad G_{2m}\neq 0\quad (m\geq1). \end{aligned} $$
(1.3)

In addition, we have

$$ \begin{aligned} & \frac{d}{dx} G_{m}(x)=mG_{m-1}(x) \quad (m\geq1), \\ & G_{m}(x+1)+G_{m}(x)=2mx^{m-1}\quad (m\geq0). \end{aligned} $$
(1.4)

From these, we immediately obtain

$$ \begin{aligned} G_{m}(1)+G_{m}(0)=2 \delta_{m,1} \quad (m\geq0) \end{aligned} $$
(1.5)

and

$$\begin{aligned} \int_{0}^{1} G_{m}(x) \,dx &= \frac{1}{m+1} \bigl(G_{m+1}(1)-G_{m+1}(0) \bigr) \\ &= \frac{2}{m+1} \bigl(-G_{m+1}(0)+\delta_{m,0} \bigr) \\ & = \textstyle\begin{cases} 0& \text{if } m \textit{ is even}, \\ -\frac{2}{m+1}G_{m+1} & \text{if } m \textit{ is odd}. \end{cases}\displaystyle \end{aligned}$$
(1.6)

For any real number x, we let \(\langle x\rangle =x-[x]\in[0,1)\) denote the fractional part of x.

In this paper, we will consider three types of sums of finite products of Genocchi functions and derive the Fourier series expansions for them. Moreover, we will be able to express each of them in terms of Bernoulli functions \(B_{m}(\langle x\rangle )\):

  1. (1)

    \(\alpha_{m}(\langle x\rangle )=\sum_{i_{1}+\cdots+i_{r}=m, i_{1}, \ldots,i_{r}\geq1} G_{i_{1}}(\langle x\rangle )\cdots G_{i_{r}}(\langle x\rangle ) (m>r\geq1) \);

  2. (2)

    \(\beta_{m}(\langle x\rangle )= \sum_{i_{1}+\cdots+i_{r}=m, i_{1},\ldots,i_{r}\geq1} \frac{1}{i_{1}!\cdots i_{r}!}G_{i_{1}}(\langle x\rangle ) \cdots G_{i_{r}}(\langle x\rangle ) (m>r\geq1) \);

  3. (3)

    \(\gamma_{m}(\langle x\rangle )=\sum_{i_{1}+\cdots+i_{r}=m, i_{1},\ldots, i_{r}\geq1} \frac{1}{i_{1}\cdots i_{r}}G_{i_{1}}(\langle x\rangle )\cdots G_{i_{r}}(\langle x\rangle ) (m>r\geq1)\).

For elementary facts about Fourier analysis, the reader may refer to any book (for example, see [13, 14]).

As to \(\gamma_{m}(\langle x\rangle )\), we note that the polynomial identity (1.7) follows immediately from Theorems 4.1 and 4.2, which are in turn derived from the Fourier series expansion of \(\gamma_{m}(\langle x\rangle )\).

$$\begin{aligned} & \sum_{i_{1}+\cdots+i_{r}=m, i_{1}, \ldots, i_{r}\geq1} \frac{1}{i_{1} i_{2}\cdots i_{r}} G_{i_{1}}(x)G_{i_{2}}(x)\cdots G_{i_{r}}(x) \\ &\quad =\frac{1}{m} \Lambda_{m+1} + \frac{1}{m} \sum _{j=1}^{m-r}\binom{m}{j} \Lambda_{m-j+1}B_{j}(x), \end{aligned}$$
(1.7)

where, for \(l>r\),

$$\begin{aligned} \Lambda_{l} ={}& \sum _{0\leq a \leq r}\binom{r}{a} (-1)^{a} 2^{r-a} \sum_{i_{1}+\cdots+i_{a}=l+a-r, i_{1},\ldots,i_{a} \geq1} \frac{G_{i_{1}}G_{i_{2}}\cdots G_{i_{a}}}{i_{1}i_{2} \cdots i_{a}} \\ &{} -\sum_{i_{1}+\cdots+i_{r}=l, i_{1},\ldots,i_{r}\geq1} \frac{G_{i_{1}}G_{i_{2}}\cdots G_{i_{r}}}{i_{1}i_{2} \cdots i_{r}}. \end{aligned}$$
(1.8)

The obvious polynomial identities can be derived also for \(\alpha _{m}(\langle x\rangle )\) and \(\beta_{m}(\langle x\rangle )\) from Theorems 2.1 and 2.2, and Theorems 3.1 and 3.2, respectively. It is noteworthy that from the Fourier series expansion of the function

$$ \sum_{k=1}^{m-1} \frac{1}{k(m-k)}B_{k} \bigl( \langle x \rangle \bigr)B_{m-k} \bigl( \langle x \rangle \bigr) $$
(1.9)

we can derive the Faber-Pandharipande-Zagier identity (see [1, 1520]) and the Miki identity (see [1723]). In case of \(r=2\), \(\gamma_{m}(\langle x\rangle )=\sum_{k=1}^{m-1} \frac{1}{k(m-k)}G_{k}( \langle x \rangle )G_{m-k}( \langle x \rangle )\), and hence our problem here is a natural extension of the previous work, which leads to a simple proof for the important Faber-Pandharipande-Zagier and Miki identities (see [16, 22]). We will give an outline below, and this may be viewed as the main motivation for the present study.

The following polynomial identity follows immediately from the Fourier series expansion of the function in (1.9):

$$\begin{aligned} & \sum_{k=1}^{m-1} \frac{1}{k (m-k )}B_{k} (x )B_{m-k} (x ) \\ &\quad = \frac{2}{m^{2}} \biggl(B_{m}+\frac{1}{2} \biggr)+ \frac{2}{m}\sum_{k=1}^{m-2} \frac{1}{m-k}\dbinom{m}{k}B_{m-k}B_{k} (x )+ \frac{2}{m}H_{m-1}B_{m} (x ) \quad (m\geq2), \end{aligned}$$
(1.10)

where \(H_{m}=\sum_{j=1}^{m}\frac{1}{j}\) are the harmonic numbers.

Simple modification of (1.10) yields

$$\begin{aligned} & \sum_{k=1}^{m-1} \frac{1}{2k (2m-2k )}B_{2k} (x )B_{2m-2k} (x )+\frac{2}{2m-1}B_{1} (x )B_{2m-1} (x ) \\ &\quad = \frac{1}{m}\sum_{k=1}^{m} \frac{1}{2k}\dbinom {2m}{2k}B_{2k}B_{2m-2k} (x )+ \frac{1}{m}H_{2m-1}B_{2m} (x ) \\ &\qquad{}+\frac{2}{2m-1}B_{1} (x )B_{2m-1}\quad (m\ge2 ). \end{aligned}$$
(1.11)

Letting \(x=0\) in (1.11) gives a slightly different version of the well-known Miki identity (see [22]):

$$\begin{aligned} & \sum_{k=1}^{m-1} \frac{1}{2k (2m-2k )}B_{2k}B_{2m-2k} \\ &\quad = \frac{1}{m}\sum_{k=1}^{m} \frac{1}{2k}\dbinom {2m}{2k}B_{2k}B_{2m-2k}+ \frac{1}{m}H_{2m-1}B_{2m} \quad (m\ge 2 ). \end{aligned}$$
(1.12)

Setting \(x=\frac{1}{2}\) in (1.12) with \(\overline{B}_{m}= (\frac{1-2^{m-1}}{2^{m-1}} )B_{m}= (2^{1-m}-1 )B_{m}=B_{m} (\frac{1}{2} )\), we have

$$\begin{aligned} & \sum_{k=1}^{m-1} \frac{1}{2k (2m-2k )} \overline {B}_{2k}\overline{B}_{2m-2k} \\ &\quad = \frac{1}{m}\sum_{k=1}^{m} \frac{1}{2k}\dbinom {2m}{2k}B_{2k}\overline{B}_{2m-2k}+ \frac{1}{m}H_{2m-1}\overline {B}_{2m}\quad (m\ge2 ), \end{aligned}$$
(1.13)

which is the Faber-Pandharipande-Zagier identity (see [16]). Some of the different proofs of Miki’s identity can be found in [15, 2123]. Miki in [22] exploits a formula for the Fermat quotient \(\frac{a^{p}-a}{p}\) modulo \(p^{2}\), Shiratani-Yokoyama in [23] employs p-adic analysis, Gessel in [21] bases his work on two different expressions for Stirling numbers of the second kind \(S_{2} (n,k )\), and Dunne-Schubert in [15] uses the asymptotic expansion of some special polynomials coming from the quantum field theory computations. As we can see, all of these proofs are quite involved. On the other hand, our proof of Miki’s and Faber-Pandharipande-Zagier’s identities follow from the polynomial identity (1.10), which in turn follows immediately from the Fourier series expansion of (1.9), together with the elementary manipulations outlined in (1.11)-(1.13). Some related recent work can be found in [10, 2426].

