- Research
- Open Access
An optimized finite difference Crank-Nicolson iterative scheme for the 2D Sobolev equation
- Hong Xia^{1} and
- Zhendong Luo^{2}Email author
https://doi.org/10.1186/s13662-017-1253-8
© The Author(s) 2017
- Received: 13 April 2017
- Accepted: 22 June 2017
- Published: 10 July 2017
Abstract
In this paper, we devote ourselves to establishing the unconditionally stable and absolutely convergent optimized finite difference Crank-Nicolson iterative (OFDCNI) scheme containing very few degrees of freedom but holding sufficiently high accuracy for the two-dimensional (2D) Sobolev equation by means of the proper orthogonal decomposition (POD) technique, analyzing the stability and convergence of the OFDCNI solutions and using the numerical simulations to verify the feasibility and effectiveness of the OFDCNI scheme.
Keywords
- optimized finite difference Crank-Nicolson iterative scheme
- Sobolev equation
- proper orthogonal decomposition
- stability and convergence
- numerical simulation
MSC
- 65M60
- 65N30
- 65N15
1 Introduction
The Sobolev equation plays an extremely important role in many numerical simulations of mathematical physics problems such as the fluid seepage through fractured rock or soil [3], the heat exchange in different media [4], and the moisture migration in soil [5]. However, because the Sobolev equation generally has complex known data or computational domains in the actual engineering applications, even if theoretically there exists the analytical solution, it can not be usually sought out so that one has to rely on the numerical methods. In nearly forty years, the Sobolev equation has been closely watched, there have been many numerical research reports (see, e.g., [6–14]). Among all numerical methods, the finite difference Crank-Nicolson (FDCN) scheme (see [11]) is regarded as one of the simplest and most convenient as well as the most easily programmed for calculating high accuracy numerical methods for solving the 2D Sobolev equation. However, the classical FDCN scheme for the 2D Sobolev equation is a macroscale system of equations containing lots of unknowns, i.e., degrees of freedom so as to undertake very large computational load in the real-world engineering applications. Thus, an important issue is how to decrease the unknowns of the classical FDCN scheme so as to alleviate the truncated error amassing in the actual calculating procedure and retrench the calculating time but keep sufficiently high accuracy of numerical solutions.
A lot of numerical simulations (see, e.g., [15–28]) have verified that the proper orthogonal decomposition (POD) technique is a very effective approach to decrease the degrees of freedom for numerical models and alleviate the truncated error amassing in the numerical calculation. But the most existing reduced-order models as mentioned above were built via the POD basis formulated with the classical numerical solutions at all time nodes, before computing the reduced-order numerical solutions at the same time nodes, which were some nugatory repeated calculations. Since 2014, some reduced-order extrapolating finite difference (FD) schemes based on the POD technique for PDEs have been established successively by Luo’s team (see, e.g., [29–32]) in order to avert the valueless repeated computations.
However, as far as we know, there has been not any paper that the POD technique is used to decrease the degrees of freedom in the classical FDCN scheme for the 2D Sobolev equation. Therefore, in this article, we use the POD technique to establish an optimized finite difference iterative (OFDCNI) scheme containing very few unknowns but holding sufficiently high accuracy for the 2D Sobolev equation, analyze the stability and convergence of the OFDCNI solutions, and verify the feasibility and effectiveness of the OFDCNI scheme by means of numerical simulations.
The major difference between the OFDCNI scheme and the existing POD-based reduced-order extrapolating FDCN schemes (see, e.g., [29–32]) consists in that the Sobolev equation not only includes the time first-order derivative term and the spacial variables second-order derivative terms, but it also contains a mixed derivative term about time first-order and spacial variables second-order so that either the establishment of the OFDCNI scheme or the analysis of the stability and convergence of the OFDCNI solutions faces more difficulties and needs more skills than the existing reduced-order extrapolating FD schemes as mentioned, but the Sobolev equation has some specific applications. Fortunately, we adopt the vector and matrix analysis approaches to analyze the stability and convergence of the classical FDCN and OFDCNI solutions such that the theoretical analysis not only becomes much simpler and more convenient but the numerical simulations in computer can also be easily implemented. Especially, the OFDCNI scheme has fully second-order accuracy, is unconditionally stable and absolutely convergent, and is only built by the POD basis constituted with the classical FDCN solutions over the initial very short time span so that it also has not repeated calculation like in [29–32]. Hence, it is development and improvement over the existing ones mentioned above.
