Evolutionary consequences of agespecific harvesting: age at first reproduction
 Kornkanok Bunwong†^{1, 2} and
 Wichuta Saejie†^{2, 3}Email authorView ORCID ID profile
https://doi.org/10.1186/s1366201712142
© The Author(s) 2017
Received: 8 February 2017
Accepted: 19 May 2017
Published: 2 June 2017
Abstract
The aim of this paper is to investigate harvestinduced evolution in lifehistory strategies of a harvested singlespecies population. In particular, we analyze evolution of the trait age at first reproduction. The population is grouped into four age classes, namely, zeroyearolds (newborns), oneyearolds (juveniles), twoyearolds (small adults), and individuals aged three years or older (large adults). The population is assumed to consist of a ‘resident’ group and a ‘variant’ group that are identical except that the resident group usually first reproduces as a large adult and the variant group usually first reproduces as a small adult. The effect of various agedependent harvesting strategies on the dynamics is studied both analytically and numerically. It is shown that agedependent harvesting strategies can cause evolution from the resident group to the variant group. In addition, we show that a limit on the harvesting of the resident group can yield a sustainable fishery of the commercially preferred resident group.
Keywords
age at first reproduction ageselective harvesting agestructured model harvesting invasion fitness lifehistory evolutionMSC
39A30 92B051 Introduction
There is now accumulating evidence that harvesting can lead to evolutionary changes in lifehistory traits of fish that in turn affect their life cycle. Common developmental stages during the life cycle of a fish are: (1) egg, (2) larva, (3) juvenile, and (4) adult [12]. However, individual fish can differ in lifehistory traits [13] such as age at first reproduction, number and size of offspring, reproductive lifespan and ageing [14]. There is now evidence that supports the hypothesis that larger and older fish produce more and higher quality eggs than younger fish. As a result, in the absence of harvesting, these larger and older fish are naturally selected [10]. Examples of this are fish species such as pink salmon [11], South Atlantic red snapper [4], and barramundi [15]. Larger fish also tend to have longer life spans; for example, South Atlantic red snapper live up to 54 years [4] and barramundi up to 20 years [16].
Since the second World War, there have been rapid improvements in fish finding and harvesting techniques with the development of scientific location methods such as fish finders and the development of sizeselective harvesting methods such as net mesh size [17]. There has also been economic pressure on fishermen to harvest the more valuable larger old fish and not harvest the smaller young fish. As a result of this targeting of bigger fish, commercial fish populations are changing to populations of smaller and weaker fish [18]. For example, Crocket [4] has reported that it is now rare to find South Atlantic red snapper older than 10 years. The declining size in fish populations also tends to be related to behavioral changes and/or genetic changes resulting in slower growth rates and a smaller size at maturity [11].
The evolutionary consequences of harvesting are now well established and strongly supported by empirical evidence [2, 3, 19–21]. As a result, there has been increased interest in developing mathematical models to analyze the effect of harvesting on the lifehistory traits of fish and their life cycles [22–26]. A variety of theoretical approaches dealing with lifehistory traits have been proposed in the literature. Cisnerosmata et al. [22] used an agestructured, discretetime model to investigate population dynamics of the Pacific sardine. Age structure, densitydependent recruitment, environmental forcing, and fishing were included in the model. The sardine population in the model was divided into two age classes, namely, a juvenile (recruits) class and an adult class. Ernande et al. [24] constructed a lifecycle model with three classes, namely, larvae, juveniles, and adults. They assumed that the larvae transformed into juveniles through metamorphosis, that the juveniles transformed into adults through a maturation process, and that the adults then gave birth to the larvae. Ernande et al. investigated the effect of harvesting on age and size at maturation. Gårdmark et al. [23] and Miethe et al. [25] constructed discretetime models for single fish populations. Gårdmark et al. divided the harvested population into three age classes, namely, oneyearolds, twoyearolds, and greater than or equal to three years old, and used the model to study the effects of ageselective harvesting on the evolution of age at first reproduction. On the other hand, Miethe et al. classified a fish population into four stages, namely, small juveniles, large juveniles, small adults, and large adults. They explored the evolutionary effect of fishing on size at maturation by assuming the existence of two populations of the same species differing only in the probability of age at first reproduction. Poos et al. [26] studied a continuoustime differential equation model of a sizestructured population. In some models, the authors (see, e.g., [23]) consider that first reproduction can occur at different ages, whereas other authors (see, e.g., [25]) consider that maturation can occur at different size.
