Open Access

S-asymptotically ω-periodic solution for fractional differential equations of order \(q\in(0, 1)\) with finite delay

Advances in Difference Equations20172017:83

https://doi.org/10.1186/s13662-017-1137-y

Received: 3 October 2016

Accepted: 8 March 2017

Published: 20 March 2017

Abstract

In this paper, we investigate the existence and uniqueness of S-asymptotically ω-periodic solutions to fractional differential equations of order \(q\in(0, 1)\) with finite delay in a Banach space X. Existence and uniqueness theorems, which are new even in the case of \(X=\mathbf{R}^{n}\) or \(A=0\), are established. As examples of applications of our existence and uniqueness results, we obtain the S-asymptotically ω-periodic solutions for the fractional-order autonomous neural networks with delay.

Keywords

ω-periodic S-asymptotically ω-periodic Caputo derivative fractional differential equation finite delay

1 Introduction

As one important branch of the research on evolution equations, the study of fractional differential equations in Banach spaces is very active recently due to its strong background in physics, chemistry, engineering, biology, financial sciences, etc. (cf., e.g., [118] and the references therein). In this paper, we are concerned with the following fractional differential equation:
$$\begin{aligned} \textstyle\begin{cases} ^{c} D_{t}^{q} u(t)= \operatorname{Au}(t) +f(t, u_{t}),& t\geq0, \\ u(t)=\phi(t), & t\in[-\delta, 0], \end{cases}\displaystyle \end{aligned}$$
(1.1)
where \(\delta>0\), \(q\in(0, 1)\) and the fractional derivative is understood here in the Caputo sense, \(A: D(A)\subset X\rightarrow X\) is the generator of an analytic semigroup on a Banach space X, f is a given function, \(u_{t}: [-\delta, 0]\rightarrow X\) is defined by \(u_{t}(\theta)=u(t+\theta)\) for \(\theta\in[-\delta, 0]\) (cf., e.g., [1923]), and \(\phi\in C([- \delta, 0] , X)\). Our main purpose is to establish existence and uniqueness theorems about the S-asymptotically ω-periodic solutions to the (1.1).

Actually, while the almost periodic, almost automorphic, and weighted pseudo almost periodic solutions to various evolution equations are investigated by many scholars (cf., e.g., [1, 2229]), the S-asymptotically ω-periodic solutions to some evolution equations are also studied by some researchers. There have been several interesting contributions to the investigation of S-asymptotically ω-periodic solutions of differential equations and fractional differential equations in finite as well as infinite dimensional spaces (cf. [13, 5, 19, 28, 30]). We also note that some papers about the existence of S-asymptotically ω-periodic solutions of fractional differential equations focus on the order \(q\in(1, 2)\) ([2, 5] and references therein). Therefore, motivated by all this work, we pay attention in this paper to the study of the existence of S-asymptotically ω-periodic (mild) solutions for differential equation of fractional order of type (1.1) for the case \(q\in(0, 1)\).

The paper is organized as follows. In Section 2, we recall some basic notations and concepts. In Section 3, we discuss the existence and uniqueness of S-asymptotically ω-periodic mild solution, and as a special case of our result, we present the corresponding result in the case of \(A=0\) (Theorem 3.7). In Section 4, we apply our result to a study of the existence and uniqueness of S-asymptotically ω-periodic solution for the fractional-order neural network with finite delay.

2 Basic notations and concepts

Throughout this paper, \((X, \Vert \cdot \Vert )\) is a Banach space, \(C_{b}(\mathbf{R}_{+}, X)\) denotes the space of the continuous bounded functions from \([0, +\infty)\) to X, endowed with the norm
$$\Vert f\Vert _{\infty}=\sup_{t\geq0}\bigl\Vert f(t) \bigr\Vert . $$
\(C([-\delta, 0], X)\) denotes the space of the continuous functions from \([-\delta, 0]\) to X with the norm
$$\Vert x\Vert _{[-\delta, 0]} =\sup_{t \in[-\delta, 0]} \bigl\Vert x(t) \bigr\Vert . $$

Definition 2.1

Cf., e.g., [11, 15]

The fractional integral of order q with the lower limit zero for a function \(f \in L^{1}[0, \infty)\) is defined as
$$I_{t}^{q}f(t)=\frac{1}{\Gamma(q)} \int_{0}^{t} (t-s)^{q-1}f(s)\,ds,\quad t>0, 0< q< 1, $$
where \(\Gamma(\cdot)\) is the gamma function.

Definition 2.2

Cf., e.g., [11, 15]

The Caputo derivative of order q for a function \(f \in C^{1}[0, \infty)\) can be written as
$$^{c}D_{t}^{q}f(t)=\frac{1}{\Gamma(1-q)} \int_{0}^{t} \frac{f'(s)}{(t-s)^{q}}\,ds,\quad t > 0, 0 < q < 1. $$

3 Existence and uniqueness theorems

In this section we discuss the existence and uniqueness of S-asymptotically ω-periodic solutions for problem (1.1).

Let A be the infinitesimal generator of a uniformly exponentially stable analytic semigroup of linear operators \(\{T(t)\}_{t\geq0}\) on X such that
$${\bigl\Vert T(t)\bigr\Vert \leq Me^{-\mu t},\quad t\geq0}, $$
where M, \(\mu>0\) are constants.

Based on the work in [6, 12], we define the mild solution for problem (1.1) as follows.