The rest of the article is arranged as follows. The classical FDCN scheme for the 2D Sobolev equation is posed in Section 2. The OFDCNI scheme based on the POD technique for the 2D Sobolev equation is built in Section 3. The stability and convergence of the OFDCNI solutions is deduced in Section 4. In Section 5, some numerical simulations are used to verify the feasibility and effectiveness of the OFDCNI scheme. Finally, some main conclusions are generalized in Section 6.
2 The classical FDCN scheme for the 2D Sobolev equation
Let Δt be the time step and Δx and Δy be, separately, the spacial steps in x and y directions, \(u_{i,j}^{n}\) denote the classical FDCN approximations of u at points \((x_{i}, y_{j}, t_{n})\) (\(x_{i}=a+i\Delta x\), \(y_{j}=c+j\Delta y\), \(t_{n}=n\Delta t\), \(0\le i\le I\equiv[(b-a)/\Delta x]\), \(0\le j\le J\equiv[(d-c)/\Delta y]\), and \(0\le n\le N\equiv[T/\Delta t]\), where \([R]\) represents the integer part of the real number R).
Define the norm of matrix \(\hat{\boldsymbol{A}}\) by \(\Vert \hat {\boldsymbol{A}} \Vert _{2,2}=\sup_{\boldsymbol{x}\neq0}{\Vert \hat {\boldsymbol{A}}\boldsymbol{x} \Vert _{2}}/{\Vert \boldsymbol{x} \Vert _{2}}\), where \(\Vert \boldsymbol{x} \Vert _{2}=[\sum _{i=1}^{M}x_{i}^{2}]^{1/2}\) denotes the \(l^{2}\) norm of vector \(\boldsymbol{x}=(x_{1}, x_{2}, \ldots, x_{M})\) and \(M=(I+1)(J+1)\). For the classical FDCN scheme, we have the following results.
Theorem 1
Proof
Remark 1
In this study, we adopt a simpler explicit FDCN scheme to discrete the 2D Sobolev equation, but the ideas and approaches here can be easily extended to other FDCN schemes, for example, a staggered direction FDCN scheme or an implicit FDCN scheme.
If f, G, Q, Δt, Δx, Δy, and parameters ε and γ are given, then we can gain the set of FDCN solutions \(\{\boldsymbol{U}^{1},\boldsymbol{U}^{2}, \ldots, \boldsymbol{U}^{N} \}\) by solving (3). A subset \(\{\boldsymbol {U}^{i}\}_{i=1}^{L}\) (usually \(L\ll N\)), called the snapshots, is extracted from the initial L solution vectors of \(\{\boldsymbol{U}^{1},\boldsymbol{U}^{2},\ldots,\boldsymbol{U}^{N} \}\).
3 The OFDCNI scheme for the 2D Sobolev equation
3.1 The constitution of the POD basis
Remark 2
Because the degree L of the matrix \(\boldsymbol{A}_{u}^{T}\boldsymbol {A}_{u}\) is far smaller than the degree M of the matrix \(\boldsymbol{A}_{u}\boldsymbol{A}_{u}^{T}\), i.e., the number of extracted snapshots L is much smaller than that of the spacial mesh points M, but their positive eigenvalues \(\lambda_{i}\) (\(i=1,2,\ldots,r\)) are the same. Thus, we may first compute the eigenvalues \(\lambda_{i}\) (\(i=1,2,\ldots,r\)) for the matrix \(\boldsymbol{A}_{u}^{T}\boldsymbol {A}_{u}\) and the corresponding eigenvectors \(\boldsymbol{\psi}_{i}\) (\(i=1,2,\ldots ,r\)), and then, by means of the formula \(\boldsymbol{\varphi}_{i}=\boldsymbol{A}_{u}\boldsymbol{\psi }_{i}/\sqrt{{\lambda_{i}}}\) (\(i=1,2,\ldots,r\)), we can acquire the eigenvectors \(\boldsymbol{\varphi}_{i}\) (\(i=1,2,\ldots,r\)) corresponding to the positive eigenvalues \(\lambda _{i}\) (\(i=1,2,\ldots,r\)) for the matrix \(\boldsymbol{A}_{u}\boldsymbol {A}_{u}^{T}\). Thus, we can conveniently find out the POD basis.
