Skip to main content

The composition of extended Mittag-Leffler functions with pathway integral operator

Abstract

In this paper, we present certain composition formulae of the pathway fractional integral operators associated with two extended Mittag-Leffler functions. Here, we find out the relevant connections of some particular cases of the main results with those earlier ones.

Introduction

Mittag-Leffler functions play a vital role in determining the solutions of fractional differential and integral equations which are associated with an extensive variety of problems in diverse areas of mathematics and mathematical physics. In addition, from exponential behavior, the deviations of physical phenomena could also be represented by means of Mittag-Leffler functions. Therefore, the uses of Mittag-Leffler functions are constantly rising, especially in physics. For more details about the recent research in the field of dynamical systems theory, stochastic systems, non-equilibrium statistical mechanics and quantum mechanics, the readers may refer to the recent work of the researchers [15] and the references cited therein.

Now, we begin with the Mittag-Leffler functions \(E_{\alpha}(z)\) and \(E_{\alpha,\beta}(z)\) defined in the form of the following series:

$$ E_{\alpha}(z)=\sum_{n=0}^{\infty} \frac{z^{n}}{\Gamma(\alpha n+1)}, \quad z\in\mathbb{C}; \Re(\alpha)>0 $$
(1)

and

$$ E_{\alpha,\beta}(z)=\sum_{n=0}^{\infty} \frac{z^{n}}{\Gamma(\alpha n+\beta)}, \quad z, \beta\in\mathbb{C}; \Re(\alpha)>0, $$
(2)

respectively. For further study of Mittag-Leffler functions like generalizations and applications, the readers may refer to the work of researchers [610], Kilbas et al. [11], and Saigo and Kilbas [12]. In recent years, the Mittag-Leffler function (1) and some of its generalizations have been numerically established in the complex plane [13, 14]. A new generalization of the Mittag-Leffler functions \(E_{\alpha, \beta}(z)\) in (2) has been defined by Prabhakar [15] as given below:

$$ E_{\alpha,\beta}^{\gamma}(z)=\sum _{n=0}^{\infty} \frac{(\gamma )_{n}}{\Gamma(\alpha n+\beta)}\frac{z^{n}}{n!}, \quad z, \beta\in\mathbb{C}; \Re (\alpha)>0, $$
(3)

where \((\gamma)_{n}\) denotes the well-known Pochhammer’s symbol which is defined by

$$ (\gamma)_{n}=\left \{ \textstyle\begin{array}{l@{\quad}l}1& (n=0, \gamma\in\mathbb{C}),\\ \gamma(\gamma+1)\cdots(\gamma+n-1)& (n\in\mathbb{N}, \gamma\in\mathbb {C}). \end{array}\displaystyle \right . $$

In fact, the following special cases are satisfied:

$$ E_{\alpha,\beta}^{1}(z)=E_{\alpha, \beta}(z)=E_{\alpha, 1}^{1}(z)=E_{\alpha}(z). $$
(4)

Many researchers have established the significance and great consideration of Mittag-Leffler functions in the theory of special functions to explore the generalizations and some applications. Various extensions for these functions are found in [1620]. Srivastava and Tomovski [21] defined the further generalization of the Mittag-Leffler function \(E_{\alpha, \beta}^{\gamma }(z)\) as given in (3), which is defined as

$$ E_{\alpha, \beta}^{\gamma,\kappa}(z)=\sum _{n=0}^{\infty} \frac {(\gamma)_{n\kappa}}{\Gamma(\alpha n+\beta)}\frac{z^{n}}{n!}, $$
(5)

where \(z,\beta,\gamma\in\mathbb{C}\); \(\Re(\alpha)>\max\{0, \Re(\kappa )-1\}\); \(\Re(\kappa)>0\).

Özarslan and Yilmaz [22] investigated an extended Mittag-Leffler function \(E_{\alpha,\beta}^{\gamma;c}(z;p)\), which is defined as

$$ E_{\alpha,\beta}^{\gamma;c}(z;p)=\sum _{n=0}^{\infty} \frac {B_{p}(\gamma+n, c-\gamma)}{B(\gamma, c-\gamma)}\frac{(c)_{n}}{\Gamma (\alpha n+\beta)} \frac{z^{n}}{n!}, $$
(6)

where \(p\geq0\), \(\Re(c)>\Re(\gamma)>0\) and \(B_{p}(x,y)\) is an extended beta function defined in [23, 24] as follows:

$$ B_{p}(x,y)= \int _{0}^{1}t^{x-1}(1-t)^{y-1}e^{-\frac{p}{t(1-t)}} \,dt, $$
(7)

where \(\Re(p)>0\), \(\Re(x)>0\) and \(\Re(y)>0\). If \(p=0\), then the function \(B_{p}(x,y)\) reduces to the following beta function:

$$ B(x,y)= \int _{0}^{1}t^{x-1}(1-t)^{y-1} \,dt. $$
(8)

The gamma function is defined by

$$ \Gamma(z)= \int _{0}^{\infty}t^{z-1}e^{-t}\,dt; \quad \Re(z)>0. $$
(9)

By inspection, we conclude the following relation:

$$ \Gamma(z+1)=z\Gamma(z). $$
(10)

Mittal et al. [25] defined an extended generalized Mittag-Leffler function as

$$ E_{\alpha, \beta}^{\gamma, q; c}(z;p)=\sum _{n=0}^{\infty} \frac {B_{p}(\gamma+nq, c-\gamma)}{B(\gamma, c-\gamma)}\frac{(c)_{nq}}{\Gamma (\alpha n+\beta)} \frac{z^{n}}{n!}, $$
(11)

where \(\alpha, \beta, \gamma\in\mathbb{C}\), \(\Re(\alpha)>0\), \(\Re(\beta )>0\), \(\Re(\gamma)>0\), \(q>0\) and \(B_{p}(x,y)\) is an extended beta function defined in (7).

