Skip to main content
Figure 1 | Advances in Difference Equations

Figure 1

From: A stochastic prey-predator model with time-dependent delays

Figure 1

Solution of system ( 2 ) for \(\pmb{r=0.3}\) , \(\pmb{a_{11}=0.6}\) , \(\pmb{a_{12}=0.2}\) , \(\pmb{a_{13}=0.5}\) , \(\pmb{d=0.4}\) , \(\pmb{a_{21}=0.6}\) , \(\pmb{a_{22}=0.4}\) , \(\pmb{a_{23}=0.3}\) , \(\pmb{\tau_{1}(t)=0.2(2+\cos t)}\) , \(\pmb{\tau_{2}(t)=0.3(1+\sin t)}\) , \(\pmb{\tau_{3}(t)=0.2(2+\sin t)}\) , \(\pmb{\tau_{4}(t)=0.3(1+\sin t)}\) , \(\pmb{\sigma _{12}=0.2}\) , \(\pmb{\sigma_{13}=0.4}\) , \(\pmb{\sigma_{14}=0.2}\) , \(\pmb{\sigma_{21}=\sigma _{22}=\sigma_{23}=\sigma_{24}=0.2}\) . (a) \(\sigma _{11}=0.8\), \(\sigma_{21}=0.2\). (b) \(\sigma_{11}=0.2\), \(\sigma_{21}=0.2\).

Back to article page