The first type of sums of finite products

In this section, we will derive the Fourier series of the first type of sums of products of Genocchi functions. Let us denote

$$ \alpha_{m}(x)=\sum _{i_{1}+\cdots+i_{r}=m, i_{1}, \ldots,i_{r}\geq1} G_{i_{1}}(x)G_{i_{2}}(x)\cdots G_{i_{r}}(x)\quad (m>r\geq1). $$
(2.1)

Here the sum runs over all positive integers \(i_{1}, \ldots, i_{r}\) with \(i_{1}+\cdots+i_{r}=m, (m>r\geq1)\). Note here that \(\deg\alpha_{m} (x)=m-r\geq1\). Then we will consider the function

$$ \alpha_{m} \bigl(\langle x \rangle \bigr)= \sum_{i_{1}+\cdots+i_{r}=m, i_{1}, \ldots,i_{r}\geq1} G_{i_{1}} \bigl( \langle x\rangle \bigr)G_{i_{2}} \bigl(\langle x\rangle \bigr)\cdots G_{i_{r}} \bigl( \langle x\rangle \bigr)\quad (m>r\geq1), $$
(2.2)

defined on \(\mathbb{R}\), which is periodic with period 1. The Fourier series of \(\alpha_{m}(\langle x\rangle )\) is

$$ \sum_{n=-\infty}^{\infty}A_{n}^{(m)} e^{2\pi i n x}, $$
(2.3)

where

$$ A_{n}^{(m)}= \int_{0}^{1} \alpha_{m} \bigl(\langle x \rangle \bigr) e^{-2\pi inx} \,dx= \int_{0}^{1} \alpha _{m} (x) e^{-2\pi inx} \,dx. $$
(2.4)

Before proceeding, we note the following:

$$\begin{aligned} \alpha_{m}'(x)={}& \sum _{i_{1}+\cdots+i_{r}=m, i_{1}\geq 2, i_{2},\ldots ,i_{r}\geq1} i_{1}G_{i_{1}-1}(x)G_{i_{2}}(x) \cdots G_{i_{r}}(x) \\ &{} +\cdots+ \sum_{i_{1}+\cdots+i_{r}=m, i_{1}, \ldots,i_{r-1}\geq 1,i_{r}\geq2} i_{r} G_{i_{1}}(x)\cdots G_{i_{r-1}}G_{{i_{r}}-1}(x) \\ ={}& \sum_{i_{1}+\cdots+i_{r}=m-1, i_{1}, \ldots,i_{r}\geq1} (i_{1}+1)G_{i_{1}}(x)G_{i_{2}}(x) \cdots G_{i_{r}}(x) \\ &{} +\cdots+ \sum_{i_{1}+\cdots+i_{r}=m-1, i_{1}, \ldots,i_{r}\geq 1}(i_{r}+1) G_{i_{1}}(x)G_{i_{2}}(x)\cdots G_{i_{r}}(x) \\ ={}&(m+r-1)\sum_{i_{1}+\cdots+i_{r}=m-1, i_{1}, \ldots,i_{r}\geq1} G_{i_{1}}(x)G_{i_{2}}(x) \cdots G_{i_{r}}(x) \\ ={}&(m+r-1) \alpha_{m-1}(x). \end{aligned}$$
(2.5)

So, \(\alpha_{m}'(x)=(m+r-1)\alpha_{m-1}(x)\), and from this, we obtain

$$ \biggl( \frac{\alpha_{m+1}(x)}{m+r} \biggr)' = \alpha_{m}(x) $$
(2.6)

and

$$ \int_{0}^{1} \alpha_{m}(x) \,dx = \frac{1}{m+r} \bigl(\alpha_{m+1}(1)-\alpha_{m+1}(0) \bigr). $$
(2.7)

We put \(\Delta_{m}=\alpha_{m}(1)- \alpha_{m}(0)\), for \(m>r\). Then we have

$$\begin{aligned} \Delta_{m} ={}& \alpha_{m}(1)- \alpha_{m}(0) \\ ={}& \sum_{i_{1}+\cdots+i_{r}=m, i_{1}, \ldots,i_{r}\geq1} \bigl(G_{i_{1}}(1)G_{i_{2}}(1) \cdots G_{i_{r}}(1) - G_{i_{1}}G_{i_{2}}\cdots G_{i_{r}} \bigr) \\ ={}& \sum_{i_{1}+\cdots+i_{r}=m, i_{1}, \ldots,i_{r}\geq1} \bigl( (-G_{i_{1}} +2 \delta_{i_{1},1} )\cdots (-G_{i_{r}}+2 \delta _{i_{r},1} ) -G_{i_{1}}\cdots G_{i_{r}} \bigr) \\ ={}&\sum_{0\leq a \leq r} \binom{r}{a} \sum _{i_{1}+\cdots+i_{a}=m+a-r, i_{1}, \ldots,i_{a}\geq1}(-1)^{a} 2^{r-a} G_{i_{1}} \cdots G_{i_{a}} \\ &{} - \sum_{i_{1}+\cdots+i_{r}=m, i_{1}, \ldots,i_{r}\geq1} G_{i_{1}}G_{i_{2}} \cdots G_{i_{r}}, \end{aligned}$$
(2.8)

where we understand that, for \(a=0\), the inner sum is \(2^{r} \delta _{m,r}\). Observe here that the sums over all \(i_{1}+\cdots+i_{r}=m\ (i_{1}, \ldots, i_{r}\geq1)\) of any term with a of \(-G_{i_{e}}\) and b of \(2\delta_{i_{f},1}\ (1\leq e, f\leq r, a+b=r)\) all give

$$\begin{aligned} &\sum_{i_{1}+\cdots+i_{r}=m, i_{1}, \ldots,i_{r}\geq1} (-G_{i_{1}} ) \cdots (-G_{i_{a}} ) (2\delta _{i_{a+1},1}) \cdots(2\delta_{i_{a+b},1}) \\ &\quad=\sum_{i_{1}+\cdots+i_{a}=m+a-r, i_{1},\ldots, i_{a}\geq1} (-1)^{a} 2^{r-a} G_{i_{1}}\cdots G_{i_{a}}. \end{aligned}$$
(2.9)

Note that, as \(i_{1}+\cdots+i_{a}=m+a-r>a\), the above sum is not empty. From the definition of \(\Delta_{m}\), we have

$$\begin{aligned} \begin{aligned} &\alpha_{m}(0)= \alpha_{m}(1) \quad\Longleftrightarrow\quad \Delta_{m} =0, \\ & \int_{0}^{1} \alpha_{m}(x) \,dx = \frac{1}{m+r}\Delta_{m+1}. \end{aligned} \end{aligned}$$
(2.10)

Now, we want to determine the Fourier coefficients \(A_{n}^{(m)}\).

Case 1: \(n\neq0\). We have

$$\begin{aligned} A_{n}^{(m)} &= \int_{0}^{1} \alpha_{m} (x) e^{-2\pi inx} \,dx \\ &= -\frac{1}{2\pi in } \bigl[ \alpha_{m} (x) e^{-2\pi inx} \bigr]_{0}^{1} + \frac{1}{2\pi in } \int_{0}^{1} \alpha_{m}' (x) e^{-2\pi inx} \,dx \\ &= -\frac{1}{2\pi in } \bigl(\alpha_{m} (1)-\alpha_{m} (0) \bigr)+ \frac {m+r-1}{2\pi in} \int_{0}^{1} \alpha_{m-1}(x) e^{-2\pi in x}\,dx \\ &= \frac{m+r-1}{2\pi in} A_{n}^{(m-1)}- \frac{1}{2\pi in} \Delta_{m} \\ &=\frac{m+r-1}{2\pi in } \biggl(\frac{m+r-2}{2\pi in} A_{n}^{(m-2)}- \frac{1}{2\pi in} \Delta_{m-1} \biggr) - \frac{1}{2\pi in} \Delta_{m} \\ &=\frac{(m+r-1)_{2}}{(2\pi in)^{2} } A_{n}^{(m-2)} - \sum _{j=1}^{2} \frac {(m+r-1)_{j-1}}{(2\pi in)^{j} } \Delta_{m-j+1} \\ &= \cdots \\ &=\frac{(m+r-1)_{m-r}}{(2\pi in)^{m-r} } A_{n}^{(r)} - \sum _{j=1}^{m-r} \frac{(m+r-1)_{j-1}}{(2\pi in)^{j} } \Delta_{m-j+1} \\ &=-\frac{1}{m+r}\sum_{j=1}^{m-r} \frac{(m+r)_{j}}{(2\pi in)^{j}}\Delta_{m-j+1}, \end{aligned}$$
(2.11)

where

$$ A_{n}^{(r)}= \int_{0}^{1} e^{-2\pi in x} \,dx=0. $$
(2.12)

Case 2: \(n=0\). We have

$$ A_{0}^{(m)} = \int_{0}^{1} \alpha_{m}(x) \,dx= \frac{1}{m+r}\Delta_{m+1}. $$
(2.13)

We recall the following facts about Bernoulli functions \(B_{m}(\langle x\rangle )\):