3.2 The formulation of the OFDCNI scheme for 2D Sobolev equation
4 The existence, stability, and convergence of the OFDCNI solutions
In the following, we devote ourselves to deducing the existence, stability, and convergence of the OFDCNI solutions. We have the following main results.
Theorem 2
Proof
Remark 4
The error factors \(\sqrt{\lambda_{d+1}}\) and \(E(n)=\exp [ {4(n-L)\gamma\Delta t(\Delta x^{-2}}+ \Delta y^{-2}) ] \) (\(n=L+1, L+2, \ldots, M\)) in Theorem 2 are induced by the reduced-order of the classical FDCN scheme and the iteration, respectively, which could be acted as the suggestions of choosing the number d of POD bases, i.e., as long as we choose d such that \(E(N)\sqrt{\lambda _{d+1}}=O(\Delta x^{2},\Delta y^{2}, \Delta t^{2})\).
5 Numerical simulations
In this section, we provide some numerical simulations to verify the superiority of the OFDCNI scheme for the 2D Sobolev equation.
In the 2D Sobolev equation (1), we chose the computational domain as \(\Omega=\{(x,y):0\leqslant x\leqslant2,0\leqslant y\leqslant2\}\), \(f(x,y,t)=2\pi^{2}e^{-\pi t}\sin\pi x\sin\pi y\), \(Q(x,y,t)=0\), \(G(x,y)=\sin\pi x\sin\pi y\), \(\varepsilon=10^{-8}\), and \(\gamma=1\). The spatial steps are chosen as \(\Delta x=\Delta y=0.01\) and the time step is chosen as \(\Delta t=0.0001\).
Due to the OFDCNI scheme greatly decreasing the degrees of freedom, the consuming time of the OFDCNI scheme is far less than that of the classical FDCN scheme in the above numerical simulations. For example, the execution time for the OFDCNI scheme with five POD bases was only 8 seconds at \(t=2\), while that of the classical FDCN scheme was 96 seconds in the same PC, but the errors of both solutions did not exceed \(O(10^{-4})\), which also shows that the numerical computational results were in line with the theoretical ones.
In addition, in the above numerical simulations, we only used the initial few given classical FDCN solutions over a very short time span \([0,T_{0}]\) (\(T_{0}\ll T\)) as the snapshots to constitute the POD basis and build the OFDCNI scheme before calculating the OFDCNI solutions over the total time span \([0,T]\). When one solves the real-world engineering problems, one may use the recorded data (over a very short time span \([0,T_{0}]\)) to constitute the POD basis, to build the OFDCNI scheme, and to predict future physical phenomena and changes (over a time span \([T_{0},T]\)). Therefore, the OFDCNI scheme holds very extensive applied prospect.
6 Conclusions
In this article, we have established the OFDCNI scheme based on the POD technique for the 2D Sobolev equation. First, the snapshots are extracted from the initial few FDCN solutions for the 2D Sobolev equation. And then, the POD basis is constituted by the snapshots, and the OFDCNI scheme having the fully second-order accuracy and containing very few unknowns is established by replacing the unknown FDCN solution vectors with the linear-combination of the POD basis. Finally, the stability and convergence of the OFDCNI solutions are deduced. The numerical simulations have exhibited that the OFDCNI solutions are far better than the classical ones. This implies that the OFDCNI scheme is highly efficient and reliable for solving the 2D Sobolev equation.
Even though we only discuss the OFDCNI scheme for the 2D Sobolev equation on the domain \(\overline{\Omega}=[a,b]\times[c, d]\), the approach here can be extended to more general domains, even extended to more complicated engineering problems. Therefore, the technique here has very extensive applications.
Declarations
Acknowledgements
This research was supported by the National Science Foundation of China grant (1167116) and the Fundamental Research Funds for the Central Universities (2016MS33).