The fractional calculus is a field of applied mathematics that deals with the fractional derivatives and fractional integrals of arbitrary orders. During the last few decades, many researchers have applied fractional calculus to all fields of science such as engineering and mathematics. The researchers have developed a significant contributions in the field of fractional calculus such as fractional derivatives of constant and variable orders, global existence solution of differential equations; an alternative method for solving generalized differential equations of fractional order, a new type of fractional derivative formula containing the normalized sine function without singular kernel. For the recent development in the field of fractional calculus, the readers are referred to the work of [2631] and [3235].

Recently, Nair [36] introduced a pathway fractional integral operator by using the idea of Mathai [37], and Mathai and Haubold [38, 39], which is defined as

$$ \bigl( P_{0+}^{\mu, \lambda}f \bigr) (x)=x^{\mu} \int _{0}^{[\frac{x}{\alpha(1-\lambda)}]}\biggl[ 1- \frac{\alpha(1-\lambda)\tau}{x} \biggr]^{\frac{\mu}{(1-\lambda)}}f(\tau)\,d\tau, $$
(12)

where \(f\in L(a,b)\) (\(L(a,b)\) is a Lebesgue measurable real or complex-valued function), \({\mu\in\mathbb{C}}\), \(\Re(\mu)>0\), \(\alpha>0\) and \(\lambda<1\) (λ is a pathway parameter) (cf. [40]). For a given scalar λ and scalar random variables, the pathway model is defined by the following probability density function:

$$ f(x)=c|x|^{\nu-1} \bigl[ 1- \alpha(1- \lambda)|x|^{\eta} \bigr]^{\frac{\mu}{(1-\lambda)}}, $$
(13)

where \(x\in(-\infty, \infty)\); \(\eta>0\); \(\mu>0\); \([1-\alpha(1-\lambda)|x|^{\eta}]^{\frac{\mu}{(1-\lambda)}}>0\); \(\nu>0\) and where c and λ denote the normalizing constant and pathway parameter, respectively.

Moreover, the normalizing constants for \(\lambda\in\mathbb{R}\) are defined by the following:

$$ c=\left \{ \textstyle\begin{array}{l@{\quad}l}\frac{1}{2}\frac{\eta[\alpha(1-\lambda)]^{\frac{\nu}{\eta}}\Gamma(\frac {\nu}{\eta}+\frac{\mu}{\lambda-1}+1)}{\Gamma(\frac{\nu}{\eta}) \Gamma(\frac{\mu}{1-\lambda}+1)}& (\lambda< 1),\\ \frac{1}{2}\frac{\eta[\alpha(1-\lambda)]^{\frac{\nu}{\eta}}\Gamma(\frac {\mu}{\lambda-1})}{\Gamma(\frac{\nu}{\eta}) \Gamma(\frac{\mu}{\lambda-1}-\frac{\nu}{\eta})}& (\frac{1}{\lambda -1}-\frac{\nu}{\eta}>0, \lambda>1),\\ \frac{1}{2}\frac{(\alpha\mu)^{\frac{\nu}{\eta}}}{\Gamma(\frac{\nu}{\eta })}& (\lambda\rightarrow1). \end{array}\displaystyle \right . $$

It is noted that if \(\lambda<1\), we have \([ 1-\alpha(1-\lambda)|x|^{\eta} ]^{\frac{\mu}{(1-\lambda)}}>0\), and (13) can be considered a member of the extended generalized type-1 beta family. Also the extended type-1 beta density, the triangular density, the uniform density and many other probability density functions are specific cases of the pathway density function defined in (13) for \({\lambda<1}\).

For instance, if \(\lambda>1\), and by putting \((1-\lambda)=-(\lambda -1)\) in (12), then it yields

$$ \bigl( P_{0+}^{\mu, \lambda}f \bigr) (x)=x^{\mu} \int _{0}^{[\frac{x}{-\alpha(1-\lambda)}]}\biggl[ 1+ \frac{\alpha(\lambda-1)\tau}{x} \biggr]^{\frac{\mu}{-(\lambda-1)}}f(\tau)\,d\tau $$
(14)

and

$$ f(x)=c|x|^{\nu-1} \bigl[ 1+ \alpha( \lambda-1)|x|^{\eta} \bigr]^{-\frac{\mu}{(\lambda-1)}}, $$
(15)

where \(x\in(-\infty, \infty)\); \(\eta>0\); \(\mu>0\); and \(\lambda>1\) represents the extended generalized type-2 beta model for real x. The type-2 beta density function, the F density function, the student t density function and many other density functions are particular cases of the density function defined in (15). Furthermore, if \(\lambda \rightarrow1_{-}\), then (12) reduces to the Laplace integral transform. Similarly, if \(\lambda=0\), \(\alpha=1\) and μ is replaced by \(\mu-1\), then (12) reduces to the well-known Riemann-Liouville fractional integral operator.

The pathway fractional integral operator (12) leads to several other interesting examples such as fractional calculus related to several probability density functions and their applications in statistical theory. Nisar et al. [41] presented the pathway fractional integral formulae associated with Struve function of the first kind. The results given in [40] are a slight generalization of the result provided by Agarwal and Purohit [42] and Nair [36]. Recently, Nisar et al. [43] provided the composition of pathway integral operator associated with generalized k-Mittag-Leffler functions. The main aim of this study is to obtain pathway fractional integral operators associated with extended Mittag-Leffler functions.

Pathway fractional integration of an extended Mittag-Leffler function

In this section, we derive the pathway integration formulae involving the extended Mittag-Leffler functions from (6).