Motivated by the work of Gårdmark et al. [23], we develop discretetime, agestructured population models for a single species differing only in the trait of age at first reproduction. We assume that a ‘resident’ population usually reproduces first at age three and that a ‘variant’ population usually reproduces first at age two. We investigate the evolutionary effects of ageselective harvesting on the ratios of the resident and variant populations both analytically and numerically. We also consider the effects of placing age limits on ageselective harvesting and show that these limits can be used as control measures to maintain a sustainable fishery of the resident population.
2 A fixed lifehistory trait
In this section, we construct a discretetime agestructured lifehistory model. The time steps are assumed to be one year. We focus on the interaction between individuals in each age class with a fixed lifehistory trait. As stated previously, we assume that the individuals in the fish population are identical except that a resident group usually reproduces first at three years and a variant group usually reproduces first at two years.
2.1 Agestructured population dynamics
Definition of model variables and parameters, adapted from [ 25 ]
Notation  Description  Range of value 

Variables  
\(N_{0}\)  Density of newborn individuals  
\(N_{1}\)  Density of juvenile individuals  
\(N_{2}\)  Density of small adult individuals  
\(N_{3}\)  Density of large adult individuals  
Parameters  
γ  Probability of early reproduction  [0,1] 
\(f_{2}\)  Per capita annual fecundity of early reproducing individuals at age 2 years old  
\(f_{3}\)  Per capita annual fecundity of late reproducing individuals at age greater than or equal to 3 years old  
\(\tilde{f}_{3}\)  Per capita annual fecundity of early reproducing individuals at greater than or equal to 3 years old  
\(h_{i}\)  Per capita annual harvest proportion of individuals at age i (i = 1,2,3)  [0,1] 
c  Proportional reduction is measured by a cost  
m  Constant that determines how strongly the survival of newborn is adversely affected by density in this age class  
\(s_{i}\)  Per capita annual survival probabilities of individuals at age i (i = 0,1,2,3)  [0,1] 
2.2 Equilibrium population densities
3 The effect of harvesting
The effect of harvesting is to decrease the survival rates of the groups that are harvested. In the model in (1), the survival rate of group i (\(i=1,2,3\)) is \(s_{i}\) which is decreased to \(s_{i}(1h_{i})\) if a fraction \(h_{i}\) of age group i is harvested. The main aim of this paper is to analyze the effects of different harvesting strategies on the survival rates of fish that first reproduce as small adults (choice of \(h_{2}\)) and the class that first reproduce as large adults (choice of \(h_{3}\)). Different harvesting strategies could be the use of large net size or targeting larger fish (\(h_{3} > h_{2}\)) or targeting small adults (\(h_{2} > h_{3}\)).
In order to study the effect of harvesting strategies on the age of first reproduction, we assume that the fish population can be separated into a resident class and a variant class which differ only in the probability of first reproducing as a small adult at two years old. For the resident class, we assume that the probability of first reproduction at two years old is γ, and for the variant class, we assume that the probability of first reproduction at two years old is \(\gamma^{\prime}\). We will assume that, before harvesting, the resident class has a small probability γ of reproducing as a small adult because the fecundity \(f_{3}\) of a fish that first reproduces as a large adult is appreciably greater than the fecundities \(f_{2}\) and \(\tilde{f}_{3}\) of a fish that first reproduces as a small adult. We also assume that the variant class has a probability \(\gamma^{\prime}> \gamma\) of reproducing as a small adult.
3.1 Invasion strategy
We first consider the effect of introducing a small population of the early reproducers (the variant population) into an equilibrium population of the late reproducers (the resident population). The small variant population will decrease if all eigenvalues of the Jacobian matrix of the variant population at the equilibrium resident population (equation (1)) have absolute value less than one but will increase and start to invade the resident population if any eigenvalue has absolute value greater than one.
3.2 Evolutionary analysis
For sustainable fishery with the resident population of late reproducing fish, at least one of the above conditions should fail. In practice, the easiest condition to control is the value of \(h_{3}\), i.e., place an upper limit on the proportion of large adult fish harvested.
 Case I::

We assume that the fecundity of the fish at age two is not reduced, but the reduced growth reduces the fecundity of the fish at age three, i.e., \(\tilde {f}_{3}=f_{3}(1c)\) where \(0 \leq c \leq1\).
 Case II::

\(\tilde{f}_{3}=f_{2}(1c)\) where \(0 \leq c \leq1\).
If age at first reproduction of individuals is two, at age three their fecundities are reduced proportionally to their own fecundity at age two.