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
Authors’ Affiliations
References
- Davis, PL: A quasilinear parabolic and a related third order problem. J. Math. Anal. Appl. 49, 327-335 (1970) MathSciNetMATHGoogle Scholar
- Ewing, RE: A coupled nonlinear hyperbolic system. Ann. Mat. Pura Appl. 114(4), 331-349 (1977) MathSciNetView ArticleGoogle Scholar
- Barenblett, GI, Zheltov, IP, Kochian, IN: Basic concepts in the theory of seepage homogeneous liquids in fissured rocks. J. Appl. Math. Mech. 24(5), 1286-1303 (1960) View ArticleMATHGoogle Scholar
- Ting, TW: A cooling process according to two-temperature theory of heat conduction. J. Math. Anal. Appl. 45(1), 23-31 (1974) MathSciNetView ArticleMATHGoogle Scholar
- Shi, DM: On the initial boundary value problem of nonlinear equation of the migration of the moisture in soil. Acta Math. Appl. Sin. 13(1), 31-38 (1990) MathSciNetMATHGoogle Scholar
- Cao, YH: The generalized difference scheme for linear Sobolev equation in two dimensions. Math. Numer. Sin. 27(3), 243-256 (2005) MathSciNetGoogle Scholar
- Ewing, RE: Time-stepping Galerkin methods for nonlinear Sobolev partial differential equations. SIAM J. Numer. Anal. 15(6), 1125-1150 (1978) MathSciNetView ArticleMATHGoogle Scholar
- Li, H, Zhou, WW, Fang, ZC: Crank-Nicolson fully discrete finite element formulation for the Sobolev equations. Math. Numer. Sin. 35(1), 40-48 (2013) MathSciNetGoogle Scholar
- Li, H, Luo, ZD, An, J, Sun, P: A fully discrete finite volume element formulation for Sobolev equation and numerical simulation. Math. Numer. Sin. 34(2), 163-172 (2012) MathSciNetMATHGoogle Scholar
- Ewing, RE: Numerical solution of Sobolev partial differential equations. SIAM J. Numer. Anal. 12(3), 345-363 (1975) MathSciNetView ArticleMATHGoogle Scholar
- Sun, TJ, Yang, DP: The finite difference streamline diffusion methods for Sobolev equations with convection-dominated term. Appl. Math. Comput. 125(2), 325-345 (2002) MathSciNetMATHGoogle Scholar
- Zhao, ZH, Li, H, Luo, ZD: A new space-time continuous Galerkin method with mesh modification for Sobolev equations. J. Math. Anal. Appl. 440, 86-105 (2016) MathSciNetView ArticleMATHGoogle Scholar
- Luo, ZD: A POD-based reduced-order TSCFE extrapolation iterative format for two-dimensional heat equations. Bound. Value Probl. 2015, 59 (2015) MathSciNetView ArticleMATHGoogle Scholar
- Liu, Y, Li, H, He, S, Gao, W, Mu, S: A new mixed scheme based on variation of constants for Sobolev equation with nonlinear convection term. Appl. Math. J. Chin. Univ. Ser. B 28(2), 158-172 (2013) MathSciNetView ArticleMATHGoogle Scholar
- Cazemier, W, Verstappen, RWCP, Veldman, AEP: Proper orthogonal decomposition and low-dimensional models for driven cavity flows. Phys. Fluids 10, 1685-1699 (1998) View ArticleGoogle Scholar
- Dimitriu, G, Stefanescu, R, Navon, IM: POD-DEIM approach on dimension reduction of a multi-species host-parasitoid system. Ann. Acad. Rom. Sci. Ser. Math. Appl. 7(1), 173-188 (2015) MathSciNetMATHGoogle Scholar
- Ghosh, R, Joshi, Y: Error estimation in POD-based dynamic reduced-order thermal modeling of data centers. Int. J. Heat Mass Transf. 57, 698-707 (2013) View ArticleGoogle Scholar
- Holmes, P, Lumley, JL, Berkooz, G: Turbulence, Coherent Structures, Dynamical Systems and Symmetry. Cambridge University Press, Cambridge (1996) View ArticleMATHGoogle Scholar