  1. (a)

    for \(m\geq2\),

    $$\begin{aligned} B_{m } \bigl(\langle x\rangle \bigr) = -m! \sum_{n=-\infty, n\neq0}^{\infty}\frac{e^{2\pi inx}}{(2\pi in)^{m}}, \end{aligned}$$
    (2.14)
  2. (b)

    for \(m=1\),

    $$\begin{aligned} -\sum_{n=-\infty, n\neq0}^{\infty}\frac{e^{2\pi inx}}{2\pi in} = \textstyle\begin{cases} B_{1}(\langle x\rangle ) & \text{for } x \in\mathbb{Z}^{c}, \\ 0 & \text{for } x \in\mathbb{Z}, \end{cases}\displaystyle \end{aligned}$$
    (2.15)

where \(\mathbb{Z}^{c}=\mathbb{R}-\mathbb{Z}\). \(\alpha_{m}(\langle x\rangle )\ (m>r\geq1)\) is piecewise \(C^{\infty}\). Moreover, \(\alpha_{m}(\langle x\rangle )\) is continuous for those positive integers \(m>r\) with \(\Delta_{m}=0\) and discontinuous with jump discontinuities at integers for those positive integers \(m>r\) with \(\Delta_{m}\neq0\). Assume first that \(\Delta_{m}=0\), for a positive integer \(m>r\). Then \(\alpha_{m}(0)=\alpha_{m}(1)\). Hence \(\alpha_{m}(\langle x\rangle )\) is piecewise \(C^{\infty}\), and continuous. Thus, the Fourier series of \(\alpha_{m}(\langle x\rangle )\) converges uniformly to \(\alpha_{m}(\langle x\rangle )\), and

$$\begin{aligned} &\alpha_{m} \bigl(\langle x \rangle \bigr) \\ &\quad= \frac{1}{m+r}\Delta_{m+1} + \sum _{n=-\infty, n\neq0}^{\infty}\Biggl( -\frac{1}{m+r}\sum _{j=1}^{m-r} \frac{(m+r)_{j}}{(2\pi in)^{j}} \Delta_{m-j+1} \Biggr)e^{2\pi in x} \\ &\quad= \frac{1}{m+r}\Delta_{m+1} + \frac{1}{m+r} \sum _{j=1}^{m-r}\binom {m+r}{j} \Delta_{m-j+1} \Biggl( -j! \sum_{n=-\infty, n\neq0}^{\infty}\frac{e^{2\pi i nx}}{(2\pi in)^{j}} \Biggr) \\ &\quad= \frac{1}{m+r}\Delta_{m+1} + \frac{1}{m+r} \sum _{j=2}^{m-r}\binom {m+r}{j} \Delta_{m-j+1} B_{j} \bigl(\langle x\rangle \bigr) \\ &\qquad{} + \Delta_{m} \times \textstyle\begin{cases} B_{1}(\langle x\rangle ) & \text{for } x \in\mathbb{Z}^{c}, \\ 0 & \text{for }x \in\mathbb{Z}. \end{cases}\displaystyle \end{aligned}$$
(2.16)

Now, we can state our first result.

Theorem 2.1

For each positive integer l, with \(l>r\), we let

$$\begin{aligned} \Delta_{l} ={}& \sum _{0\leq a \leq r} \binom{r}{a} \sum_{i_{1}+\cdots +i_{a}=l+a-r, i_{1},\ldots,i_{a}\geq1} (-1)^{a}2^{r-a}G_{i_{1}}\cdots G_{i_{a}} \\ &{} - \sum_{i_{1}+\cdots+i_{r}=l, i_{1},\ldots,i_{r} \geq1} G_{i_{1}}\cdots G_{i_{r}}. \end{aligned}$$
(2.17)

Assume that \(\Delta_{m}=0\), for a positive integer \(m> r\). Then we have the following:

  1. (a)

    \(\sum_{i_{1}+\cdots+i_{r}=m, i_{1},\ldots,i_{r}\geq1}G_{i_{1}}(\langle x\rangle ) \cdots G_{i_{r}}(\langle x\rangle )\) has the Fourier series expansion

    $$\begin{aligned} &\sum_{i_{1}+\cdots+i_{r}=m, i_{1},\ldots,i_{r}\geq1}G_{i_{1}} \bigl(\langle x\rangle \bigr) \cdots G_{i_{r}} \bigl(\langle x\rangle \bigr) \\ &\quad= \frac{1}{m+r}\Delta_{m+1} + \sum _{n=-\infty, n\neq0}^{\infty}\Biggl(- \frac{1}{m+r} \sum _{j=1}^{m-r} \frac{(m+r)_{j}}{(2\pi in)^{j}} \Delta_{m-j+1} \Biggr)e^{2\pi in x}, \end{aligned}$$
    (2.18)

    for all \(x\in\mathbb{R}\), where the convergence is uniform,

  2. (b)
    $$\begin{aligned} &\sum_{i_{1}+\cdots+i_{r}=m, i_{1},\ldots,i_{r}\geq1}G_{i_{1}} \bigl(\langle x\rangle \bigr) \cdots G_{i_{r}} \bigl(\langle x\rangle \bigr) \\ &\quad = \frac{1}{m+r}\Delta_{m+1} +\frac{1}{m+r} \sum _{j=2}^{m-r} \binom {m+r}{j} \Delta_{m-j+1}B_{j} \bigl(\langle x\rangle \bigr), \end{aligned}$$
    (2.19)

    for all \(x\in\mathbb{R}\), where \(B_{j}(\langle x\rangle )\) is the Bernoulli function.

Assume next that \(\Delta_{m}\neq0\), for a positive integer \(m>r\). Then \(\alpha_{m}(0)\neq\alpha_{m}(1)\). Hence \(\alpha_{m}(\langle x\rangle )\) is piecewise \(C^{\infty}\), and discontinuous with jump discontinuities at integers. The Fourier series of \(\alpha _{m}(\langle x\rangle )\) converges pointwise to \(\alpha_{m}(\langle x\rangle )\), for \(x \in\mathbb{Z}^{c}\), and it converges to

$$ \frac{1}{2} \bigl( \alpha_{m}(0)+ \alpha_{m}(1) \bigr)= \alpha_{m}(0)+ \frac {1}{2} \Delta_{m}, $$
(2.20)

for \(x\in\mathbb{Z}\). Now, we can state our second result.

Theorem 2.2

For each positive integer l, with \(l>r\), we let

$$\begin{aligned} \Delta_{l} ={}& \sum _{0\leq a\leq r } \binom{r}{a} \sum_{i_{1}+\cdots +i_{a}=l+a-r, i_{1},\ldots,i_{a}\geq1} (-1)^{a}2^{r-a} G_{i_{1}} \cdots G_{i_{a}} \\ &{} - \sum_{i_{1}+\cdots+i_{r}=l, i_{1},\ldots,i_{r}\geq1} G_{i_{1}} \cdots G_{i_{r}}. \end{aligned}$$
(2.21)

Assume that \(\Delta_{m} \neq0\), for a positive integer \(m> r\). Then we have the following:

  1. (a)
    $$\begin{aligned} & \frac{1}{m+r}\Delta_{m+1} + \sum _{n=-\infty, n\neq0}^{\infty}\Biggl(-\frac{1}{m+r} \sum _{j=1}^{m-r} \frac{(m+r)_{j}}{(2\pi in)^{j}} \Delta_{m-j+1} \Biggr) e^{2\pi inx} \\ & \quad= \textstyle\begin{cases} \sum_{i_{1}+\cdots+i_{r}=m, i_{1},\ldots,i_{r}\geq1} G_{i_{1}}(\langle x\rangle ) \cdots G_{i_{r}}(\langle x\rangle ) & \textit{for } x \in\mathbb{Z}^{c}, \\ \sum_{i_{1}+\cdots+i_{r}=m, i_{1},\ldots,i_{r}\geq1} G_{i_{1}} \cdots G_{i_{r}} +\frac{1}{2}\Delta_{m} & \textit{for }x \in\mathbb{Z}, \end{cases}\displaystyle \end{aligned}$$
    (2.22)
  2. (b)
    $$\begin{aligned} \begin{aligned} & \frac{1}{m+r} \Delta_{m+1} + \frac{1}{m+r} \sum_{j=1}^{m-r} \binom{m+r}{j} \Delta_{m-j+1} B_{j} \bigl(\langle x\rangle \bigr) \\ &\quad = \sum_{i_{1}+\cdots+i_{r}=m, i_{1},\ldots,i_{r}\geq1} G_{i_{1}} \bigl(\langle x \rangle \bigr) \cdots G_{i_{r}} \bigl(\langle x\rangle \bigr), \quad \textit{for } x\in \mathbb{Z}^{c}, \end{aligned} \end{aligned}$$
    (2.23)
    $$\begin{aligned} \begin{aligned} & \frac{1}{m+r} \Delta_{m+1} + \frac{1}{m+r} \sum_{j=2}^{m-r} \binom{m+r}{j} \Delta_{m-j+1} B_{j} \bigl(\langle x\rangle \bigr) \\ &\quad=\sum_{i_{1}+\cdots+i_{r}=m, i_{1},\ldots,i_{r}\geq1} G_{i_{1}} \cdots G_{i_{r}}+ \frac{1}{2}\Delta_{m}, \quad x\in\mathbb{Z}. \end{aligned} \end{aligned}$$
    (2.24)