Definition 3.1

A function \(u \in C([-\delta, +\infty], X)\) satisfying the equation
$$\begin{aligned} u(t)=\textstyle\begin{cases} \phi(t), & t\in[-\delta, 0], \\ {Q(t)\phi(0)+ {\int_{0}^{t}(t-s)^{q-1}R(t-s)f(s, u_{s})\,ds}}, & t>0, \end{cases}\displaystyle \end{aligned}$$
(3.1)
is called a mild solution of problem (1.1), where
$$\begin{aligned} Q(t)= \int_{0}^{\infty} \xi_{q}(\sigma) T \bigl(t^{q}\sigma\bigr)\,d\sigma,\qquad R(t)=q \int_{0}^{\infty} \sigma\xi_{q}(\sigma)T \bigl(t^{q}\sigma\bigr)\,d\sigma. \end{aligned}$$
Here \(\xi_{q}\) is a probability density function defined on \((0, \infty)\) (see [12]) such that
$$\xi_{q}(\sigma)=\frac{1}{\pi}\sum_{n=1}^{\infty} (-\sigma)^{n-1} \frac{\Gamma(nq)}{(n-1)!}\sin(n\pi q)\geq0,\quad \sigma\in(0,\infty). $$
In fact, we can see that \(\xi_{q}(\sigma)\) is the Wright type function in [11, 15]. For \(-1 < r < \infty\), the following conclusions hold.
  1. (A1)

    \(\int_{0}^{\infty} \sigma^{r} \xi_{q}(\sigma)\,d\sigma=\frac{\Gamma(1+r)}{ \Gamma(1+qr)}\);

     
  2. (A2)

    \(\int_{0}^{\infty}\xi_{q}(\sigma)e^{-z \sigma}\,d\sigma=E_{q}(-z)\), \(z \in\mathbf{C}\);

     
  3. (A3)

    \(\int_{0}^{\infty}q\sigma\xi_{q}(\sigma)e^{-z \sigma}\,d\sigma=E _{q,q}(-z)\), \(z\in\mathbf{C}\),

     
where \(E_{q}(\cdot)\) (\(E_{q,q}(\cdot)\)) is the Mittag-Leffler function (the generalized Mittag-Leffler function) (cf., e.g., [11, 15]).

Remark 3.2

  1. (i)
    Noting that \(\int_{0}^{\infty} \xi_{q}(\sigma)\,d\sigma=1\), we get
    $$\begin{aligned} \bigl\Vert Q(t)\bigr\Vert \leq M \quad \text{and}\quad \lim _{t\rightarrow \infty }\bigl\Vert Q(t)\bigr\Vert =0. \end{aligned}$$
    (3.2)
     
  2. (ii)
    In view of (A1), we have
    $$\begin{aligned}& \bigl\Vert R(t)\bigr\Vert \leq \frac{M}{\Gamma(q)},\quad t\geq0, \end{aligned}$$
    (3.3)
    $$\begin{aligned}& \begin{aligned}[b] \int_{0}^{t}(t-s)^{q-1}\bigl\Vert R(t-s) \bigr\Vert \,ds &\leq q M \int_{0}^{t} \int_{0} ^{\infty} \sigma\xi_{q}(\sigma) (t-s)^{q-1}e^{-\mu(t-s)^{q} \sigma }\,d\sigma \,ds \\ & \leq M \int_{0}^{\infty}\xi_{q}(\sigma)\,d\sigma \int_{0}^{\infty } e^{-\mu\tau}\,d\tau \\ & = \frac{M}{\mu}. \end{aligned} \end{aligned}$$
    (3.4)
     
  3. (iii)
    If \(A\in\mathbf{R}^{n\times n}\) is a constant matrix, then A generates a bounded operator semigroup \(T(t)=e^{A t}\) on X. Hence
    $$\begin{aligned}& Q(t) = \int_{0}^{\infty} \xi_{q}(\sigma) e^{A t^{q}\sigma}\,d\sigma =E_{q}\bigl(A t^{q}\bigr), \\& R(t) = q \int_{0}^{\infty} \sigma\xi_{q}( \sigma)e^{A t^{q}\sigma }\,d\sigma=E_{q,q}\bigl(A t^{q}\bigr). \end{aligned}$$
    It follows from Definition 3.1 that
    $$\begin{aligned} u(t)=\textstyle\begin{cases} \phi(t), & t\in[-\delta, 0], \\ {E_{q}(A t^{q})\phi(0)+ {\int_{0}^{t}(t-s)^{q-1}E_{q,q}(A (t-s)^{q})f(s, u_{s})\,ds}}, & t>0, \end{cases}\displaystyle \end{aligned}$$
    is a mild solution of the following problem:
    $$\begin{aligned} \textstyle\begin{cases} {}^{c} D_{t}^{q} u(t)= \operatorname{Au}(t) +f(t, u_{t}),& t\geq0, \\ u(t)=\phi(t), & t\in[-\delta, 0]. \end{cases}\displaystyle \end{aligned}$$
    (3.5)
    It is not difficult to see that \(u(t)\) actually is the solution for the problem (3.5).
     

The following definition of S-asymptotically ω-periodic functions taking values in a Banach space X is from [28].

Definition 3.3

A function \(h \in C_{b}(\mathbf{R}_{+}, X)\) is called S-asymptotically ω-periodic if there exists \(\omega> 0\) such that \({\lim_{t\rightarrow\infty}(h(t+\omega)-h(t))=0}\). In this case, we say that ω is an asymptotic period of h.

Let \(\operatorname{SAP}_{\omega}(X)\) represent the space of all the X-valued S-asymptotically ω-periodic functions endowed with the uniform convergence norm denoted by \(\Vert \cdot \Vert _{\infty}\). Then, by virtue of [28], Proposition 3.5, \(\operatorname{SAP}_{\omega}(X)\) is a Banach space.

Set
$$\operatorname{SAP}_{\omega, 0}(X)=\bigl\{ x\in \operatorname{SAP}_{\omega}(X):x(0)=0\bigr\} . $$
Clearly, \(\operatorname{SAP}_{\omega, 0}(X)\) is a closed subspace of \(\operatorname{SAP}_{\omega }(X)\).

Lemma 3.4

Let \(u: [-\delta, +\infty)\rightarrow X\) be a function with \(u_{0} \in C([-\delta, 0], X)\) and \(u\vert_{[0, +\infty)}\in \operatorname{SAP}_{ \omega}(X)\). Then the function \(t \rightarrow u_{t}\) belongs to \(\operatorname{SAP}_{\omega}(C([-\delta, 0], X))\).