4 Numerical results
For all numerical solutions of (2)(3), the initial condition is \((N_{0}(0), N_{1}(0), N_{2}(0), N_{3}(0), N_{0}^{\prime}(0), N_{1}^{\prime}(0), N_{2}^{\prime}(0), N_{3}^{\prime}(0))=(446.4, 30.86, 27.78, 14.88, 446.4, 30.86, 27.78, 14.88)\) and starting time is \(t_{0}=1\).
It is clear from these results that changing the ageselective harvesting strategy, i.e., changing the values of \(h_{2}\) and \(h_{3}\), can change the dominant population from the commercially preferred late reproducing resident group to the less preferred early reproducing variant group.
5 Discussion
In this paper, we have studied the effect of agedependent harvesting strategies on the lifehistory trait of age at first reproduction in a single species. We have assumed that the species can be separated into a resident group that usually reproduces at age greater than or equal to three years and a variant group that usually reproduces at age two years. In all organisms, the growing phase and the reproduction phase of an individual require energy. Before maturity, energy is mainly allocated for growth, but once an individual begins to reproduce, a part of the energy is required for reproduction activities [13, 29]. According to this energy allocation balance, the size of an early reproducer should be smaller than the size of a late reproducer. One of the findings from our study is that one result of excessive harvesting of large adults is that only the individuals that start reproducing at age two can survive in the system. Consequently, the size of fish in the population can decrease. These results are consistent with the observational data discussed in the introduction that the size and age of fish in harvested populations have decreased. Our results have shown that a sustainable fishery of the commercially preferred larger, later reproducing fish can be obtained by limiting the value of \(h_{3}\), i.e., by placing an upper limit on the proportion of large adult fish harvested.
In this paper, we have assumed that reproduction and maturation are closely related and occurs at the same age and size (length or weight). This assumption is often a good first approximation [30]. For example, the von Bertalanffy growth curve [31] can be used to estimate the size (length or weight) of a fish as a function of its age. However, in the realworld situation an ageclass cohort may have a range of different sizes. Finally, different lifehistory traits such as fecundity and survival should also be considered and compared with early reproduction in terms of tradeoffs [32, 33].
Notes
Declarations
Acknowledgements
This research was financially supported by (1) the Department of Mathematics, Faculty of Science, Mahidol University, (2) the Centre of Excellence in Mathematics, Commission on Higher Education, Ministry of Education and (3) the Department of Applied Mathematics and Informatics, Faculty of Science and Industrial Technology, Prince of Songkla University, Surat Thani Campus. We would like to thank Dr. Elvin J. Moore and Dr. Anakewit Boonkasame for proofreading the manuscript.
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
Authors’ Affiliations
References
 Borrell, B: A big fight over little fish. Nature 493, 597598 (2013) View ArticleGoogle Scholar
 Barot, S, Heino, M, O’Brien, L, Dieckmann, U: Reaction norms for age and size at maturation: study of the longterm trend (19701998) for Georges Bank and Gulf of Maine cod stocks. In: ICES CM Documents, pp. 125 (2002) Google Scholar
 Barot, S, Heino, M, O’Brien, L, Dieckmann, U: Estimating reaction norms for age and size at maturation when age at first reproduction is unknown. Evol. Ecol. Res. 6, 659678 (2004) Google Scholar
 Crockett, L: Overfishing 101: the Importance of rebuilding our fish populations without delay. http://voices.nationalgeographic.com/2011/05/09/overfishing101theimportanceofrebuildingourfishpopulationswithoutdelay/
 Köster, F, Trippel, E, Tomkiewicz, J: Linking size and age at sexual maturation to body growth, productivity and recruitment of Atlantic cod stocks spanning the North Atlantic. Fish. Res. 138, 5261 (2013) View ArticleGoogle Scholar
 Doogan, S: Why are some Alaska salmon and halibut getting smaller? https://www.adn.com/fishing/article/arealaskanfishgettingsmaller/2015/09/18/