- Kunisch, K, Volkwein, S: Galerkin proper orthogonal decomposition methods for a general equation in fluid dynamics. SIAM J. Numer. Anal. 40, 492-515 (2002) MathSciNetView ArticleMATHGoogle Scholar
- Luo, ZD, Du, J, Xie, ZH, Guo, Y: A reduced stabilized mixed finite element formulation based on proper orthogonal decomposition for the non-stationary Navier-Stokes equations. Int. J. Numer. Methods Eng. 88, 31-46 (2011) MathSciNetView ArticleMATHGoogle Scholar
- Luo, ZD, Li, H, Zhou, YJ, Xie, ZH: A reduced finite element formulation and error estimates based on POD method for two-dimensional solute transport problems. J. Math. Anal. Appl. 385, 371-383 (2012) MathSciNetView ArticleMATHGoogle Scholar
- Luo, ZD, Xie, ZH, Shang, YQ, Chen, J: A reduced finite volume element formulation and numerical simulations based on POD for parabolic problems. J. Comput. Appl. Math. 235, 2098-2111 (2011) MathSciNetView ArticleMATHGoogle Scholar
- Luo, ZD, Yang, XZ, Zhou, YJ: A reduced finite difference scheme based on singular value decomposition and proper orthogonal decomposition for Burgers equation. J. Comput. Appl. Math. 229, 97-107 (2009) MathSciNetView ArticleMATHGoogle Scholar
- Luo, ZD, Zhu, J, Wang, RW, Navon, IM: Proper orthogonal decomposition approach and error estimation of mixed finite element methods for the tropical Pacific Ocean reduced gravity model. Comput. Methods Appl. Mech. Eng. 196, 4184-4195 (2007) MathSciNetView ArticleMATHGoogle Scholar
- Ly, HV, Tran, HT: Proper orthogonal decomposition for flow calculations and optimal control in a horizontal CVD reactor. Q. Appl. Math. 60, 631-656 (2002) MathSciNetView ArticleMATHGoogle Scholar
- Sirovich, L: Turbulence, the dynamics of coherent structures, part I-III. Q. Appl. Math. 45, 561-590 (1987) View ArticleMATHGoogle Scholar
- Stefanescu, R, Sandu, A, Navon, IM: Comparison of POD reduced order strategies for the nonlinear 2D shallow water equations. Int. J. Numer. Methods Fluids 76(8), 497-521 (2014) MathSciNetView ArticleGoogle Scholar
- Sun, P, Luo, ZD, Zhou, YJ: Some reduced finite difference schemes based on a proper orthogonal decomposition technique for parabolic equations. Appl. Numer. Math. 60, 154-164 (2010) MathSciNetView ArticleMATHGoogle Scholar
- Luo, ZD: A POD-based reduced-order finite difference extrapolating model for the non-stationary incompressible Boussinesq equations. Adv. Differ. Equ. 2014, 272 (2014) MathSciNetView ArticleMATHGoogle Scholar
- Luo, ZD, Gao, JQ: A POD-based reduced-order finite difference time-domain extrapolating scheme for the 2D Maxwell equations in a Lossy medium. J. Math. Anal. Appl. 444, 433-451 (2016) MathSciNetView ArticleMATHGoogle Scholar
- Luo, ZD, Jin, SJ, Chen, J: A reduced-order extrapolation central difference scheme based on POD for two dimensional fourth-order hyperbolic equations. Appl. Math. Comput. 289, 396-408 (2016) MathSciNetGoogle Scholar
- An, J, Luo, ZD, Li, H, Sun, P: Reduced-order extrapolation spectral-finite difference scheme based on POD method and error estimation for three-dimensional parabolic equation. Front. Math. China 10(5), 1025-1040 (2015) MathSciNetView ArticleMATHGoogle Scholar
- Zhang, WS: Finite Difference Methods for Partial Differential Equations in Science Computation. Higher Education Press, Beijing (2006) Google Scholar
- Chung, T: Computational Fluid Dynamics. Cambridge University Press, Cambridge (2002) View ArticleMATHGoogle Scholar