Theorem 1

Suppose that \(\rho; \beta; \gamma; c; \mu\in\mathbb {C}\); \(\{\Re(\rho); \Re(\beta); \Re(\mu); \Re(c)\}>0\); \(\Re(\frac{\mu }{1-\lambda})>-1\); \(\lambda<1\); \(p\geq0\) and \(\omega\in\mathbb{R}\). Then the following formula holds true:

$$ P_{0+}^{\mu, \lambda}\bigl[ \tau^{\beta-1}E_{\rho, \beta}^{\gamma; c} \bigl[ \bigl(\omega \tau^{\rho}\bigr); p \bigr] \bigr](x)= \frac{\Gamma(1+\frac{\mu}{1-\lambda})x^{\mu+\beta}}{[\alpha (1-\lambda)]^{\beta}} E_{\rho, \beta+(1+\frac{\mu}{1-\lambda})}^{\gamma; c}\biggl[ \omega \biggl(\frac{x}{\alpha(1-\lambda)} \biggr)^{\rho}; p \biggr]. $$
(16)

Proof

By using (6) and (12), we have

$$ P_{0+}^{\mu, \lambda}\bigl[ \tau^{\beta-1}E_{\rho, \beta}^{\gamma; c} \bigl[ \bigl(\omega \tau^{\rho}\bigr);p \bigr] \bigr](x)=x^{\mu}\int _{0}^{[\frac{x}{\alpha(1-\lambda)}]}\tau ^{\beta-1} \biggl[1- \frac{\alpha(1-\lambda)\tau}{x} \biggr]^{\frac{\mu}{1-\lambda }}E_{\rho, \beta}^{\gamma; c} \bigl( \omega\tau^{\rho}; p \bigr)\,d\tau. $$

We denote the right-hand side of the above equation by \(I_{1}\), and after interchanging the order of integration and summation, we have

$$ \begin{aligned} I_{1}&=x^{\mu}\int _{0}^{[\frac{x}{\alpha(1-\lambda)}]}\tau^{\beta -1} \biggl[1- \frac{\alpha(1-\lambda)\tau}{x} \biggr]^{\frac{\mu}{1-\lambda}} \sum_{n=0}^{\infty} \frac{B_{p}(\gamma+n, c-\gamma)}{B(\gamma, c-\gamma)}\frac{(c)_{n}}{\Gamma(\rho n+\beta)}\frac{(\omega\tau^{\rho})^{n}}{n!} \,d\tau \\ &=x^{\mu}\sum_{n=0}^{\infty} \frac{B_{p}(\gamma+n, c-\gamma )}{B(\gamma, c-\gamma)}\frac{(c)_{n}}{\Gamma(\rho n+\beta)}\frac{(\omega)^{n}}{n!} \int _{0}^{[\frac{x}{\alpha(1-\lambda)}]}\tau^{\beta+\rho n-1} \biggl[1- \frac{\alpha(1-\lambda)\tau}{x} \biggr]^{\frac{\mu}{1-\lambda}}\,d\tau \\ &=x^{\mu}\sum_{n=0}^{\infty} \frac{B_{p}(\gamma+n, c-\gamma )}{B(\gamma, c-\gamma)}\frac{(c)_{n}}{\Gamma(\rho n+\beta)}\frac{(\omega)^{n}}{n!} \biggl( \frac{x}{\alpha(1-\lambda)} \biggr)^{\rho n+\beta} \frac{\Gamma(1+\frac{\mu}{1-\lambda})\Gamma(\rho n+\beta)}{\Gamma(\rho n+\beta+1+\frac{\mu}{1-\lambda})} \\ &=\frac{x^{\mu+\beta}\Gamma(1+\frac{\mu}{1-\lambda})}{[\alpha(1-\lambda )]^{\beta}}\sum_{n=0}^{\infty} \frac{B_{p}(\gamma+n, c-\gamma )}{B(\gamma, c-\gamma)}\frac{(c)_{n}}{\Gamma(\rho n+\beta+1+\frac{\mu }{1-\lambda})}\frac{(\omega( \frac{x}{\alpha(1-\lambda)} )^{\rho})^{n}}{n!} \\ &=\frac{x^{\mu+\beta}\Gamma(1+\frac{\mu}{1-\lambda})}{[\alpha(1-\lambda )]^{\beta}}E_{\rho, \beta+1+\frac{\mu}{1-\lambda}}^{\gamma; c} \biggl( \omega \biggl(\frac{x}{\alpha(1-\lambda)} \biggr)^{\rho}; p \biggr), \end{aligned} $$

which completes the required proof. □

Corollary 1

If \(p=0\), then (16) leads to the following result of Mittag-Leffler function (see [36]):

$$ P_{0+}^{\mu, \lambda}\bigl[ \tau^{\beta-1}E_{\rho, \beta}^{\gamma; c} \bigl[ \bigl(\omega \tau^{\rho}\bigr) \bigr] \bigr](x)= \frac{x^{\mu+\beta}\Gamma(1+\frac{\mu}{1-\lambda})}{[\alpha (1-\lambda)]^{\beta}}E_{\rho, \beta+1+\frac{\mu}{1-\lambda}}^{\gamma} \biggl( \omega \biggl( \frac{x}{\alpha(1-\lambda)} \biggr)^{\rho} \biggr). $$
(17)

Corollary 2

If \(\delta=1\), \(\alpha=1\), \(\lambda=0\) and \(\mu=\mu -1\), then (16) leads to the following fractional integral formula of extended Mittag-Leffler function (see [44]):

$$ I_{a+}^{\mu}\bigl[ \tau^{\beta-1}E_{\alpha, \beta}^{\gamma} \bigl(\omega( \tau)^{\rho},p \bigr) \bigr](x) =\Gamma( \mu)x^{\mu+\beta}E_{\rho, \beta+\mu}^{\gamma} \bigl(\omega(x)^{\rho},p \bigr). $$
(18)

Corollary 3

If we set \(p=0\) in (18), then it leads to the following well-known result of Mittag-Leffler function (see [7]):

$$ I_{a+}^{\mu}\bigl[ \tau^{\beta-1}E_{\alpha, \beta}^{\gamma} \bigl(\omega( \tau)^{\rho}\bigr) \bigr](x) =\Gamma( \mu)x^{\mu+\beta}E_{\rho, \beta+\mu}^{\gamma} \bigl(\omega(x)^{\rho} \bigr). $$
(19)

Now, we derive the following result by assuming the case that \(\lambda >1\) and using equation (14).