Proof

Since \(u_{t}\) is continuous on \([-\delta, 0]\), we see that there exists \(\overline{\theta}\in[-\delta, 0]\) such that
$$\begin{aligned} \Vert u_{t+\omega}-u_{t}\Vert _{[-\delta, 0]}=\sup _{-\delta\leq\theta\leq0}\bigl\Vert u(t+\omega+\theta)-u(t+\theta)\bigr\Vert = \bigl\Vert u(t+\omega+\overline{\theta})-u(t+\overline{\theta})\bigr\Vert . \end{aligned}$$
Setting \(\tau=t+\overline{\theta}\), we obtain
$${ \lim_{t\rightarrow+\infty}\bigl\Vert u(t+\omega+\overline{\theta })-u(t+ \overline{\theta})\bigr\Vert =\lim_{\tau\rightarrow+\infty} \bigl\Vert u(\tau+ \omega)-u(\tau)\bigr\Vert =0}. $$
 □
Set
$$\widetilde{C}_{b}(X)=\bigl\{ x\in C_{b}\bigl([-\delta, + \infty), X\bigr): x\vert_{t\geq0}\in C_{b}(\mathbf{R}_{+}, X), x\vert_{[-\delta, 0]}=0\bigr\} . $$
For the function \(f:\mathbf{R}_{+} \times C([-\delta, 0], X)\rightarrow X \), we write
  1. (H1)
    there exists a function \(s\rightarrow L_{f}(s)\in L^{1}([0, t], \mathbf{R}_{+})\) such that
    $$\bigl\Vert f(t, \psi_{1})-f(t, \psi_{2})\bigr\Vert \leq L_{f}(t)\Vert \psi _{1}-\psi_{2}\Vert _{[-\delta, 0]}, \quad \text{for all } t\geq0, \psi_{1}, \psi _{2} \in C\bigl([-\delta, 0], X\bigr), $$
    the function \(s\rightarrow\frac{L_{f}(s)}{(t-s)^{1-q}}\) belongs to \(L^{1}([0,t],\mathbf{R}_{+})\) and
    $$\begin{aligned} \Lambda:=\sup_{t\geq0} \int_{0}^{t} \frac{L_{f}(s)}{(t-s)^{1-q}}\,ds< \frac{\Gamma(q)}{M}; \end{aligned}$$
    (3.6)
     
  2. (H2)

    \({K:=\sup_{t\geq0}\int_{0}^{t}\frac{\Vert f(s, 0)\Vert }{(t-s)^{1-q}}\,ds< \infty}\);

     
  3. (H3)

    there exists \(\omega>0\), for all \(\varphi\in C([-\delta, 0], X)\), \({\lim_{t\rightarrow\infty} \Vert f(t+\omega, \varphi)-f(t,\varphi)\Vert =0}\).

     

Theorem 3.5

Assume that (H1)-(H3) hold. Then the problem (1.1) has a unique S-asymptotically ω-periodic mild solution.

Proof

For every \(\phi\in C([-\delta,0],X)\), we define the function \(y(t)=\phi(t)\) for \(t\in[-\delta, 0]\), \(y(t)=Q(t)\phi(0)\) for \(t\geq0\). Then \(y\in C([-\delta,\infty), X)\). Set
$$u(t)=x(t)+y(t),\quad t \in[-\delta, +\infty). $$
It is obvious that u satisfies (3.1) if and only if x satisfies \(x_{0}=0\) and for \(t\geq0\),
$$\begin{aligned} x(t)= { \int_{0}^{t}(t-s)^{q-1}R(t-s)f(s, x_{s}+y_{s})\,ds}. \end{aligned}$$
For each \(x\in\widetilde{C}_{b}(X)\), we write \(C_{1}=\Vert x\Vert _{\infty}+M \Vert \phi(0)\Vert +\Vert \phi \Vert _{[-\delta, 0]}\). Then
$$\begin{aligned} \Vert x_{t}+y_{t}\Vert _{[-\delta, 0]} \leq& \sup_{-\delta\leq\theta\leq0}\bigl\Vert x(t+\theta)\bigr\Vert +\sup _{-\delta\leq\theta\leq0}\bigl\Vert y(t+\theta)\bigr\Vert \\ \leq& \sup_{0\leq\tau\leq t}\bigl\Vert {x}(\tau)\bigr\Vert +M\bigl\Vert \phi(0)\bigr\Vert + \Vert \phi \Vert _{[-\delta, 0]} \\ \leq&C_{1}. \end{aligned}$$
Hence
$$\begin{aligned} &\bigl\Vert f(t, x_{t}+y_{t})\bigr\Vert \leq L_{f}(t)\Vert x_{t}+y_{t} \Vert _{[-\delta, 0]}+ \bigl\Vert f(t, 0)\bigr\Vert \leq C_{1} L_{f}(t)+\bigl\Vert f(t, 0)\bigr\Vert . \end{aligned}$$
(3.7)
We consider the operator \(\mathcal{F}:\widetilde{C}_{b}(X) \rightarrow \widetilde{C}_{b}(X)\) as follows:
$$\begin{aligned} (\mathcal{F}x) (t)=\textstyle\begin{cases} 0, & t\in[-\delta, 0], \\ {\int_{0}^{t}(t-s)^{q-1}R(t-s)f(s, x_{s}+y_{s})\,ds}, & t\geq0. \end{cases}\displaystyle \end{aligned}$$
In view of (3.3), (3.7), (3.6) and (H2), we have
$$\begin{aligned} \biggl\Vert \int_{0}^{t}\frac{R(t-s)f(s, x_{s}+y_{s})}{(t-s)^{1-q}}\,ds\biggr\Vert \leq \frac{MC_{1}}{\Gamma(q)} \int_{0}^{t} \frac{L_{f}(s)}{(t-s)^{1-q}}\,ds+ \frac{MK}{\Gamma(q)}< C_{1}+\frac{MK}{ \Gamma(q)}. \end{aligned}$$
(3.8)
So, the operator \(\mathcal{F}\) is well defined.

It is clear that the fixed points of \(\mathcal{F}\) are mild solutions to problem (1.1).

Now, we show that \(\mathcal{F}\) is \(\operatorname{SAP}_{\omega, 0}(X)\)-valued.

For each \(x\in \operatorname{SAP}_{\omega, 0}(X)\), (3.2) implies that \(y\vert_{[0, \infty)}\in \operatorname{SAP}_{\omega}(X)\). It follows from Lemma 3.4 that the function \(t\rightarrow y_{t}\) belongs to \(\operatorname{SAP}_{\omega}(C([- \delta, 0], X))\).