 Kuparinen, A, Merila, J: Detecting and managing fisheriesinduced evolution. Trends Ecol. Evol. 22, 652659 (2007) View ArticleGoogle Scholar
 Myers, RA, Cadigan, NG: Was an increase in natural mortality responsible for the collapse of northern cod? Can. J. Fish. Aquat. Sci. 52, 12741285 (1995) View ArticleGoogle Scholar
 Myers, RA, Barrowman, NJ, Hoenig, JM, Qu, Z: The collapse of cod in eastern Canada: the evidence from tagging data. ICES J. Mar. Sci. 53, 629640 (1996) View ArticleGoogle Scholar
 Fishing; More protection for big ones. https://www.sciencedaily.com/releases/2014/01/140102112241.htm
 Evolution: Library: Shrinking salmon. http://www.pbs.org/wgbh/evolution/library/10/3/l_103_02.html
 Gloucester Maritime Heritage Center: FinFish Hatchery. http://seagrant.mit.edu/hatchery/lifecycle.html
 SaboridoRey, F, Kjesbu, O: Growth and maturation dynamics, 26 pp. (2005) Google Scholar
 Berkeley: Life history traits. http://ib.berkeley.edu/labs/slatkin/eriq/classes/biol472/lectnotes/lect7_12LifeHistory.pdf
 Some basic facts on barramundi. http://www.srilankaecotourism.com/barramundi_facts.htm
 Barramundi. http://www.lenrex.com.au/fishspecies/barramundi.9/
 Xu, D: The top 5 biggest bass world records. http://www.outdoorhub.com/stories/2014/10/31/top5biggestbassworldrecords/
 Richard, M: By targeting bigger fish, we are breeding populations of smaller and weaker fish. https://www.treehugger.com/oceanconservation/targetingbiggerfishwearebreedingpopulationssmallerfish.html
 Conover, D: Smaller fish, smaller harvest. http://evolution.berkeley.edu/evolibrary/article/0_0_0/conover_05
 Conover, D, Munch, S: Sustaining fisheries yields over evolutionary time scales. Science 297, 9496 (2002) View ArticleGoogle Scholar
 Nash, RDM, Pilling, GM, Kell, LT, Shön, PJ, Kjesbu, OS: Investment in maturityatage and length in northeast Atlantic cod stocks. Fish. Res. 104, 8999 (2010) View ArticleGoogle Scholar
 CisnerosMata, M, MontemayorLópez, GM, NevárezMartínez, M: Modeling deterministic effects of age structure, density dependence, environmental forcing, and fishing on the population dynamics of Sardinops sagax caerulea in the Gulf of California. CalCOFI Rep. 37, 201208 (1996) Google Scholar
 Gårdmark, A, Dieckmann, U, Lundberg, P: Lifehistory evolution in harvested populations: the role of natural predation. Evol. Ecol. Res. 5, 239257 (2003) Google Scholar
 Ernande, B, Dieckmann, U, Heino, M: Adaptive changes in harvested populations: plasticity and evolution of age and size at maturation. Proc. R. Soc. Lond. B 271, 415423 (2004) View ArticleGoogle Scholar
 Miethe, T, Dytham, C, Dieckmann, U, Pitchford, J: Marine reserves and the evolutionary effects of fishing on size at maturation. ICES J. Mar. Sci. 67, 412425 (2010) View ArticleGoogle Scholar
 Poos, J, Bränntröm, Å, Dieckmann, U: Harvestinduced maturation evolution under different lifehistory tradeoffs and harvesting regimes. J. Theor. Biol. 279, 102112 (2011) MathSciNetView ArticleGoogle Scholar
 Keshet, LE: Mathematical Models in Biology. Random House, New York (1987) MATHGoogle Scholar
 Metz, J, Nisbet, R, Geritz, S: How should we define ‘fitness’ for general ecological scenarios? Trends Ecol. Evol. 7, 198202 (1992) View ArticleGoogle Scholar
 Winkle, VW, Shuter, B, Holcomb, B, Jager, H, Tyler, J, Whitaker, S: Regulation of energy acquisition and allocation to respiration, growth and reproduction: simulation model and example using rainbow trout. In: Early life history and recruitment in fish populations. Springer, Berlin (1997) Google Scholar
 Allsop, Q, de Lestang, P, Griffin, R, White, G: Barramundi  your questions answered, Fisheries Research, Darwin. Fish Note, 15 (2006). http://www.territorystories.nt.gov.au/bitstream/10070/250118/1/FN27.pdf
 Fisheries and Aquaculture Department: Von Bertalanffy growth equation. http://www.fao.org/docrep/W5449e/w5449e05.htm
 Best, A, Bowers, R, White, A: Evolution, the loss of diversity and the role of tradeoffs. Math. Biosci. 264, 8693 (2015) MathSciNetView ArticleMATHGoogle Scholar
 Bowers, R, Hoyle, A, White, A, Boots, M: The geometric theory of adaptive evolution: tradeoff and invasion plots. J. Theor. Biol. 233, 363377 (2005) MathSciNetView ArticleGoogle Scholar