Theorem 2

Suppose that \(\rho; \beta; \gamma; c; \mu\in\mathbb {C}\); \(\{\Re(\rho); \Re(\beta); \Re(\mu); \Re(c)\}>0\); \(\Re(\frac{\mu }{1-\lambda})>-1\); \(\lambda>1\); \(p\geq0\) and \(\omega\in\mathbb{R}\). Then the following formula holds true:

$$ P_{0+}^{\mu, \lambda}\bigl[ \tau^{\beta-1}E_{\rho, \beta}^{\gamma; c} \bigl[ \bigl(\omega \tau^{\rho}\bigr);p \bigr] \bigr](x)= \frac{\Gamma(1-\frac{\mu}{\lambda-1})x^{\mu+\beta}}{[-\alpha (\lambda-1)]^{\beta}} E_{\rho, \beta+(1-\frac{\mu}{\lambda-1})}^{\gamma; c}\biggl[ \omega \biggl(\frac{x}{-\alpha(\lambda-1)} \biggr)^{\rho}; p \biggr]. $$
(20)

Proof

By using (6) and (12), we have

$$\begin{gathered} P_{0+}^{\mu, \lambda}\bigl[ \tau^{\beta-1}E_{\rho, \beta}^{\gamma; c} \bigl[ \bigl(\omega \tau^{\rho}\bigr);p \bigr] \bigr](x)\\ \quad=x^{\mu}\int _{0}^{[\frac{x}{-\alpha(1-\lambda)}]}\tau ^{\beta-1} \biggl[1+ \frac{\alpha(\lambda-1)\tau}{x} \biggr]^{\frac{\mu}{-(\lambda-1)}}\bigl[ E_{\rho, \beta}^{\gamma; c} \bigl[ \bigl(\omega\tau^{\rho}\bigr);p \bigr] \bigr]\,d\tau. \end{gathered}$$

For convenience, we denote the right-hand side of the above equation by \(I_{2}\), then

$$ I_{2}=x^{\mu}\int _{0}^{[\frac{x}{-\alpha(1-\lambda)}]}\tau^{\beta -1} \biggl[1+ \frac{\alpha(\lambda-1)\tau}{x} \biggr]^{\frac{\mu}{-(\lambda-1)}} \sum_{n=0}^{\infty} \frac{B_{p}(\gamma+n, c-\gamma)}{B(\gamma, c-\gamma)}\frac{(c)_{n}}{\Gamma(\rho n+\beta)}\frac{(\omega\tau^{\rho})^{n}}{n!} \,d\tau. $$

By interchanging the order of integration and summation, we obtain

$$ I_{2}=x^{\mu}\sum_{n=0}^{\infty} \frac{B_{p}(\gamma+n, c-\gamma )}{B(\gamma, c-\gamma)}\frac{(c)_{n}}{\Gamma(\rho n+\beta)}\frac{\omega^{n}}{n!} \int _{0}^{[\frac{x}{-\alpha(1-\lambda)}]}\tau^{\beta+\rho n-1} \biggl[1+ \frac{\alpha(\lambda-1)\tau}{x} \biggr]^{\frac{\mu}{-(\lambda-1)}}\,d\tau. $$

By substituting \(\frac{-\alpha(\lambda-1)\tau}{x}=u\) and using the definitions of beta function (8) and (10) in the above equation, we get

$$ \begin{aligned} I_{2}={}&\frac{x^{\mu+\beta}}{[-\alpha(\lambda-1)]^{\beta}}\sum _{n=0}^{\infty} \frac{B_{p}(\gamma+n, c-\gamma)}{B(\gamma, c-\gamma )}\frac{(c)_{n}}{\Gamma(\rho n+\beta)} \frac{( \omega(\frac{x}{-\alpha(\lambda-1)})^{\rho})^{n}}{n!} \\ &\times\frac{\Gamma(1-\frac{\mu}{\lambda-1})\Gamma (\rho n+\beta)}{\Gamma(\rho n+\beta+1-\frac{\mu}{\lambda-1})} \\ ={}&\frac{x^{\mu+\beta}\Gamma(1-\frac{\mu}{\lambda-1})}{[-\alpha(\lambda -1)]^{\beta}}\sum_{n=0}^{\infty} \frac{B_{p}(\gamma+n, c-\gamma )}{B(\gamma, c-\gamma)}\frac{(c)_{n}}{\Gamma(\rho n+\beta+1-\frac{\mu }{\lambda-1})}\frac{( \omega(\frac{x}{-\alpha(\lambda-1)})^{\rho})^{n}}{n!} \\ ={}&\frac{x^{\mu+\beta}\Gamma(1-\frac{\mu}{\lambda-1})}{[-\alpha(\lambda -1)]^{\beta}}E_{\rho, \beta+(1-\frac{\mu}{\lambda-1})}^{\gamma; c}\biggl[ \omega \biggl(\frac{x}{-\alpha(\lambda-1)} \biggr)^{\rho}; p \biggr], \end{aligned} $$

which completes the required proof of (20). □

Corollary 4

If \(p=0\), then (20) leads to the following result of Mittag-Leffler function recently introduced by Nair [36]:

$$ P_{0+}^{\mu, \lambda}\bigl[ \tau^{\beta-1}E_{\rho, \beta}^{\gamma} \bigl[ \bigl(\omega \tau^{\rho}\bigr) \bigr] \bigr](x)= \frac{\Gamma(1-\frac{\mu}{\lambda-1})x^{\mu+\beta}}{[-\alpha (\lambda-1)]^{\beta}} E_{\rho, \beta+(1-\frac{\mu}{\lambda-1})}^{\gamma}\biggl[ \omega \biggl( \frac{x}{-\alpha(\lambda-1)} \biggr)^{\rho}\biggr]. $$
(21)

Corollary 5

Again, if \(\delta=1\), \(\alpha=1\), \(\lambda =0\) and \(\mu=\mu-1\), then (21) leads to the fractional integral formula of extended Mittag-Leffler function as defined in (18).

Corollary 6

If we set \(p=0\) in Corollary 5, then it leads to the fractional integral formula of Mittag-Leffler function as defined in (19).