Moreover, we have
$$\begin{aligned}& \bigl\Vert (\mathcal{F}x) (t+\omega)-(\mathcal{F}x) (t)\bigr\Vert \\& \quad =\biggl\Vert \int_{0}^{\omega}\frac{R(t+\omega-s)}{(t+\omega-s)^{1-q}}f(s, x_{s}+y_{s})\,ds+ \int_{\omega}^{t+\omega}\frac{R(t+\omega-s)}{(t+ \omega-s)^{1-q}}f(s, x_{s}+y_{s})\,ds \\& \qquad {}- \int_{0}^{t} (t-s)^{q-1}R(t-s)f(s, x_{s}+y_{s})\,ds\biggr\Vert \\& \quad \leq \frac{M}{\Gamma(q)} \biggl[ \int_{0}^{\omega}(t+\omega-s)^{q-1} \bigl( C_{1} L_{f}(s)+\bigl\Vert f(s, 0)\bigr\Vert \bigr)\,ds \biggr] \\& \qquad {}+ \int_{0}^{t}(t-s)^{q-1}\bigl\Vert R(t-s) \bigr\Vert \bigl\Vert f(s+\omega, x_{s+\omega}+y_{s+\omega})-f(s, x_{s+\omega}+y_{s+\omega})\bigr\Vert \,ds \\& \qquad {}+\frac{M}{\Gamma(q)} \int_{0}^{t} (t-s)^{q-1}\bigl\Vert f(s, x_{s+\omega }+y_{s+\omega})-f(s, x_{s}+y_{s})\bigr\Vert \,ds \\& \quad =I_{1}(t)+I_{2}(t)+I_{3}(t). \end{aligned}$$
Noting that \({t+\omega-s\geq\frac{t+\omega}{\omega}(\omega-s)}\), we have
$$\begin{aligned} \int_{0}^{\omega} \frac{C_{1} L_{f}(s)+\Vert f(s, 0)\Vert }{(t+\omega-s)^{1-q}}\,ds \leq& \biggl( \frac{\omega}{t+\omega} \biggr) ^{1-q} \int_{0}^{\omega}\frac{C _{1} L_{f}(s)+\Vert f(s, 0)\Vert }{(\omega-s)^{1-q}}\,ds, \end{aligned}$$
which implies that
$$I_{1}(t)\rightarrow0\quad \mbox{as } t\rightarrow\infty. $$
By (3.7), we get
$$\begin{aligned}& \bigl\Vert f(s+\omega, x_{s+\omega}+y_{s+\omega})-f(s, x_{s+\omega }+y_{s+\omega})\bigr\Vert \\& \quad \leq C_{1} \bigl[L_{f}(s+\omega)+L_{f}(s) \bigr]+\bigl\Vert f(s+\omega, 0)\bigr\Vert + \bigl\Vert f(s, 0)\bigr\Vert . \end{aligned}$$
By (H3), we can see that, for each \(\varepsilon>0\), there is a positive constant \(L_{1}\) such that
$$\bigl\Vert f(s+\omega, x_{s+\omega}+y_{s+\omega})-f(s, x_{s+\omega }+y_{s+\omega})\bigr\Vert < \varepsilon,\quad s\geq L_{1}. $$
Noting that (3.4) and \({t-s\geq\frac{t}{L_{1}}(L_{1}-s)}\), we deduce that
$$\begin{aligned} I_{2}(t) \leq& \frac{M}{\Gamma(q)} \int_{0}^{L_{1}}\frac{C_{1}L_{f}(s+ \omega)+\Vert f(s+\omega, 0)\Vert +C_{1} L_{f}(s)+\Vert f(s, 0)\Vert }{(t-s)^{1-q}}\,ds \\ &{}+\varepsilon \int_{L_{1}}^{t}(t-s)^{q-1}\bigl\Vert R(t-s) \bigr\Vert \,ds \\ \leq&\frac{M}{\Gamma(q)} \biggl[ \int_{\omega}^{L_{1}+\omega}\frac{C _{1}L_{f}(s)+\Vert f(s, 0)\Vert }{(t+\omega-s)^{1-q}}\,ds + \int_{0}^{L_{1}}\frac{C _{1}L_{f}(s)+\Vert f(s, 0)\Vert }{(t-s)^{1-q}}\,ds \biggr] + \frac {M\varepsilon}{ \mu} \\ \leq& \frac{M}{\Gamma(q)} \biggl( \frac{L_{1}+\omega}{t} \biggr) ^{1-q} \biggl[ \int_{0}^{L_{1}+\omega} \frac{(C_{1}L_{f}(s)+\Vert f(s, 0)\Vert )\,ds}{(L _{1}+\omega-s)^{1-q}} \biggr] \\ &{}+ \frac{M}{\Gamma(q)} \biggl( \frac{L_{1}}{t} \biggr) ^{1-q} \biggl[ \int _{0}^{L_{1}} \frac{(C_{1} L_{f}(s)+\Vert f(s, 0)\Vert )\,ds}{(L_{1}-s)^{1-q}} \biggr] + \frac{M \varepsilon}{\mu} \\ \leq& \frac{2 M }{\Gamma(q)} \biggl( \frac{L_{1}+\omega}{t} \biggr) ^{1-q}[C_{1} \Lambda+K]+\frac{M\varepsilon}{\mu}. \end{aligned}$$
(3.9)
Since
$$x_{t}+y_{t}\in \operatorname{SAP}_{\omega}\bigl(C\bigl([-\delta, 0], X\bigr)\bigr), $$
we know that there is a positive constant \(L_{2}>0\) such that
$$\bigl\Vert (x_{s+\omega}+y_{s+\omega})-(x_{s}+y_{s}) \bigr\Vert _{[-\delta, 0]} \leq\varepsilon, \quad s\geq L_{2}, $$
then
$$\begin{aligned} I_{3}(t) \leq& \frac{2 M}{\Gamma(q)} \biggl[ C_{1} \int_{0}^{L_{2}} \frac{L _{f}(s)}{(t-s)^{1-q}}\,ds+ \int_{0}^{L_{2}} \frac{\Vert f(s, 0)\Vert \,ds}{(t-s)^{1-q}} \biggr] + \frac{M \varepsilon}{ \Gamma(q)} \int_{L_{2}}^{t} \frac{L_{f}(s)}{(t-s)^{1-q}}\,ds \\ \leq& \frac{M}{\Gamma(q)} \biggl[ (2C_{1}\Lambda+2 K) \biggl( \frac{L _{2}}{t} \biggr) ^{1-q}+\Lambda\varepsilon \biggr] . \end{aligned}$$
Thus,
$$\bigl\Vert (\mathcal{F}x) (t+\omega)-(\mathcal{F}x) (t)\bigr\Vert \rightarrow0 \quad \mbox{as } {t\rightarrow\infty}\mbox{ and }{\varepsilon \rightarrow0}. $$
So
$$\mathcal{F}\bigl(\operatorname{SAP}_{\omega, 0}(X)\bigr)\subseteq \operatorname{SAP}_{\omega, 0}(X). $$
Moreover, for \(x, \widetilde{x}\in \operatorname{SAP}_{\omega, 0}(X)\), we have
$$\begin{aligned} \bigl\Vert (\mathcal{F}x) (t)-(\mathcal{F}\widetilde{x}) (t)\bigr\Vert \leq& \frac{M}{ \Gamma(q)} \int_{0}^{t}(t-s)^{q-1}L_{f}(s) \Vert x_{s}-\widetilde {x}_{s}\Vert _{[-\delta, 0]}\,ds\leq \frac{M\Lambda}{\Gamma(q)}\Vert x-\widetilde{x}\Vert _{\infty}. \end{aligned}$$
Hence
$${ \bigl\Vert (\mathcal{F}x) (t)-(\mathcal{F}\widetilde{x}) (t)\bigr\Vert _{\infty }\leq\frac{M \Lambda}{\Gamma(q)}\Vert x-\widetilde{x} \Vert _{\infty}}, $$
which means that \(\mathcal{F}\) is a contraction mapping. Then the proof now can be finished by using the contraction mapping principle. □