The second type of sums of finite products

Let \(\beta_{m}(x)=\sum_{i_{1}+\cdots+i_{r}=m, i_{1},\ldots,i_{r}\geq1}\frac {1}{i_{1}!\cdots i_{r}!} G_{i_{1}}(x) \cdots G_{i_{r}}(x)\ (m>r\geq1)\). Here the sum runs over all positive integers \(i_{1}, \ldots, i_{r}\) with \(i_{1}+\cdots+i_{r}=m\ (r\geq1)\). Then we will consider the function

$$ \beta_{m} \bigl(\langle x\rangle \bigr)= \sum_{i_{1}+\cdots+i_{r}=m, i_{1},\ldots,i_{r}\geq1} \frac {1}{i_{1}!\cdots i_{r}!}G_{i_{1}} \bigl( \langle x\rangle \bigr) \cdots G_{i_{r}} \bigl(\langle x\rangle \bigr), $$
(3.1)

defined on \(\mathbb{R}\), which is periodic with period 1. The Fourier series of \(\beta_{m}(\langle x\rangle )\) is

$$ \sum_{n=-\infty}^{\infty}B_{n}^{(m)} e^{2\pi inx}, $$
(3.2)

where

$$ B_{n}^{(m)} = \int_{0}^{1} \beta_{m} \bigl(\langle x \rangle \bigr) e^{-2\pi inx} \,dx= \int_{0}^{1} \beta _{m}(x) e^{-2\pi inx} \,dx. $$
(3.3)

Before proceeding, we need to observe the following:

$$\begin{aligned} \beta_{m}'(x)={}& \sum _{i_{1}+\cdots+i_{r}=m, i_{1},\ldots,i_{r}\geq1} \biggl\{ \frac{i_{1}}{i_{1}!\cdots i_{r}!}G_{i_{1}-1}(x)G_{i_{2}}(x) \cdots G_{i_{r}}(x) +\cdots \\ &{}+\frac{i_{r}}{i_{1}!\cdots i_{r}!}G_{i_{1}}(x) \cdots G_{i_{r-1}}(x)G_{i_{r}-1}(x) \biggr\} \\ ={}& \sum_{i_{1}+\cdots+i_{r}=m, i_{1}\geq2, i_{2} ,\ldots, i_{r}\geq1} \frac {1}{(i_{1}-1)!i_{2}!\cdots i_{r}!}G_{i_{1}-1}(x) G_{i_{2}}(x)\cdots G_{i_{r}}(x) \\ &{} +\cdots+\sum_{i_{1}+\cdots+i_{r}=m, i_{1}, i_{2} ,\ldots, i_{r-1} \geq1, i_{r}\geq2}\frac{1}{i_{1}!\cdots i_{r-1}!(i_{r}-1)!} G_{i_{1}}(x) \cdots G_{i_{r-1}}(x)G_{i_{r}-1}(x) \\ ={}& \sum_{i_{1}+\cdots+i_{r}=m-1, i_{1}, \ldots,i_{r}\geq1} \frac {1}{i_{1}!\cdots i_{r}!}G_{i_{1}}(x) \cdots G_{i_{r}}(x) \\ &{} +\cdots+\sum_{i_{1}+\cdots+i_{r}=m-1, i_{1}, \ldots, i_{r}\geq1} \frac{1}{i_{1}!\cdots i_{r}!}G_{i_{1}}(x) \cdots G_{i_{r}}(x) \\ ={}& r \beta_{m-1} (x). \end{aligned}$$
(3.4)

Thus \(\beta_{m}'(x) = r \beta_{m-1} (x)\), and, from this, we obtain

$$ \biggl( \frac{\beta_{m+1}(x)}{r} \biggr)' = \beta_{m}(x) $$
(3.5)

and

$$ \int_{0}^{1} \beta_{m} (x) \,dx= \frac{1}{r} \bigl(\beta_{m+1}(1)- \beta_{m+1}(0) \bigr). $$
(3.6)

For \(m>r\), let

$$\begin{aligned} \Omega_{m}={}& \beta_{m}(1)- \beta_{m}(0) \\ ={}& \sum_{i_{1}+\cdots+i_{r}=m, i_{1}, \ldots,i_{r}\geq1} \frac {1}{i_{1}!\cdots i_{r}!}G_{i_{1}}(1) \cdots G_{i_{r}}(1) \\ &{} -\sum_{i_{1}+\cdots+i_{r}=m, i_{1}, \ldots, i_{r}\geq1} \frac {1}{i_{1}!\cdots i_{r}!}G_{i_{1}} \cdots G_{i_{r}} \\ ={}& \sum_{i_{1}+\cdots+i_{r}=m, i_{1}, \ldots,i_{r}\geq1} \frac {1}{i_{1}!\cdots i_{r}!}(-G_{i_{1}}+2 \delta_{i_{1},1}) \cdots(- G_{i_{r}}+2\delta_{i_{r},1}) \\ & {}-\sum_{i_{1}+\cdots+i_{r}=m, i_{1}, \ldots, i_{r}\geq1} \frac {1}{i_{1}!\cdots i_{r}!}G_{i_{1}} \cdots G_{i_{r}} \\ ={}& \sum_{0\leq a\leq r} \binom{r}{a} \sum _{i_{1}+\cdots+i_{a}=m+a-r, i_{1}, \ldots,i_{a}\geq1}(-1)^{a} 2^{r-a} \frac{G_{i_{1}} G_{i_{2}}\cdots G_{i_{a}} }{ i_{1}!\cdots i_{a}!} \\ &{} -\sum_{i_{1}+\cdots+i_{r}=m, i_{1}, \ldots, i_{r}\geq1} \frac {1}{i_{1}!\cdots i_{r}!}G_{i_{1}} G_{i_{2}}\cdots G_{i_{r}}, \end{aligned}$$
(3.7)

where we understand that, for \(a=0\), the inner sum is \(2^{r}\delta_{m,r}\). Observe that the sums over all \(i_{1}+ \cdots+i_{r}=m\ (i_{1}, \ldots i_{r}\geq 1)\) of any term with a of \(-G_{i_{e}}\) and b of \(2\delta_{i_{f},1}\ (1\leq e,f \leq r, a+b=r)\) all give

$$\begin{aligned} &\sum_{i_{1}+\cdots+i_{r}=m, i_{1}, \ldots,i_{r}\geq1} \frac{1}{i_{1}!\cdots i_{r}!}(-G_{i_{1}}) \cdots(-G_{i_{a}}) (2 \delta_{i_{a+1},1})\cdots(2\delta _{i_{a+b},1}) \\ &\quad= \sum_{i_{1}+\cdots+i_{a}=m+a-r, i_{1}, \ldots,i_{a}\geq1} \frac{ (-1)^{a} 2^{r-a}}{i_{1}!\cdots i_{a}!} G_{i_{1}} \cdots G_{i_{a}}. \end{aligned}$$
(3.8)

From the definition of \(\Omega_{m}\), we have

$$ \begin{aligned} &\beta_{m}(0)= \beta_{m}(1) \quad\Longleftrightarrow \quad \Omega_{m} =0, \\ & \int_{0}^{1} \beta_{m}(x) \,dx = \frac{1}{r}\Omega_{m+1}. \end{aligned} $$
(3.9)

Next, we want to determine the Fourier coefficients \(B_{n}^{(m)}\).