Pathway fractional integral operator of an extended generalized Mittag-Leffler function

In this section, we present the composition of pathway fractional integral operator associated with an extended form of the generalized Mittag-Leffler function as defined in (11).

Theorem 3

Suppose that \(\rho; \beta; \gamma; c; \mu\in\mathbb {C}\); \(\{\Re(\rho); \Re(\beta); \Re(\mu); \Re(c)\}>0\); \(\Re(\frac{\mu }{1-\lambda})>-1\); \(\lambda<1\); \(p\geq0\); \(q>0\) and \(\omega\in\mathbb {R}\). Then the following formula holds true:

$$ P_{0+}^{\mu, \lambda}\bigl[ \tau^{\beta-1}E_{\rho, \beta}^{\gamma,q; c} \bigl[ \bigl(\omega \tau^{\rho}\bigr); p \bigr] \bigr](x)= \frac{\Gamma(1+\frac{\mu}{1-\lambda})x^{\mu+\beta}}{[\alpha (1-\lambda)]^{\beta}} E_{\rho, \beta+(1+\frac{\mu}{1-\lambda})}^{\gamma,q; c}\biggl[ \omega \biggl(\frac{x}{\alpha(1-\lambda)} \biggr)^{\rho}; p \biggr]. $$
(22)

Proof

By using (11) and (12), we have

$$ P_{0+}^{\mu, \lambda}\bigl[ \tau^{\beta-1}E_{\rho, \beta}^{\gamma, q; c} \bigl[ \bigl(\omega \tau^{\rho}\bigr);p \bigr] \bigr](x)=x^{\mu}\int _{0}^{[\frac{x}{\alpha(1-\lambda)}]}\tau ^{\beta-1} \biggl[1- \frac{\alpha(1-\lambda)\tau}{x} \biggr]^{\frac{\mu}{1-\lambda }}E_{\rho, \beta}^{\gamma, q; c} \bigl( \omega\tau^{\rho}; p \bigr)\,d\tau. $$

For simplicity, denote the right-hand side of the above equation by \(I_{3}\), we have

$$ I_{3}=x^{\mu}\int _{0}^{[\frac{x}{\alpha(1-\lambda)}]}\tau^{\beta -1} \biggl[1- \frac{\alpha(1-\lambda)\tau}{x} \biggr]^{\frac{\mu}{1-\lambda}} \sum_{n=0}^{\infty} \frac{B_{p}(\gamma+nq, c-\gamma)}{B(\gamma, c-\gamma)}\frac{(c)_{nq}}{\Gamma(\rho n+\beta)}\frac{(\omega\tau^{\rho})^{n}}{n!} \,d\tau. $$

By interchanging the order of integration and summation, we obtain the following:

$$ \begin{aligned} I_{3}&=x^{\mu}\sum _{n=0}^{\infty} \frac{B_{p}(\gamma+nq, c-\gamma )}{B(\gamma, c-\gamma)}\frac{(c)_{nq}}{\Gamma(\rho n+\beta)} \frac {(\omega)^{n}}{n!} \int _{0}^{[\frac{x}{\alpha(1-\lambda)}]}\tau^{\beta+\rho n-1} \biggl[1- \frac{\alpha(1-\lambda)\tau}{x} \biggr]^{\frac{\mu}{1-\lambda}}\,d\tau \\ &=x^{\mu}\sum_{n=0}^{\infty} \frac{B_{p}(\gamma+nq, c-\gamma )}{B(\gamma, c-\gamma)}\frac{(c)_{nq}}{\Gamma(\rho n+\beta)}\frac {(\omega)^{n}}{n!} \biggl( \frac{x}{\alpha(1-\lambda)} \biggr)^{\rho n+\beta} \frac{\Gamma(1+\frac{\mu}{1-\lambda})\Gamma(\rho n+\beta)}{\Gamma(\rho n+\beta+1+\frac{\mu}{1-\lambda})} \\ &=\frac{x^{\mu+\beta}\Gamma(1+\frac{\mu}{1-\lambda})}{[\alpha(1-\lambda )]^{\beta}}\sum_{n=0}^{\infty} \frac{B_{p}(\gamma+nq, c-\gamma)}{B(\gamma, c-\gamma)}\frac {(c)_{nq}}{\Gamma(\rho n+\beta+1+\frac{\mu}{1-\lambda})}\frac{(\omega ( \frac{x}{\alpha(1-\lambda)} )^{\rho})^{n}}{n!} \\ &=\frac{x^{\mu+\beta}\Gamma(1+\frac{\mu}{1-\lambda})}{[\alpha(1-\lambda )]^{\beta}}E_{\rho, \beta+1+\frac{\mu}{1-\lambda}}^{\gamma, q; c} \biggl( \omega \biggl(\frac{x}{\alpha(1-\lambda)} \biggr)^{\rho}; p \biggr), \end{aligned} $$

which completes the required proof. □

Corollary 7

If \(p=0\), and \(q=1\), then (22) leads to the following result of Mittag-Leffler function (see [36]):

$$ \begin{aligned}[b] &P_{0+}^{\mu, \lambda}\bigl[ \tau^{\beta-1}E_{\rho, \beta}^{\gamma} \bigl[ \bigl(\omega \tau^{\rho}\bigr) \bigr] \bigr](x) \\ &\quad=\frac{x^{\mu+\beta}\Gamma(1+\frac{\mu}{1-\lambda})}{[\alpha(1-\lambda )]^{\beta}}E_{\rho, \beta+1+\frac{\mu}{1-\lambda}}^{\gamma} \biggl( \omega \biggl(\frac{x}{\alpha(1-\lambda)} \biggr)^{\rho} \biggr). \end{aligned} $$
(23)

Corollary 8

If \(\alpha=1\), \(\lambda=0\) and \(\mu=\mu -1\), then (22) leads to the following result of extended Mittag-Leffler function (see [45]):

$$ P_{0+}^{\mu-1, 0}\bigl[ \tau^{\beta-1}E_{\rho, \beta}^{\gamma, q} \bigl[ \bigl(\omega \tau^{\rho}\bigr);p \bigr] \bigr](x)= \Gamma( \mu)x^{\mu+\beta}E_{\rho, \beta+\mu}^{\gamma, q} \bigl( \omega(x)^{\rho};p \bigr). $$
(24)

Remark 1

If we set \(p=0\) in Corollary 8, then we get the fractional integrals of Mittag-Leffler function earlier proved in [21].