Remark 3.6

In the proof of Theorem 3.5, we can see the result is true when (H3) changes to
$$\bigl(\mbox{H}3'\bigr):\quad \lim_{t\rightarrow\infty} \int_{0} ^{t}(t-s)^{q-1}\bigl\Vert f(s+ \omega, \varphi)-f(s, \varphi)\bigr\Vert \,ds=0, $$
because now we can directly obtain \(\lim_{t\rightarrow\infty }I_{2}(t)=0\).
In the case of \(A\equiv0\), (1.1) takes the form of
$$\begin{aligned}& \textstyle\begin{cases} ^{c} D_{t}^{q} u(t)= f(t, u_{t}), & t\geq0, \\ u(t)=\phi(t), & t\in[-\delta, 0]. \end{cases}\displaystyle \end{aligned}$$
(3.10)
It is well known that (3.10) is equivalent to the following integral equation:
$$u(t)=\textstyle\begin{cases} \phi(t), & t\in[-\delta, 0], \\ {\phi(0)+\int_{0}^{t}(t-s)^{q-1}f(s, u_{s})\,ds}, & t\geq0. \end{cases} $$
Thus, we study (3.10) just like the case of
$$Q(t)=R(t)\equiv I $$
in (3.1). Clearly, we just need to revise (3.8) and (3.9), that is, if we replace (H2), (H3) by
$$\bigl(\mbox{H}2'\bigr):\quad {K:=\sup_{t\geq0} \biggl\Vert \int_{0}^{t}\frac{f(s, 0)}{(t-s)^{1-q}}\,ds \biggr\Vert < \infty} $$
and (H3′), respectively, then we can obtain the corresponding result of problem (3.10), hence we have the following result.

Theorem 3.7

Assume that (H1) (\(M\equiv1\)), (H2′) and (H3′) hold. Then the following fractional differential equation:
$$\textstyle\begin{cases} ^{c} D_{t}^{q} u(t)= f(t, u_{t}), & t\geq0, \\ u(t)=\phi(t), & t\in[-\delta, 0], \end{cases} $$
has a unique S-asymptotically ω-periodic solution.