Case 1: \(n \neq0\). We have

$$\begin{aligned} B_{n}^{(m)} ={}& \int_{0}^{1} \beta_{m} (x) e^{-2\pi inx} \,dx \\ ={}&- \frac{1}{2 \pi in} \bigl[\beta_{m}(x)e^{-2 \pi inx} \bigr]_{0}^{1} + \frac{1}{2 \pi in} \int_{0}^{1} \beta_{m}' (x) e^{-2\pi inx} \,dx \\ ={}&{-} \frac{1}{2 \pi in} \bigl(\beta_{m}(1)- \beta_{m}(0) \bigr) \\ &{} + \frac{r}{ 2\pi in} \int_{0}^{1} \beta_{m-1} (x) e^{-2\pi inx} \,dx \\ ={}& \frac{r}{ 2\pi in}B_{n}^{(m-1)}- \frac{1}{2\pi in} \Omega_{m} \\ ={}& \frac{r}{ 2\pi in} \biggl( \frac{r}{ 2\pi in}B_{n}^{(m-2)} - \frac {1}{2\pi in}\Omega_{m-1} \biggr) - \frac{1}{2\pi in} \Omega_{m} \\ ={}& \biggl(\frac{r}{2 \pi in} \biggr)^{2}B_{n}^{(m-2)} -\sum_{j=1}^{2} \frac {r^{j-1}}{(2\pi in)^{j}} \Omega_{m-j+1} \\ ={}& \cdots \\ ={} &\biggl( \frac{r}{ 2\pi in} \biggr)^{m-r}B_{n}^{(r)}- \sum_{j=1}^{m-r} \frac{r^{j-1}}{(2\pi in)^{j}} \Omega_{m-j+1} \\ ={} &- \sum_{j=1}^{m-r} \frac{r^{j-1}}{(2\pi in)^{j}} \Omega_{m-j+1}, \end{aligned}$$
(3.10)

where

$$ B_{n}^{(r)}= \int_{0}^{1} e^{-2\pi inx} \,dx=0. $$
(3.11)

Case 2: \(n=0\). We have

$$ B_{0}^{(m)}= \int_{0}^{1} \beta_{m}(x) \,dx= \frac{1}{r}\Omega_{m+1}. $$
(3.12)

\(\beta_{m}(\langle x\rangle )\ (m>r \geq1) \) is piecewise \(C^{\infty}\). Moreover, \(\beta_{m} (\langle x\rangle )\) is continuous for those positive integers \(m>r\) with \(\Omega_{m}=0\) and discontinuous with jump discontinuities at integers for those integers \(m>r\) with \(\Omega _{m}\neq0\).

Assume first that \(\Omega_{m}=0\), for a positive integer \(m>r\). Then \(\beta_{m}(0)=\beta_{m}(1)\). Hence \(\beta_{m}(\langle x\rangle )\) is piecewise \(C^{\infty}\), and continuous. Thus the Fourier series of \(\beta_{m}(\langle x\rangle )\) converges uniformly to \(\beta_{m}(\langle x\rangle )\), and

$$\begin{aligned} \beta_{m} \bigl(\langle x \rangle \bigr)&= \frac{1}{r} \Omega_{m+1} + \sum_{n=-\infty, n\neq 0}^{\infty}\Biggl(- \sum_{j=1}^{m-r} \frac{r^{j-1}}{(2\pi in)^{j}} \Omega_{m-j+1} \Biggr)e^{2 \pi in x} \\ &= \frac{1}{r} \Omega_{m+1} + \sum_{j=1}^{m-r} \frac{r^{j-1}}{j!} \Omega_{m-j+1} \Biggl( -j!\sum _{n=-\infty, n\neq0}^{\infty}\frac{e^{2 \pi inx} }{(2\pi in)^{j}} \Biggr) \\ &= \frac{1}{r} \Omega_{m+1} + \sum_{j=2}^{m-r} \frac{r^{j-1}}{j!} \Omega_{m-j+1}B_{j} \bigl(\langle x\rangle \bigr) +\Omega_{m} \times \textstyle\begin{cases} B_{1}(\langle x\rangle ) & \text{for } x \in\mathbb{Z}^{c}, \\ 0 & \text{for }x \in\mathbb{Z}. \end{cases}\displaystyle \end{aligned}$$
(3.13)

Now, we can state our first result.

Theorem 3.1

For each positive integer l, with \(l>r\), we let

$$\begin{aligned} \Omega_{l} ={}& \sum _{0\leq a \leq r} \binom{r}{a} (-1)^{a} 2^{r-a} \sum_{i_{1}+\cdots+i_{a}=l+a-r, i_{1},\ldots,i_{a}\geq1} \frac{G_{i_{1}}G_{i_{2}}\cdots G_{i_{a}}}{i_{1}!i_{2}!\cdots i_{a}!} \\ &{} - \sum_{i_{1}+\cdots+i_{r}=l, i_{1},\ldots, i_{r}\geq1} \frac{G_{i_{1}}G_{i_{2}}\cdots G_{i_{r}}}{i_{1}!i_{2}!\cdots i_{r}!}. \end{aligned}$$
(3.14)

Assume that \(\Omega_{m}=0\), for a positive integer \(m>r\). Then we have the following:

  1. (a)

    \(\sum_{i_{1}+\cdots+i_{r}=m, i_{1},\ldots,i_{r}\geq1} \frac{1}{i_{1}! i_{2}!\cdots i_{r}} G_{i_{1}}(\langle x\rangle )G_{i_{2}}(\langle x\rangle )\cdots G_{i_{r}}(\langle x\rangle )\) has the Fourier series expansion

    $$\begin{aligned} &\sum_{i_{1}+\cdots+i_{r}=m, i_{1},\ldots,i_{r}\geq1} \frac{1}{i_{1}! i_{2}!\cdots i_{r}!} G_{i_{1}} \bigl(\langle x\rangle \bigr)G_{i_{2}} \bigl(\langle x\rangle \bigr)\cdots G_{i_{r}} \bigl(\langle x\rangle \bigr) \\ &\quad = \frac{1}{r}\Omega_{m+1} + \sum _{n=-\infty, n\neq0}^{\infty}\Biggl(- \sum _{j=1}^{m-r} \frac{r^{j-1}}{(2\pi in)^{j}} \Omega_{m-j+1} \Biggr)e^{2\pi in x}, \end{aligned}$$
    (3.15)

    for all \(x\in\mathbb{R}\), where the convergence is uniform,

  2. (b)
    $$\begin{aligned} &\sum_{i_{1}+\cdots+i_{r}=m, i_{1},\ldots,i_{r}\geq1} \frac{1}{i_{1}! i_{2}!\cdots i_{r}} G_{i_{1}} \bigl(\langle x\rangle \bigr)G_{i_{2}} \bigl(\langle x\rangle \bigr)\cdots G_{i_{r}} \bigl(\langle x\rangle \bigr) \\ &\quad= \frac{1}{r}\Omega_{m+1} +\sum _{j=2}^{m-r} \frac{r^{j-1}}{j!} \Omega_{m-j+1}B_{j} \bigl(\langle x\rangle \bigr), \end{aligned}$$
    (3.16)

    for all \(x\in\mathbb{R}\), where \(B_{j}(\langle x\rangle )\) is the Bernoulli function.

Assume next that \(\Omega_{m} \neq0\), for a positive integer \(m>r\). Then \(\beta_{m}(0)\neq\beta_{m}(1)\). Thus \(\beta_{m}(\langle x\rangle )\) is piecewise \(C^{\infty}\), and discontinuous with jump discontinuities at integers. The Fourier series of \(\beta_{m}(\langle x\rangle )\) converges pointwise to \(\beta_{m}(\langle x\rangle )\), for \(x \in\mathbb{Z}^{c}\), and it converges to

$$\begin{aligned} \frac{1}{2} \bigl( \beta_{m}(0)+ \beta_{m}(1) \bigr)={}& \beta_{m}(0)+ \frac {1}{2} \Omega_{m} \\ ={}&\sum_{i_{1}+\cdots+i_{r}=m, i_{1},\ldots,i_{r}\geq1} \frac{1}{i_{1}! i_{2}!\cdots i_{r}} G_{i_{1}}G_{i_{2}} \cdots G_{i_{r}}+\frac{1}{2} \Omega_{m}, \end{aligned}$$
(3.17)

for \(x \in\mathbb{Z}\). Now, we can state our second theorem.

Theorem 3.2

For each positive integer l, with \(l>r\), we let

$$\begin{aligned} \Omega_{l} ={}& \sum _{0\leq a \leq r} \binom{r}{a} (-1)^{a} 2^{r-a} \sum_{i_{1}+\cdots+i_{a}=l+a-r, i_{1},\ldots,i_{a}\geq1} \frac{G_{i_{1}}G_{i_{2}} \cdots G_{i_{a}}}{i_{1}!i_{2}!\cdots i_{a}!} \\ &{} - \sum_{i_{1}+\cdots+i_{r}=l, i_{1},\ldots, i_{r}\geq1} \frac{G_{i_{1}}G_{i_{2}} \cdots G_{i_{r}}}{i_{1}!i_{2}!\cdots i_{r}!}. \end{aligned}$$
(3.18)

Assume that \(\Omega_{m} \neq0\), for a positive integer \(m>r\). Then we have the following:

  1. (a)
    $$\begin{aligned} &\frac{1}{r}\Omega_{m+1} + \sum _{n=-\infty, n\neq0}^{\infty}\Biggl(-\sum _{j=1}^{m-r} \frac{r^{j-1}}{(2\pi in)^{j}} \Omega_{m-j+1} \Biggr) e^{2\pi inx} \\ &\quad = \textstyle\begin{cases} \sum_{i_{1}+\cdots+i_{r}=m, i_{1},\ldots, i_{r}\geq1} \frac{1}{i_{1}!i_{2}!\cdots i_{r}!}G_{i_{1}}(\langle x\rangle )G_{i_{2}}(\langle x\rangle ) \cdots G_{i_{r}}(\langle x\rangle ) & \textit{for } x \in\mathbb{Z}^{c}, \\ \sum_{i_{1}+\cdots+i_{r}=m, i_{1},\ldots, i_{r}\geq1} \frac{1}{i_{1}!i_{2}!\cdots i_{r}!}G_{i_{1}}G_{i_{2}}\cdots G_{i_{r}}+\frac {1}{2}\Omega_{m} & \textit{for } x \in\mathbb{Z}, \end{cases}\displaystyle \end{aligned}$$
    (3.19)
  2. (b)
    $$\begin{aligned} & \frac{1}{r}\Omega_{m+1}+ \sum _{j=1}^{m-r} \frac{r^{j-1}}{j!} \Omega_{m-j+1}B_{j} \bigl(\langle x\rangle \bigr) \\ &\quad =\sum_{i_{1}+\cdots+i_{r}=m, i_{1},\ldots, i_{r}\geq1} \frac{1}{i_{1}!i_{2}!\cdots i_{r}!}G_{i_{1}} \bigl(\langle x\rangle \bigr)G_{i_{2}} \bigl(\langle x\rangle \bigr)\cdots G_{i_{r}} \bigl(\langle x\rangle \bigr), \end{aligned}$$
    (3.20)

    for \(x\in\mathbb{Z}^{c}\), and

    $$\begin{aligned} & \frac{1}{r}\Omega_{m+1}+ \sum _{j=2}^{m-r} \frac{r^{j-1}}{j!} \Omega_{m-j+1}B_{j} \bigl(\langle x\rangle \bigr) \\ & \quad =\sum_{i_{1}+\cdots+i_{r}=m, i_{1},\ldots, i_{r}\geq1} \frac{1}{i_{1}!i_{2}!\cdots i_{r}!}G_{i_{1}}G_{i_{2}} \cdots G_{i_{r}} + \frac {1}{2}\Omega_{m}, \end{aligned}$$
    (3.21)

    for \(x\in\mathbb{Z}\).

The third type of sums of finite products

Let \(\gamma_{m}(x)=\sum_{i_{1}+\cdots+i_{r}=m, i_{1},\ldots, i_{r}\geq1} \frac{1}{i_{1}i_{2}\cdots i_{r}}G_{i_{1}}(x)\cdots G_{i_{r}}(x)\ (m>r\geq1)\). Here the sum runs over all positive integers \(i_{1}, \ldots, i_{r}\), with \(i_{1}+\cdots+i_{r}=m\). Before proceeding, we observe the following:

$$\begin{aligned} \gamma_{m}'(x) ={}& \sum _{i_{1}+\cdots+i_{r}=m, i_{1}\geq2, i_{2},\ldots, i_{r}\geq1} \frac{1}{i_{2}\cdots i_{r}}G_{i_{1}-1}(x)G_{i_{2}}(x) \cdots G_{i_{r}} (x) \\ & {}+ \cdots \\ &{} + \sum_{i_{1}+\cdots+i_{r}=m, i_{r}\geq2, i_{1}, \ldots, i_{r-1}\geq1} \frac{1}{i_{1} \cdots i_{r-1}}G_{i_{1}}(x) \cdots G_{i_{r-1}}(x) G_{i_{r}-1} (x) \\ ={}& \sum_{i_{1}+\cdots+i_{r}=m-1, i_{1}, \ldots, i_{r}\geq1} \frac{1}{i_{2}\cdots i_{r}}G_{i_{1}}(x)G_{i_{2}}(x) \cdots G_{i_{r}} (x) \\ &{} +\cdots \\ & {}+ \sum_{i_{1}+\cdots+i_{r}=m-1, i_{1}, \ldots, i_{r}\geq1} \frac{1}{i_{1} \cdots i_{r-1}}G_{i_{1}}(x) \cdots G_{i_{r}} (x) \\ ={}&\sum_{i_{1}+\cdots+i_{r}=m-1, i_{1}, \ldots, i_{r}\geq1} \biggl\{ \frac{1}{i_{2}\cdots i_{r}}+ \frac{1}{i_{1}i_{3}\cdots i_{r}}+\cdots +\frac{1}{i_{1}\cdots i_{r-1}} \biggr\} G_{i_{1}}(x)G_{i_{2}}(x) \cdots G_{i_{r}} (x) \\ ={}& (m-1) \sum_{i_{1}+\cdots+i_{r}=m-1, i_{1}, \ldots, i_{r}\geq1}\frac {1}{i_{1}\cdots i_{r}} G_{i_{1}}(x)G_{i_{2}}(x)\cdots G_{i_{r}} (x) \\ ={}&(m-1)\gamma_{m-1}(x). \end{aligned}$$
(4.1)

So, \(\gamma_{m}'(x)=(m-1)\gamma_{m-1}(x)\), and from this, we get

$$ \biggl(\frac{\gamma_{m+1}(x)}{m} \biggr)'= \gamma_{m}(x) $$
(4.2)

and

$$ \begin{aligned} & \int_{0}^{1} \gamma_{m}(x) \,dx= \frac{1}{m} \bigl(\gamma_{m+1}(1)-\gamma_{m+1}(0) \bigr). \end{aligned} $$
(4.3)

For \(m>r\), we let

$$\begin{aligned} \Lambda_{m} ={}& \gamma_{m}(1)- \gamma_{m}(0) \\ ={}& \sum_{i_{1}+\cdots+i_{r}=m, i_{1}, \ldots, i_{r}\geq1}\frac {1}{i_{1}\cdots i_{r}} \bigl(G_{i_{1}}(1)\cdots G_{i_{r}} (1)-G_{i_{1}}\cdots G_{i_{r}} \bigr) \\ ={}& \sum_{i_{1}+\cdots+i_{r}=m, i_{1}, \ldots, i_{r}\geq1}\frac {1}{i_{1}\cdots i_{r}} (-G_{i_{1}}+2 \delta_{i_{1},1})\cdots(-G_{i_{r}}+2 \delta_{i_{r},1}) \\ &{} - \sum_{i_{1}+\cdots+i_{r}=m, i_{1}, \ldots, i_{r}\geq1}\frac {1}{i_{1}\cdots i_{r}} G_{i_{1}} \cdots G_{i_{r}} \\ ={}& \sum_{0\leq a\leq r} \binom{r}{a} (-1)^{a} 2^{r-a} \sum_{i_{1}+\cdots +i_{a}=m+a-r, i_{1}, \ldots, i_{a}\geq1} \frac{G_{i_{1}}G_{2}\cdots G_{i_{a}}}{i_{1}\cdots i_{a}} \\ &{} - \sum_{i_{1}+\cdots+i_{r}=m, i_{1}, \ldots, i_{r}\geq1}\frac {1}{i_{1}\cdots i_{r}} G_{i_{1}} \cdots G_{i_{r}}, \end{aligned}$$
(4.4)

where we understand that, for \(a=0\), the inner sum is \(2^{r}\delta _{m,r}\). Note that

$$ \gamma_{m}(0)= \gamma_{m}(1)\quad \Longleftrightarrow \quad \Lambda_{m}=0 $$
(4.5)

and

$$ \begin{aligned} \int_{0}^{1} \gamma_{m}(x) \,dx = \frac{1}{m} \Lambda_{m+1}. \end{aligned} $$
(4.6)

We are now going to consider the function

$$ \gamma_{m} \bigl(\langle x \rangle \bigr)= \sum_{i_{1}+\cdots+i_{r}=m, i_{1}, \ldots, i_{r}\geq1}\frac {1}{i_{1}\cdots i_{r}} G_{i_{1}} \bigl( \langle x\rangle \bigr)\cdots G_{i_{r}} \bigl(\langle x\rangle \bigr), $$
(4.7)

defined on \(\mathbb{R}\), which is periodic with period 1. The Fourier series of \(\gamma_{m}(\langle x\rangle )\) is

$$ \begin{aligned} \sum_{n=-\infty}^{\infty}C_{n}^{(m)} e^{2\pi i n x}, \end{aligned} $$
(4.8)

where

$$ C_{n}^{(m)} = \int_{0}^{1} \gamma_{m} \bigl(\langle x \rangle \bigr) e^{-2\pi inx} \,dx= \int_{0}^{1} \gamma _{m} (x) e^{-2\pi inx} \,dx. $$
(4.9)

Now, we would like to determine the Fourier coefficients \(C_{n}^{(m)}\).