Now, we derive the following result by assuming the case that \(\lambda >1\).

Theorem 4

Suppose that \(\rho; \beta; \gamma; c; \mu\in\mathbb {C}\); \(\{\Re(\rho); \Re(\beta); \Re(\mu); \Re(c)\}>0\); \(\Re(\frac{\mu }{1-\lambda})>-1\); \(\lambda>1\); \(p\geq0\); \(q>0\) and \(\omega\in\mathbb {R}\). Then the following formula holds true:

$$ P_{0+}^{\mu, \lambda}\bigl[ \tau^{\beta-1}E_{\rho, \beta}^{\gamma, q; c} \bigl[ \bigl(\omega \tau^{\rho}\bigr);p \bigr] \bigr](x)= \frac{\Gamma(1-\frac{\mu}{\lambda-1})x^{\mu+\beta}}{[-\alpha (\lambda-1)]^{\beta}} E_{\rho, \beta+(1-\frac{\mu}{\lambda-1})}^{\gamma, q; c}\biggl[ \omega \biggl(\frac{x}{-\alpha(\lambda-1)} \biggr)^{\rho}; p \biggr]. $$
(25)

Proof

By using (11) and (14), we obtain

$$\begin{gathered} P_{0+}^{\mu, \lambda}\bigl[ \tau^{\beta-1}E_{\rho, \beta}^{\gamma, q; c} \bigl[ \bigl(\omega \tau^{\rho}\bigr);p \bigr] \bigr](x)\\\quad=x^{\mu}\int _{0}^{[\frac{x}{-\alpha(\lambda-1)}]}\tau ^{\beta-1} \biggl[1+ \frac{\alpha(\lambda-1)\tau}{x} \biggr]^{\frac{\mu}{-(\lambda-1)}}\bigl[ E_{\rho, \beta}^{\gamma, q; c} \bigl[ \bigl(\omega\tau^{\rho}\bigr);p \bigr] \bigr]\,d\tau. \end{gathered}$$

For convenience, we denote the right-hand side of the above equation by \(I_{2}\), then

$$ I_{4}=x^{\mu}\int _{0}^{[\frac{x}{-\alpha(\lambda-1)}]}\tau^{\beta-1} \biggl[1+ \frac{\alpha(\lambda-1)\tau}{x} \biggr]^{\frac{\mu}{-(\lambda-1)}} \sum_{n=0}^{\infty} \frac{B_{p}(\gamma+nq, c-\gamma)}{B(\gamma, c-\gamma)}\frac{(c)_{nq}}{\Gamma(\rho n+\beta)}\frac{(\omega\tau^{\rho})^{n}}{n!} \,d\tau. $$

By interchanging the order of integration and summation, we obtain

$$ I_{4}=x^{\mu}\sum_{n=0}^{\infty} \frac{B_{p}(\gamma+nq, c-\gamma )}{B(\gamma, c-\gamma)}\frac{(c)_{nq}}{\Gamma(\rho n+\beta)}\frac{\omega^{n}}{n!} \int _{0}^{[\frac{x}{-\alpha(\lambda-1)}]}\tau^{\beta+\rho n-1} \biggl[1+ \frac{\alpha(\lambda-1)\tau}{x} \biggr]^{\frac{\mu}{-(\lambda-1)}}\,d\tau. $$

By substituting \(\frac{-\alpha(\lambda-1)\tau}{x}=u\) and using the definitions of beta function (8) and (10) in the above equation, we obtain

$$ \begin{aligned} I_{4}={}&\frac{x^{\mu+\beta}}{[-\alpha(\lambda-1)]^{\beta}}\sum _{n=0}^{\infty} \frac{B_{p}(\gamma+nq, c-\gamma)}{B(\gamma, c-\gamma )}\frac{(c)_{nq}}{\Gamma(\rho n+\beta)} \frac{( \omega(\frac{x}{-\alpha(\lambda-1)})^{\rho})^{n}}{n!} \\ &\times\frac{\Gamma(1-\frac{\mu}{\lambda-1})\Gamma (\rho n+\beta)}{\Gamma(\rho n+\beta+1-\frac{\mu}{\lambda-1})} \\ ={}&\frac{x^{\mu+\beta}\Gamma(1-\frac{\mu}{\lambda-1})}{[-\alpha(\lambda -1)]^{\beta}}\sum_{n=0}^{\infty} \frac{B_{p}(\gamma+nq, c-\gamma)}{B(\gamma, c-\gamma)}\frac {(c)_{nq}}{\Gamma(\rho n+\beta+1-\frac{\mu}{\lambda-1})}\frac{( \omega(\frac{x}{-\alpha(\lambda-1)})^{\rho})^{n}}{n!} \\ ={}&\frac{x^{\mu+\beta}\Gamma(1-\frac{\mu}{\lambda-1})}{[-\alpha(\lambda -1)]^{\beta}}E_{\rho, \beta+(1-\frac{\mu}{\lambda-1})}^{\gamma, q; c}\biggl[ \omega \biggl(\frac{x}{-\alpha(\lambda-1)} \biggr)^{\rho}; p \biggr], \end{aligned} $$

which completes the required proof of (25). □

Corollary 9

If \(p=0\) and \(q=1\), then (25) leads to the following result of Mittag-Leffler function recently introduced by Nair [36]:

$$ P_{0+}^{\mu, \lambda}\bigl[ \tau^{\beta-1}E_{\rho, \beta}^{\gamma} \bigl[ \bigl(\omega \tau^{\rho}\bigr); p \bigr] \bigr](x)= \frac{\Gamma(1-\frac{\mu}{\lambda-1})x^{\mu+\beta}}{[-\alpha (\lambda-1)]^{\beta}} E_{\rho, \beta+(1-\frac{\mu}{\lambda-1})}^{\gamma}\biggl[ \omega \biggl( \frac{x}{-\alpha(\lambda-1)} \biggr)^{\rho}\biggr]. $$
(26)

Corollary 10

If \(\alpha=1\), \(\lambda=0\) and \(\mu=\mu-1\), then (25) leads to the result of fractional integral containing an extended Mittag-Leffler function in its kernel defined in Corollary 8.