4 Applications

Example 4.1

Let \(X=\mathbf{R}^{2}\). For the vector \(x=(x_{1}, x_{2})^{T} \in\mathbf{R}^{2}\), we define
$$\Vert x\Vert =\sum_{i=1}^{2}\vert x_{i}\vert . $$
For the matrix \(A=(a_{ij})_{2\times2}\), we define
$$\Vert A\Vert =\max_{1\leq j\leq2}\sum_{i=1}^{2} \vert a_{ij}\vert . $$
We consider the following fractional-order neural network model with finite delay (FNND) on X:
$$ \textstyle\begin{cases} {^{c} D_{t}^{\frac{2}{3}}x_{1}(t)}= {-2x_{1}(t)}+\frac{\sin2\pi t}{10(t+t^{\frac{5}{2}})^{\frac{1}{3}}}[3x _{1}(t+\theta)+x_{2}(t+\theta)+3],\quad t> 0, \\ {^{c} D_{t}^{\frac{2}{3}}x_{2}(t)}= {-2x_{2}(t)}+\frac{\cos2\pi t}{10(t+t^{\frac{5}{2}})^{\frac{1}{3}}}[x _{1}(t+\theta)+2x_{2}(t+\theta)+4],\quad t> 0, \\ x_{1}(\theta)=x_{2}(\theta)=0.1, \quad -1\leq\theta\leq0. \end{cases} $$
(4.1)
Problem (4.1) can be written in the vector form as follows:
$$\begin{aligned}& ^{c} D_{t}^{\frac{2}{3}} x(t) = B x(t)+F(t, x_{t}),\quad t\geq0, \\& x(t) =0.1,\quad t\in[-1, 0], \end{aligned}$$
where
x ( t ) = ( x 1 ( t ) , x 2 ( t ) ) T , B = diag { 2 , 2 } , F ( t , x t ) = A ( t ) f ( x t ) + C ( t ) , A ( t ) = ( a i j ( t ) ) 2 × 2 = ( 3 sin 2 π t 10 ( t + t 5 2 ) 1 3 sin 2 π t 10 ( t + t 5 2 ) 1 3 cos 2 π t 10 ( t + t 5 2 ) 1 3 cos 2 π t 5 ( t + t 5 2 ) 1 3 ) , f ( x t ) = ( x 1 t , x 2 t ) T , C ( t ) = ( 3 sin 2 π t 10 ( t + t 5 2 ) 1 3 , 2 cos 2 π t 5 ( t + t 5 2 ) 1 3 ) T .
It is well known ([31]) that B generates a bounded operator semigroup
$$T(t)=e^{B t}=\operatorname{diag}\bigl\{ e^{-2t}, e^{-2t}\bigr\} $$
and
$$\bigl\Vert T(t)\bigr\Vert \leq e^{-2 t},\quad t\ge0 $$
(i.e. \(M=1\), \(\mu=2\)). Moreover, (3.1) is now the solution of (4.1) (Remark 3.2(iii)).
For \(\varphi, \widetilde{\varphi} \in C([-1, 0], X)\), it is easy to see that
$$\bigl\Vert F(t, \varphi)-F(t, \widetilde{\varphi})\bigr\Vert \leq \frac{2}{5(t+t ^{\frac{5}{2}})^{\frac{1}{3}}} \Vert \varphi-\widetilde{\varphi }\Vert _{[-1, 0]}:=L_{f}(t) \Vert \varphi-\widetilde{\varphi} \Vert _{[-1, 0]}. $$
Since
$$\begin{aligned}& {\bigl(t+t^{\frac{5}{2}}\bigr)^{-\frac{1}{3}}\leq t^{-\frac{1}{3}}}, \\& { \int_{0}^{t}(t-s)^{-\frac{1}{2}}s^{-\frac{1}{2}}\,ds= \pi}, \\& { \int_{0}^{\infty}\frac{dt}{1+t^{\alpha}}= \frac{\pi}{\alpha \sin(\pi/{\alpha})}}\quad \bigl(\alpha\in(1, 2)\bigr), \end{aligned}$$
we deduce that \((t+t^{\frac{5}{2}})^{-\frac{1}{3}}\in L^{1}(0, t)\) and
$$\begin{aligned}& \int_{0}^{t} (t-s)^{-\frac{1}{3}}L_{f}(s)\,ds \\& \quad = \frac{2}{5} \int_{0} ^{t} (t-s)^{-\frac{1}{3}}s^{-\frac{1}{3}} \cdot\bigl(1+s^{\frac{3}{2}}\bigr)^{- \frac{1}{3}}\,ds \\& \quad \leq \frac{2}{5} \biggl( \int_{0}^{t} \bigl[ (t-s)^{-\frac{1}{3}}s^{- \frac{1}{3}} \bigr] ^{\frac{3}{2}}\,ds \biggr) ^{\frac{2}{3}}\cdot \biggl( \int _{0}^{t} \bigl( \bigl(1+s^{\frac{3}{2}} \bigr)^{-\frac{1}{3}} \bigr) ^{3}\,ds \biggr) ^{\frac{1}{3}} \\& \quad \leq\frac{2\pi}{5}\biggl(\frac{4}{3\sqrt{3}}\biggr)^{\frac{1}{3}}. \end{aligned}$$
Hence
$$\frac{1}{\Gamma(\frac{2}{3})}\sup_{t\geq0} \int_{0}^{t}\frac{L _{f}(s)}{(t-s)^{\frac{1}{3}}}\,ds\leq \frac{2\pi}{5\Gamma(\frac{2}{3})}\biggl(\frac{4}{3\sqrt{3}}\biggr)^{ \frac{1}{3}}\approx0.85< 1. $$
Moreover,
$$\begin{aligned}& {\bigl\Vert F(t, 0)\bigr\Vert \leq\frac{7}{10(t+t^{\frac{5}{2}})^{\frac{1}{3}}}}, \\& {\sup_{t\geq0} \int_{0}^{t}(t-s)^{-\frac{1}{3}}\bigl\Vert F(s, 0) \bigr\Vert \,ds \leq\frac{7\pi}{10}\biggl(\frac{4}{3\sqrt{3}} \biggr)^{\frac{1}{3}}< \infty} \end{aligned}$$
and
$$\begin{aligned} \bigl\Vert F(t+1, \varphi)-F(t, \varphi)\bigr\Vert \leq& \biggl[ \frac{1}{((t+1)+(t+1)^{ \frac{5}{2}})^{\frac{1}{3}}}+\frac{1}{(t+t^{\frac{5}{2}})^{ \frac{1}{3}}} \biggr] \cdot \biggl( \frac{2}{5} \Vert \varphi \Vert _{[-\delta, 0]}+\frac{7}{10} \biggr) \\ \rightarrow&0,\quad t\rightarrow\infty. \end{aligned}$$
Therefore, the conditions in Theorem 3.5 are satisfied. Thus, by virtue of Theorem 3.5, the problem (4.1) has a unique S-asymptotically 1-periodic solution. We refer the reader to Figure 1 below for a numerical solution of (4.1).
Figure 1

Numerical solution of equation ( 4.1 ).