Case 1: \(n\neq0\). We have

$$\begin{aligned} C_{n}^{(m)}&= -\frac{1}{2\pi in} \bigl[\gamma_{m}(x)e^{-2\pi in x} \bigr]_{0}^{1} + \frac{1}{2\pi in} \int_{0}^{1} \gamma_{m}'(x) e^{-2\pi in x} \,dx \\ &=- \frac{1}{2\pi in } \bigl(\gamma_{m}(1)-\gamma_{m}(0) \bigr) + \frac{m-1}{2\pi in } \int_{0}^{1} \gamma_{m-1}(x) e^{-2\pi in x}\,dx \\ &=\frac{m-1}{2\pi in }C_{n}^{(m-1)}- \frac{1}{2\pi in } \Lambda_{m} \\ &=\frac{m-1}{2\pi in } \biggl( \frac{m-2}{2\pi in}C_{n}^{(m-2)}- \frac {1}{2\pi in}\Lambda_{m-1} \biggr)- \frac{1}{2\pi in } \Lambda_{m} \\ &=\frac{(m-1)_{2}}{(2\pi in)^{2} }C_{n}^{(m-2)}-\sum _{j=1}^{2} \frac {(m-1)_{j-1}}{(2\pi in)^{j}}\Lambda_{m-j+1} \\ &= \cdots \\ &= \frac{(m-1)_{m-r}}{(2\pi in)^{m-r} }C_{n}^{(r)}-\sum _{j=1}^{m-r} \frac{(m-1)_{j-1}}{(2\pi in)^{j}}\Lambda_{m-j+1} \\ &=-\frac{1}{m}\sum_{j=1}^{m-r} \frac{(m)_{j}}{(2\pi in)^{j}}\Lambda_{m-j+1}. \end{aligned}$$
(4.10)

Note that

$$ \begin{aligned} C_{n}^{(r)} = \int_{0}^{1} e^{-2 \pi inx}\,dx =0. \end{aligned} $$
(4.11)

Case 2: \(n=0\). We have

$$ \begin{aligned} C_{0}^{(m)} = \int_{0}^{1} \gamma_{m}(x) \,dx= \frac{1}{m} \Lambda_{m+1}. \end{aligned} $$
(4.12)

\(\gamma_{m}(\langle x\rangle ), (m>r \geq1)\) is piecewise \(C^{\infty}\). Moreover, \(\gamma_{m}(\langle x\rangle )\) is continuous for those integers \(m>r\) with \(\Lambda_{m} =0\), and discontinuous with jump discontinuities at integers for those integers \(m>r\) with \(\Lambda_{m} \neq0\).

Assume first that \(\Lambda_{m}=0\), for a positive integer \(m>r\). Then \(\gamma_{m}(0)=\gamma_{m}(1)\). Hence \(\gamma_{m}(\langle x\rangle )\) is piecewise \(C^{\infty}\), and continuous. So the Fourier series of \(\gamma_{m}(\langle x\rangle )\) converges uniformly to \(\gamma_{m}(\langle x\rangle )\), and

$$\begin{aligned} &\gamma_{m} \bigl(\langle x \rangle \bigr) \\ &\quad= \frac{1}{m} \Lambda_{m+1}+ \sum _{n=-\infty, n\neq0}^{\infty}\Biggl( - \frac{1}{m} \sum _{j=1}^{m-r} \frac{(m)_{j}}{(2\pi in)^{j}}\Lambda_{m-j+1} \Biggr)e^{2\pi inx} \\ &\quad=\frac{1}{m} \Lambda_{m+1}+ \frac{1}{m} \sum _{j=1}^{m-r}\binom {m}{j}\Lambda_{m-j+1} \Biggl( -j! \sum_{n=-\infty, n\neq0}^{\infty}\frac{e^{2\pi inx}}{(2\pi in)^{j}} \Biggr) \\ &\quad= \frac{1}{m} \Lambda_{m+1} + + \frac{1}{m} \sum _{j=2}^{m-r}\binom{m}{j} \Lambda_{m-j+1}B_{j} \bigl(\langle x\rangle \bigr) \\ &\qquad{} +\Lambda_{m} \times \textstyle\begin{cases} B_{1}(\langle x\rangle ) & \text{for } x \in\mathbb{Z}^{c}, \\ 0, & \text{for } x \in\mathbb{Z}. \end{cases}\displaystyle \end{aligned}$$
(4.13)

We are now ready to state our first theorem.

Theorem 4.1

For each positive integer l, with \(l>r\), we let

$$\begin{aligned} \Lambda_{l} ={}& \sum _{0\leq a \leq r } \binom{r}{a}(-1)^{a}2^{r-a} \sum_{i_{1}+\cdots+i_{a}=l+a-r, i_{1}, \ldots, i_{a}\geq1} \frac{G_{i_{1}}G_{i_{2}}\cdots G_{i_{a}}}{i_{1}i_{2}\cdots i_{a}} \\ &{} - \sum _{i_{1}+\cdots+i_{r}=l, i_{1}, \ldots, i_{r}\geq1} \frac{G_{i_{1}}G_{i_{2}}\cdots G_{i_{r}}}{i_{1}i_{2}\cdots i_{r}}. \end{aligned}$$
(4.14)

Assume that \(\Lambda_{m} =0\), for a positive integer \(m>r\). Then we have the following:

  1. (a)

    \(\sum_{i_{1}+\cdots+i_{r}=m, i_{1}, \ldots, i_{r}\geq1}\frac{1}{i_{1} i_{2}\cdots i_{r}} G_{i_{1}}(\langle x\rangle )G_{i_{2}}(\langle x\rangle ) \cdots G_{i_{r}}(\langle x\rangle )\) has the Fourier series expansion

    $$\begin{aligned} &\sum_{i_{1}+\cdots+i_{r}=m, i_{1}, \ldots, i_{r}\geq1} \frac{1}{i_{1} i_{2}\cdots i_{r}} G_{i_{1}} \bigl(\langle x\rangle \bigr)G_{i_{2}} \bigl(\langle x\rangle \bigr)\cdots G_{i_{r}} \bigl(\langle x\rangle \bigr) \\ &\quad=\frac{1}{m} \Lambda_{m+1}+ \sum _{n=-\infty, n\neq0}^{\infty}\Biggl( - \frac{1}{m}\sum _{j=1}^{m-r} \frac{(m)_{j}}{(2\pi in)^{j}} \Lambda_{m-j+1} \Biggr) e^{2\pi in x}, \end{aligned}$$
    (4.15)

    for all \(x\in\mathbb{R}\), where the convergence is uniform,

  2. (b)

    we have

    $$\begin{aligned} &\sum_{i_{1}+\cdots+i_{r}=m, i_{1}, \ldots, i_{r}\geq1} \frac{1}{i_{1} i_{2}\cdots i_{r}} G_{i_{1}} \bigl(\langle x\rangle \bigr)G_{i_{2}} \bigl(\langle x\rangle \bigr)\cdots G_{i_{r}} \bigl(\langle x\rangle \bigr) \\ &\quad=\frac{1}{m} \Lambda_{m+1}+ \frac{1}{m}\sum _{j=2}^{m-r} \binom{m}{j} \Lambda_{m-j+1} B_{j} \bigl(\langle x\rangle \bigr), \end{aligned}$$
    (4.16)

    for all \(x\in\mathbb{R}\), where \(B_{j}(\langle x\rangle )\) is the Bernoulli function.

Assume next that \(\Lambda_{m}\neq0\), for a positive integer \(m>r\). Then \(\gamma_{m}(0)\neq\gamma_{m}(1)\). Hence \(\gamma_{m}(\langle x\rangle )\) is piecewise \(C^{\infty}\), and discontinuous with jump discontinuities at integers. The Fourier series of \(\gamma _{m}(\langle x\rangle )\) converges pointwise to \(\gamma_{m}(\langle x\rangle )\), for \(x\in\mathbb{Z}^{c}\), and it converges to

$$\begin{aligned} \frac{1}{2} \bigl( \gamma_{m}(0)+ \gamma_{m}(1) \bigr) &=\gamma_{m}(0)+ \frac{1}{2} \Lambda_{m} \\ &=\sum_{i_{1}+\cdots+i_{r}=m, i_{1}, \ldots, i_{r}\geq1}\frac{1}{i_{1} i_{2}\cdots i_{r}} G_{i_{1}}G_{i_{2}} \cdots G_{i_{r}} + \frac{1}{2}\Lambda_{m}, \end{aligned}$$
(4.17)

for \(x\in\mathbb{Z}\). Now, we state our second result.