Conclusion

In this paper, we have presented two pathway fractional integration formulae associated with extended Mittag-Leffler functions. The obtained result provided extended forms of the known results earlier proved by Nair [36].

References

  1. 1.

    Bǎleanu, D, Diethelm, K, Scalas, E, Trujillo, JJ: Fractional Calculus: Models and Numerical Methods, pp. 10-16. World Scientific, Singapore (2012)

    Book  MATH  Google Scholar 

  2. 2.

    Nisar, KS, Purohit, SD, Mondal, SR: Generalized fractional kinetic equations involving generalized Struve function of the first kind. J. King Saud Univ., Sci. 28, 167-171 (2016)

    Article  Google Scholar 

  3. 3.

    Purohit, SD: Solutions of fractional partial differential equations of quantum mechanics. Adv. Appl. Math. Mech. 5, 639-651 (2013)

    MathSciNet  Article  MATH  Google Scholar 

  4. 4.

    Podlubny, I: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  5. 5.

    Uchaikin, VV: Fractional Derivatives for Physicists and Engineers. Volume I: Background and Theory, Volume II: Applications. Nonlinear Physical Science. Springer, Berlin (2013)

    Book  MATH  Google Scholar 

  6. 6.

    Džrbašjan, MM: Integral Transforms and Representations of Functions in the Complex Domain. Nauka, Moscow (1966) (in Russian)

    Google Scholar 

  7. 7.

    Kilbas, AA, Saigo, M: On Mittag-Leffler type function, fractional calculus operators and solutions of integral equations. Integral Transforms Spec. Funct. 4, 355-370 (1996)

    MathSciNet  Article  MATH  Google Scholar 

  8. 8.

    Gorenflo, R, Mainardi, F: Fractional calculus: integral and differential equations of fractional order. In: Carpinteri, A, Mainardi, F (eds.) Fractals and Fractional Calculus in Continuum Mechanics. Springer Series on CSM Courses and Lectures, vol. 378, pp. 223-276. Springer, Wien (1997)

    Chapter  Google Scholar 

  9. 9.

    Gorenflo, R, Mainardi, F, Srivastava, HM: Special functions in fractional relaxation-oscillation and fractional diffusion-wave phenomena. In: Bainov, D (ed.) Proceedings of the Eighth International Colloquium on Differential Equations, pp. 195-202. VSP Publishers, Utrecht (1998)

    Google Scholar 

  10. 10.

    Gorenflo, R, Luchko, Y, Mainardi, F: Wright functions as scale-invariant solutions of the diffusion-wave equation. J. Comput. Appl. Math. 118, 175-191 (2000)

    MathSciNet  Article  MATH  Google Scholar 

  11. 11.

    Kilbas, AA, Srivastava, HM, Trujillo, JJ: Theory and Applications of Fractional Differential Equations. North-Holland Mathematical Studies, vol. 204. Elsevier, Amsterdam (2006)

    Book  MATH  Google Scholar 

  12. 12.

    Saigo, M, Kilbas, AA: On Mittag-Leffler type function and applications. Integral Transforms Spec. Funct. 7, 97-112 (1998)

    MathSciNet  Article  MATH  Google Scholar 

  13. 13.

    Hilfer, R, Seybold, H: Computation of the generalized Mittag-Leffler function and its inverse in the complex plane. Integral Transforms Spec. Funct. 17, 637-652 (2006)

    MathSciNet  Article  MATH  Google Scholar 

  14. 14.

    Seybold, HJ, Hilfer, R: Numerical results for the generalized Mittag-Leffler function. Fract. Calc. Appl. Anal. 8, 127-139 (2005)

    MathSciNet  MATH  Google Scholar 

  15. 15.

    Prabhakar, TR: A singular integral equation with a generalized Mittag-Leffler function in the kernel. Yokohama Math. J. 19, 7-15 (1971)

    MathSciNet  MATH  Google Scholar 

  16. 16.

    Gorenflo, R, Kilbas, AA, Rogosin, SV: On the generalized Mittag-Leffler type functions. Integral Transforms Spec. Funct. 7, 215-224 (1998)

    MathSciNet  Article  MATH  Google Scholar 

  17. 17.

    Srivastava, HM: A contour integral involving Fox’s H-function. Indian J. Math. 14, 1-6 (1972)

    MathSciNet  MATH  Google Scholar 

  18. 18.

    Srivastava, HM: A note on the integral representation for the product of two generalized Rice polynomials. Collect. Math. 24, 117-121 (1973)

    MathSciNet  MATH  Google Scholar 

  19. 19.

    Srivastava, HM, Gupta, KC, Goyal, SP: The H-Functions of One and Two Variables with Applications. South Asian Publishers, New Delhi (1982)

    MATH  Google Scholar 

  20. 20.

    Srivastava, HM, Joshi, CM: Integral representation for the product of a class of generalized hypergeometric polynomials. Acad. Roy. Belg. Bull. Cl. Sci. (Ser. 5) 60, 919-926 (1974)

    MathSciNet  MATH  Google Scholar 

  21. 21.

    Srivastava, HM, Tomovski, Ž: Fractional calculus with an integral operator containing a generalized Mittag-Leffler function in the kernel. Appl. Math. Comput. 211, 189-210 (2009)

    MathSciNet  MATH  Google Scholar 

  22. 22.

    Özarslan, MA, Yılmaz, B: The extended Mittag-Leffler function and its properties. J. Inequal. Appl. 2014, Article ID 85 (2014)

    MathSciNet  Article  MATH  Google Scholar 

  23. 23.