Example 4.2

Let \(X=\mathbf{R}\). We consider the following fractional-order model on X:
$$ \textstyle\begin{cases} {^{c} D_{t}^{\frac{1}{2}}x(t)}= \frac{\cos x(t+\theta)}{4(t+t^{4})^{ \frac{1}{4}}}+\sin2\pi t,\quad t> 0, \\ x(\theta)=1,\quad -1\leq\theta\leq0. \end{cases} $$
(4.2)
Problem (4.2) can be written in the form as follows:
$$\begin{aligned}& ^{c} D_{t}^{\frac{1}{2}} x(t) = F(t, x_{t}),\quad t> 0, \\& x(t) =1,\quad t\in[-1, 0], \end{aligned}$$
where
$${F(t, x_{t})=\frac{\cos x_{t}}{4(t+t^{4})^{\frac{1}{4}}}+\sin2 \pi t}. $$
For any \(\varphi, \widetilde{\varphi} \in C([-1, 0], X)\), we have
$$\bigl\Vert F(t, \varphi)-F(t, \widetilde{\varphi})\bigr\Vert \leq \frac{1}{4(t+t ^{4})^{\frac{1}{4}}} \Vert \varphi-\widetilde{\varphi} \Vert _{[-1, 0]}:=L _{f}(t)\Vert \varphi-\widetilde{\varphi} \Vert _{[-1, 0]}. $$
Noting that
$${\bigl(t+t^{4}\bigr)^{-\frac{1}{4}}\leq t^{-\frac{1}{4}}},\qquad { \int_{0}^{t} (t-s)^{-\frac{1}{2}}s^{-\frac{1}{2}}\,ds= \pi}, $$
we get
$$\begin{aligned} \int_{0}^{t} (t-s)^{-\frac{1}{2}}L_{f}(s)\,ds =& \frac{1}{4} \int_{0} ^{t} (t-s)^{-\frac{1}{2}}s^{-\frac{1}{4}} \cdot\bigl(1+s^{3}\bigr)^{- \frac{1}{4}}\,ds \\ =& \frac{1}{4} \int_{0}^{t} (t-s)^{-\frac{1}{2}}s^{-\frac{1}{2}} \cdot s^{\frac{1}{4}}\bigl(1+s^{3}\bigr)^{-\frac{1}{4}}\,ds \\ \leq&\frac{\pi}{4}. \end{aligned}$$
(4.3)
So
$$\frac{1}{\Gamma(\frac{1}{2})}\sup_{t\geq0} \int_{0}^{t}\frac{L _{f}(s)}{(t-s)^{\frac{1}{2}}}\,ds\leq \frac{\sqrt{\pi}}{4}\approx0.44< 1. $$
Moreover,
$$\begin{aligned}& F(t, 0)=\frac{1}{4(t+t^{4})^{\frac{1}{4}}} +\sin2\pi t, \\& \int_{0}^{t}(t-s)^{-\frac{1}{2}}\sin2\pi s \,ds=2\sin2 \pi t \int_{0} ^{\sqrt{t}}\cos2\pi s^{2}\,ds-2\cos2\pi t \int_{0}^{\sqrt{t}} \sin2\pi s^{2}\,ds. \end{aligned}$$
In view of
$${ \int_{0}^{+\infty}\sin s^{2}\,ds= \int_{0}^{+\infty}\cos s^{2}\,ds=\sqrt { \frac{ \pi}{8}}} $$
being Fresnel integrals and (4.3), we obtain
$$\sup_{t\geq0} \biggl\vert \int_{0}^{t}(t-s)^{-\frac{1}{2}}F(s, 0)\,ds \biggr\vert < 2. $$
Clearly,
$${\lim_{t\rightarrow\infty} \biggl( \frac{t}{1+t^{3}} \biggr) ^{ \frac{1}{4}}=0}. $$
Hence, for each \(\varepsilon>0\), there is a positive constant \(L>0\) such that
$$\biggl(\frac{t}{1+t^{3}}\biggr)^{\frac{1}{4}}\leq\varepsilon,\quad t> L. $$
Therefore, noting that \(t-L>\frac{t}{L}(L-s)\), we obtain
$$\begin{aligned}& \int_{0}^{t} (t-s)^{-\frac{1}{2}}\bigl\Vert F(s+1, \varphi)-F(s, \varphi)\bigr\Vert \,ds \\& \quad \leq \frac{1}{4} \int_{0}^{L} (t-s)^{-\frac{1}{2}}s^{-\frac{1}{2}} \biggl[ \biggl( \frac{s}{1+s^{3}} \biggr) ^{\frac{1}{4}}+ \biggl( \frac {s}{1+s} \biggr) ^{\frac{1}{4}} \biggl( \frac{s}{1+(s+1)^{3}} \biggr) ^{\frac{1}{4}} \biggr]\,ds \\& \qquad {}+\frac{1}{4} \int_{L}^{t} (t-s)^{-\frac{1}{2}}s^{-\frac{1}{2}} \biggl[ \biggl( \frac{s}{1+s ^{3}} \biggr) ^{\frac{1}{4}}+ \biggl( \frac{s}{1+s} \biggr) ^{\frac{1}{4}} \biggl( \frac{s}{1+(s+1)^{3}} \biggr) ^{\frac{1}{4}} \biggr]\,ds \\& \quad \leq \frac{1}{2} \biggl( \frac{L}{t} \biggr) ^{\frac{1}{2}} \int_{0}^{L} (L-s)^{-\frac{1}{2}}s^{-\frac{1}{2}}\,ds+ \frac{\varepsilon}{2} \int_{L} ^{t} (t-s)^{-\frac{1}{2}}s^{-\frac{1}{2}}\,ds \\& \quad \leq\frac{\pi}{2}\biggl[ \biggl( \frac{L}{t} \biggr) ^{\frac {1}{2}}+\varepsilon \biggr], \end{aligned}$$
i.e. (H3′) is satisfied. Thus, the conditions in Theorem 3.7 are fulfilled. Hence, by Theorem 3.7, the problem (4.2) has a unique S-asymptotically 1-periodic solution. We refer the reader to Figure 2 above for a numerical solution of (4.2).
Figure 2

Numerical solution of equation ( 4.2 ).

Declarations

Acknowledgements

The work was supported partly by the NSF of China (11561077, 11571229, 11201413) and the NSF of Yunnan Province (2013FB034) and The Reserve Talents of Young and Middle-Aged Academic and Technical Leaders of the Yunnan Province. The authors thank the referees very much for their suggestions and comments.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors’ Affiliations

(1)
School of Mathematics, Yunnan Normal University
(2)
School of Mathematical Sciences, Shanghai Jiao Tong University

