Skip to main content

Theory and Modern Applications

Table 1 Basic operations of the FRDTM [ 39 ]

From: A reliable method for the space-time fractional Burgers and time-fractional Cahn-Allen equations via the FRDTM

Functional form

Transformed form

u(x,t)

\(\frac{1}{\Gamma(k\alpha+1)} [\frac{\partial^{\alpha k } }{\partial t^{\alpha k} } u(x,t) ]_{ t=0} \)

γu(x,t)±βv(x,t)

\(\gamma U_{k} (x)\pm \beta V_{k} (x)\), where γ and β are constants

u(x,t).v(x,t)

\(\sum_{i=0}^{k}U_{i} (x)V_{k-i} (x) \)

u(x,t).v(x,t).w(x,t)

\(\sum_{i=0}^{k}\sum_{j=0}^{i}U_{j} (x) V_{i-j} (x) W_{k-i} (x)\)

\(\frac{\partial^{n\alpha} }{\partial t^{n\alpha } } u(x,t)\)

\(\frac{\Gamma (k\alpha+n\alpha +1 )}{\Gamma (k\alpha+1 )} U_{k+n} (x)\)

\(\frac{\partial^{n} }{\partial x^{n} } u(x,t)\)

\(\frac{\partial^{n} }{\partial x^{n} } U_{k}(x)\)

\(x^{m} t^{n} u(x,t)\)

\(x^{m} U_{k-n} (x )\)

\(x^{m} t^{n} \)

\(x^{m} \delta (k\alpha-n )\), where \(\delta(k\alpha -n)=\left \{ \begin{array}{l@{\quad}l} 1, & \alpha k=n \\ 0, & \alpha k\ne n \end{array} \right \}\)