    Chaudhry, MA, Qadir, A, Srivastava, HM, Paris, RB: Extended hypergeometric and confluent hypergeometric functions. Appl. Math. Comput. 159, 589-602 (2004)

    MathSciNet  MATH  Google Scholar 

  24. 24.

    Mainardi, F: On some properties of the Mittag-Leffler function, \(E_{\alpha}(tz)\), completely monotone for \(t > 0\) with \(0 < \alpha< 1\). arXiv:1305.0161

  25. 25.

    Mittal, E, Pandey, RM, Joshi, S: On extension of Mittag-Leffler function. Appl. Appl. Math. 11(1), 307-316 (2016)

    MathSciNet  MATH  Google Scholar 

  26. 26.

    Bǎleanu, D, Mustafa, OG: On the global existence of solutions to a class of fractional differential equations. Comput. Math. Appl. 59, 1835-1841 (2010)

    MathSciNet  Article  MATH  Google Scholar 

  27. 27.

    Chouhan, A, Purohit, SD, Saraswat, S: An alternative method for solving generalized differential equations of fractional order. Kragujev. J. Math. 37(2), 299-306 (2013)

    MathSciNet  MATH  Google Scholar 

  28. 28.

    Kumar, D, Purohit, SD, Choi, J: Generalized fractional integrals involving product of multivariable H-function and a general class of polynomials. J. Nonlinear Sci. Appl. 9(1), 8-21 (2016)

    MathSciNet  MATH  Google Scholar 

  29. 29.

    Purohit, SD, Kalla, SL: On fractional partial differential equations related to quantum mechanics. J. Phys. A, Math. Theor. 44(4), Article ID 045202 (2011)

    MathSciNet  Article  MATH  Google Scholar 

  30. 30.

    Bǎleanu, D, Kumar, D, Purohit, SD: Generalized fractional integrals of product of two H-functions and a general class of polynomials. Int. J. Comput. Math. 93(8), 1320-1329 (2016)

    MathSciNet  Article  MATH  Google Scholar 

  31. 31.

    Purohit, SD, Kalla, SL, Suthar, DL: Fractional integral operators and the multiindex Mittag-Leffler function. Scientia, Ser. A, Math. Sci. 21, 87-96 (2011)

    MathSciNet  MATH  Google Scholar 

  32. 32.

    Yang, XJ, Tenreiro Machado, JA Baleanu, D, Cattani, C: On exact traveling-wave solutions for local fractional Korteweg-de Vries equation. Chaos, Interdiscip. J. Nonlinear Sci. 26(8), Article ID 084312 (2016)

    MathSciNet  Article  Google Scholar 

  33. 33.

    Yang, XJ: Fractional derivatives of constant and variable orders applied to anomalous relaxation models in heat-transfer problems. Therm. Sci. (2016). doi:10.2298/TSCI161216326Y

    Google Scholar 

  34. 34.

    Yang, XJ, Gao, F, Tenreiro Machado, JA, Baleanu, D: A new fractional derivative without singular kernel: application to the modelling of the steady heat flow. Therm. Sci. 20, 753-756 (2016)

    Article  Google Scholar 

  35. 35.

    Yang, XJ, Tenreiro Machado, JA, Cattani, C, Gao, F: On a fractal LC-electric circuit modeled by local fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 47, 200-206 (2017)

    Article  Google Scholar 

  36. 36.

    Nair, SS: Pathway fractional integration operator. Fract. Calc. Appl. Anal. 12, 237-252 (2009)

    MathSciNet  MATH  Google Scholar 

  37. 37.

    Mathai, AM: A pathway to matrix-variate gamma and normal densities. Linear Algebra Appl. 396, 317-328 (2005)

    MathSciNet  Article  MATH  Google Scholar 

  38. 38.

    Mathai, AM, Haubold, HJ: Pathway model, superstatistics, Tsallis statistics and a generalize measure of entropy. Physica A 375, 110-122 (2007)

    MathSciNet  Article  Google Scholar 

  39. 39.

    Mathai, AM, Haubold, HJ: On generalized distributions and path-ways. Phys. Lett. A 372, 2109-2113 (2008)

    Article  MATH  Google Scholar 

  40. 40.

    Bǎleanu, D, Agarwal, P: A composition formula of the pathway integral transform operator. Note Mat. 34, 145-155 (2014)

    MathSciNet  MATH  Google Scholar 

  41. 41.

    Nisar, KS, Mondal, SR, Agarwal, P: Pathway fractional integral operator associated with Struve function of first kind. Adv. Stud. Contemp. Math. 26, 63-70 (2016)

    MATH  Google Scholar 

  42. 42.

    Agarwal, P, Purohit, SD: The unified pathway fractional integral formulae. J. Fract. Calc. Appl. 4(1), 105-112 (2013)

    Google Scholar 

  43. 43.

    Nisar, KS, Purohit, SD, Abouzaid, MS, Al-Qurashi, M, Baleanu, D: Generalized k-Mittag-Leffler function and its composition with pathway integral operators. J. Nonlinear Sci. Appl. 9, 3519-3526 (2016)

    MathSciNet  MATH  Google Scholar 

  44. 44.

    Rahman, G, Agarwal, P, Mubeen, S, Arshad, M: Fractional integral operators involving extended Mittag-Leffler function as its kernel. Bol. Soc. Mat. Mexicana (2017). doi:10.1007/s40590-017-0167-5

    Google Scholar 

  45. 45.

    Rahman, G, Bǎleanu, D, Al-Qurashi, M, Purohit, SD, Mubeen, S, Arshad, M: Extended Mittag-Leffler function via fractional calculus. J. Nonlinear Sci. Appl. (2017, accepted)

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to G Rahman.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

The authors have contributed equally to this manuscript. They read and approved the final manuscript.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rahman, G., Ghaffar, A., Mubeen, S. et al. The composition of extended Mittag-Leffler functions with pathway integral operator. Adv Differ Equ 2017, 176 (2017). https://doi.org/10.1186/s13662-017-1237-8

Download citation

Keywords

  • extended Mittag-Leffler function
  • pathway fractional integral operator