References

  1. Agarwal, RP, de Andrade, B, Cuevas, C: On type of periodicity and ergodicity to a class of fractional order differential equations. Adv. Differ. Equ. 2010, Article ID 179750 (2010) View ArticleMATHMathSciNetGoogle Scholar
  2. Cuevas, C, de Souza, JC: S-asymptotically ω-periodic solutions of semilinear fractional integro-differential equations. Appl. Math. Lett. 22, 865-870 (2009) View ArticleMATHMathSciNetGoogle Scholar
  3. Cuevas, C, Pierri, M, Sepulveda, A: Weighted S-asymptotically ω-periodic solutions of a class of fractional differential equations. Adv. Differ. Equ. 2011, Article ID 584874 (2011) View ArticleMATHMathSciNetGoogle Scholar
  4. Diagana, T, Mophou, GM, N’Guérékata, G: On the existence of mild solutions to some semilinear fractional integro-differential equations. Electron. J. Qual. Theory Differ. Equ. 2010, 58 (2010) MATHMathSciNetGoogle Scholar
  5. dos Santos, JPC, Cuevas, C: Asymptotically almost automorphic solutions of abstract fractional integro-differential neutral equations. Appl. Math. Lett. 23, 960-965 (2010) View ArticleMATHMathSciNetGoogle Scholar
  6. El-Borai, MM: Some probability densities and fundamental solutions of fractional evolution equations. Chaos Solitons Fractals 14, 433-440 (2002) View ArticleMATHMathSciNetGoogle Scholar
  7. Li, F, Liang, J, Lu, TT, Zhu, H: A nonlocal Cauchy problem for fractional integrodifferential equations. J. Appl. Math. 2012, Article ID 901942 (2012) MATHMathSciNetGoogle Scholar
  8. Li, F, Liang, J, Xu, HK: Existence of mild solutions for fractional integrodifferential equations of Sobolev type with nonlocal conditions. J. Math. Anal. Appl. 391, 510-525 (2012) View ArticleMATHGoogle Scholar
  9. Liu, KW, Jiang, W: Stability of nonlinear Caputo fractional differential equations. Appl. Math. Model. 40(5-6), 3919-3924 (2016) View ArticleMathSciNetGoogle Scholar
  10. Lv, ZW, Liang, J, Xiao, TJ: Solutions to the Cauchy problem for differential equations in Banach spaces with fractional order. Comput. Math. Appl. 62, 1303-1311 (2011) View ArticleMATHMathSciNetGoogle Scholar
  11. Kilbas, AA, Srivastava, HM, Trujillo, JJ: Theory and applications of fractional differential equations. In: North-Holland Mathematics Studies, vol. 204. Elsevier, Amsterdam (2006) Google Scholar
  12. Mainardi, F, Paradisi, P, Gorenflo, R: Probability distributions generated by fractional diffusion equations. In: Kertesz, J, Kondor, I (eds.) Econophysics: An Emerging Science. Kluwer, Dordrecht (2000) Google Scholar
  13. Mophou, GM: Existence and uniqueness of mild solutions to impulsive fractional differential equations. Nonlinear Anal. 72(3-4), 1604-1615 (2010) View ArticleMATHMathSciNetGoogle Scholar
  14. Mophou, GM, N’Guérékata, G: Existence of mild solution for some fractional differential equations with nonlocal conditions. Semigroup Forum 79, 315-322 (2009) View ArticleMATHMathSciNetGoogle Scholar
  15. Podlubny, I: Fractional Differential Equations. Mathematics in Science and Engineering, vol. 198. Academic Press, New York (1999) MATHGoogle Scholar
  16. Shu, X, Lai, Y, Chen, Y: The existence of mild solutions for impulsive fractional partial differential equations. Nonlinear Anal. 74(5), 2003-2011 (2011) View ArticleMATHMathSciNetGoogle Scholar
  17. Shu, X, Wang, Q: The existence and uniqueness of mild solutions for fractional differential equations with nonlocal conditions of order \(1< \alpha<2 \). Comput. Math. Appl. 64(6), 2100-2110 (2012) View ArticleMATHMathSciNetGoogle Scholar
  18. Wang, DJ, Xia, ZN: Pseudo almost automorphic solution of semilinear fractional differential equations with the Caputo derivatives. Fract. Calc. Appl. Anal. 18(4), 951-971 (2015) View ArticleMATHMathSciNetGoogle Scholar
  19. Dimbour, W, Mophou, G, N’Guérékata, GM: S-asymptotically periodic solutions for partial differential equations with finite delay. Electron. J. Differ. Equ. 2011, 117 (2011) MATHMathSciNetGoogle Scholar
  20. Liang, J, Xiao, TJ: Solutions to nonautonomous abstract functional equations with infinite delay. Taiwan. J. Math. 10, 163-172 (2006) MATHMathSciNetGoogle Scholar
  21. Liang, J, Xiao, TJ: Solvability of the Cauchy problem for infinite delay equations. Nonlinear Anal. 58, 271-297 (2004) View ArticleMATHMathSciNetGoogle Scholar
  22. Liu, JH: Bounded and periodic solutions of finite delay evolution equations. Nonlinear Anal. 34, 101-111 (1998) View ArticleMATHMathSciNetGoogle Scholar
  23. Liu, JH: Periodic solutions of infinite delay evolution equations. J. Math. Anal. Appl. 247, 27-644 (2000) View ArticleMathSciNetGoogle Scholar
  24. Diagana, T: Almost periodic solutions to some second-order nonautonomous differential equations. Proc. Am. Math. Soc. 140, 279-289 (2012) View ArticleMATHMathSciNetGoogle Scholar
  25. Diagana, T: Pseudo-almost periodic solutions for some classes of nonautonomous partial evolution equations. J. Franklin Inst. 348, 2082-2098 (2011) View ArticleMATHMathSciNetGoogle Scholar
  26. Liang, J, Xaio, TJ, Yang, H: About periodicity of impulsive evolution equations through fixed point theory. Fixed Point Theory Appl. 2015, 1 (2015) View ArticleMathSciNetGoogle Scholar
  27. Liu, JH: Bounded and periodic solutions of semi-linear evolution equations. Dyn. Syst. Appl. 4, 341-350 (1995) MathSciNetGoogle Scholar
  28. Henríquez, HR, Pierre, M, T’aboas, P: On S-asymptotically ω-periodic function on Banach spaces and applications. J. Math. Anal. Appl. 343, 1119-1130 (2008) View ArticleMathSciNetGoogle Scholar
  29. Hilfer, H: Applications of Fractional Calculus in Physics. World Scientific, Singapure (2000) View ArticleMATHGoogle Scholar
  30. Dimbour, W, N’Guérékata, GM: S-asymptotically ω-periodic solutions to some classes of partial evolution equations. Appl. Math. Comput. 218, 7622-7628 (2012) MATHMathSciNetGoogle Scholar
  31. Pazy, A: Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied Mathematical Sciences, vol. 44. Springer, New York (1983) MATHGoogle Scholar

Copyright

© The Author(s) 2017