Theorem 4.2

For each positive integer l, with \(l>r\), we let

$$\begin{aligned} \Lambda_{l} ={}& \sum _{0\leq a \leq r}\binom{r}{a} (-1)^{a} 2^{r-a} \sum_{i_{1}+\cdots+i_{a}=l+a-r, i_{1},\ldots,i_{a} \geq1} \frac{G_{i_{1}}G_{i_{2}} \cdots G_{i_{a}}}{i_{1}i_{2} \cdots i_{a}} \\ &{} -\sum_{i_{1}+\cdots+i_{r}=l, i_{1},\ldots,i_{r}\geq1} \frac{G_{i_{1}} G_{i_{2}}\cdots G_{i_{r}}}{i_{1}i_{2} \cdots i_{r}}. \end{aligned}$$
(4.18)

Assume that \(\Lambda_{m} \neq0\), for a positive integer \(m>r\). Then we have the following:

  1. (a)
    $$\begin{aligned} &\frac{1}{m} \Lambda_{m+1}+ \sum _{n=-\infty, n\neq0}^{\infty}\Biggl( - \frac{1}{m} \sum _{j=1}^{m-r}\frac{(m)_{j}}{(2\pi in)^{j}} \Lambda_{m-j+1} \Biggr) e^{2\pi in x} \\ &\quad = \textstyle\begin{cases} \sum_{i_{1}+\cdots+i_{r}=m, i_{1}, \ldots, i_{r}\geq1}\frac{1}{i_{1} i_{2}\cdots i_{r}} G_{i_{1}}(\langle x\rangle ) G_{i_{2}}(\langle x\rangle ) \cdots G_{i_{r}}(\langle x\rangle )& \textit{for } x \in\mathbb{Z}^{c}, \\ \sum_{i_{1}+\cdots+i_{r}=m, i_{1}, \ldots, i_{r}\geq1}\frac{1}{i_{1} i_{2}\cdots i_{r}} G_{i_{1}}G_{i_{2}}\cdots G_{i_{r}} + \frac{1}{2}\Lambda_{m} & \textit{for } x \in\mathbb{Z}, \end{cases}\displaystyle \end{aligned}$$
    (4.19)
  2. (b)
    $$\begin{aligned} & \frac{1}{m} \Lambda_{m+1} + \frac{1}{m} \sum_{j=1}^{m-r} \binom{m}{j} \Lambda_{m-j+1}B_{j} \bigl(\langle x\rangle \bigr) \\ &\quad =\sum_{i_{1}+\cdots+i_{r}=m, i_{1}, \ldots, i_{r}\geq1}\frac{1}{i_{1} i_{2}\cdots i_{r}} G_{i_{1}} \bigl(\langle x\rangle \bigr)G_{i_{2}} \bigl(\langle x \rangle \bigr)\cdots G_{i_{r}} \bigl(\langle x\rangle \bigr), \end{aligned}$$
    (4.20)

    for \(x\in\mathbb{Z}^{c}\), and

    $$\begin{aligned} & \frac{1}{m} \Lambda_{m+1} + \frac{1}{m} \sum_{j=2}^{m-r} \binom {m}{j} \Lambda_{m-j+1} B_{j} \bigl(\langle x\rangle \bigr) \\ & \quad =\sum_{i_{1}+\cdots+i_{r}=m, i_{1}, \ldots, i_{r}\geq1}\frac{1}{i_{1} i_{2}\cdots i_{r}} G_{i_{1}}G_{i_{2}} \cdots G_{i_{r}} + \frac{1}{2} \Lambda_{m}, \end{aligned}$$
    (4.21)

    for \(x\in\mathbb{Z}\).

References

  1. 1.

    Araci, S, Sen, E, Acikgoz, M: Theorems on Genocchi polynomials of higher order arising from Genocchi basis. Taiwan. J. Math. 18(2), 473-482 (2014)

    MathSciNet  Article  MATH  Google Scholar 

  2. 2.

    Bayad, A, Chikhi, J: Apostol-Euler polynomials and asymptotics for negative binomial reciprocals. Adv. Stud. Contemp. Math. (Kyungshang) 24(1), 33-37 (2014)

    MathSciNet  MATH  Google Scholar 

  3. 3.

    Cangul, IN, Kurt, V, Ozden, H, Simsek, Y: On the higher-order w-q-Genocchi numbers. Adv. Stud. Contemp. Math. (Kyungshang) 19(1), 39-57 (2009)

    MathSciNet  MATH  Google Scholar 

  4. 4.

    Cenkci, M, Can, M, Kurt, V: q-Extensions of Genocchi numbers. J. Korean Math. Soc. 43, 183-198 (2006)

    MathSciNet  Article  MATH  Google Scholar 

  5. 5.

    Gaboury, S, Tremblay, R, Fugere, B-J: Some explicit formulas for certain new classes of Bernoulli, Euler and Genocchi polynomials. Proc. Jangjeon Math. Soc. 17(1), 115-123 (2014)

    MathSciNet  MATH  Google Scholar 

  6. 6.

    Ge, JK, Luo, QM: An elliptic extension of the Genocchi polynomials. Filomat 30(7), 1899-1909 (2016)

    MathSciNet  Article  MATH  Google Scholar 

  7. 7.

    He, Y, Araci, S, Srivastava, HM, Acikgoz, M: Some new identities for the Apostol-Bernoulli polynomials and the Apostol-Genocchi polynomials. Appl. Math. Comput. 262, 31-41 (2015)

    MathSciNet  Google Scholar 

  8. 8.

    Kim, T: Some identities for the Bernoulli, the Euler and Genocchi numbers and polynomials. Adv. Stud. Contemp. Math. 20(1), 23-28 (2015)

    MathSciNet  MATH  Google Scholar 

  9. 9.

    Luo, QM: Fourier expansions and integral representations for Genocchi polynomials. J. Integer Seq. 12, Article 09.1.4 (2009)

    MathSciNet  MATH  Google Scholar 

  10. 10.

    Marsden, JE: Elementary Classical Analysis. Freeman, New York (1974)

    MATH  Google Scholar 

  11. 11.

    Shiratani, K, Yokoyama, S: An application of p-adic convolutions. Mem. Fac. Sci., Kyushu Univ., Ser. A, Math. 36(1), 73-83 (1982)

    MathSciNet  MATH  Google Scholar 

  12. 12.

    Zill, DG, Cullen, MR: Advanced Engineering Mathematics. Jones & Bartlett, Boston (2006)

    MATH  Google Scholar 

  13. 13.

    Miki, H: A relation between Bernoulli numbers. J. Number Theory 10(3), 297-302 (1978)

    MathSciNet  Article  MATH  Google Scholar 

  14. 14.

    Kim, T, Kim, DS, Jang, L-C, Jang, G-W: Fourier series of sums of products of Bernoulli functions and their applications. J. Nonlinear Sci. Appl. 10, 2798-2815 (2017)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Dunne, GV, Schubert, C: Bernoulli number identities from quantum field theory and topological string theory. Commun. Number Theory Phys. 7(2), 225-249 (2013)

    MathSciNet  Article  MATH  Google Scholar 

  16. 16.

    Faber, C, Pandharipande, R: Hodge integrals and Gromov-Witten theory. Invent. Math. 139(1), 173-199 (2000)

    MathSciNet  Article  MATH  Google Scholar 

  17. 17.

    Kim, DS, Kim, T: Identities arising from higher-order Daehee polynomial bases. Open Math. 13, 196-208 (2015)

    MathSciNet  MATH  Google Scholar 

  18. 18.

    Kim, DS, Kim, T: Euler basis, identities, and their applications. Int. J. Math. Math. Sci. 2012, Article ID 343981 (2012)

    MathSciNet  MATH  Google Scholar 

  19. 19.

    Kim, DS, Kim, T: Bernoulli basis and the product of several Bernoulli polynomials. Int. J. Math. Math. Sci. 2012, Article ID 463659 (2012)

    MathSciNet  MATH  Google Scholar 

  20. 20.

    Kim, DS, Kim, T: Some identities of higher order Euler polynomials arising from Euler basis. Integral Transforms Spec. Funct. 24(9), 734-738 (2013)

    MathSciNet  Article  MATH  Google Scholar 

  21. 21.

    Gessel, IM: On Miki’s identities for Bernoulli numbers. J. Number Theory 110(1), 75-82 (2005)

    MathSciNet  Article  MATH  Google Scholar 

  22. 22.

    Rim, S-H, Lee, SJ, Moon, EJ, Jin, JH: On the q-Genocchi numbers and polynomials associated with q-zeta function. Proc. Jangjeon Math. Soc. 12(3), 261-267 (2009)

    MathSciNet  MATH  Google Scholar 

  23. 23.

    Srivastava, HM: Some generalizations and basic extensions of the Bernoulli, Euler and Genocchi polynomials. Appl. Math. Inf. Sci. 5(3), 390-414 (2011)

    MathSciNet  Google Scholar 

  24. 24.

    Jang, G-W, Kim, DS, Kim, T, Mansour, T: Fourier series functions related Bernoulli polynomials. Adv. Stud. Contemp. Math. (Kyungshang) 27, 49-62 (2017)

    MATH  Google Scholar 

  25. 25.

    Kim, T, Kim, DS, Rim, S-H, Dolgy, DV: Fourier series of higher-order Bernoulli functions and their applications. J. Inequal. Appl. 2017(2017), 8 (2017)

    MathSciNet  Article  MATH  Google Scholar 

  26. 26.

    Liu, H, Wang, W: Some identities on the Bernoulli, Euler and Genocchi polynomials via power sums and alternate power sums. Discrete Math. 309, 3346-3363 (2009)

    MathSciNet  Article  MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Taekyun Kim.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors read and approved the final manuscript.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kim, T., Kim, D.S., Jang, L.C. et al. Sums of finite products of Genocchi functions. Adv Differ Equ 2017, 268 (2017). https://doi.org/10.1186/s13662-017-1325-9

Download citation

MSC

  • 11B83
  • 42A16

Keywords

  • Fourier series
  • Bernoulli functions
  • Genocchi polynomials
  • Genocchi functions