Open Access

Existence of solutions for fractional stochastic impulsive neutral functional differential equations with infinite delay

Advances in Difference Equations20172017:66

https://doi.org/10.1186/s13662-017-1106-5

Received: 10 April 2016

Accepted: 6 February 2017

Published: 28 February 2017

Abstract

This paper addresses a class of fractional stochastic impulsive neutral functional differential equations with infinite delay which arise from many practical applications such as viscoelasticity and electrochemistry. Using fractional calculations, fixed point theorems and the stochastic analysis technique, sufficient conditions are derived to ensure the existence of solutions. An example is provided to prove the main result.

Keywords

fractional stochastic functional differential equations existence neutral impulsive infinite delay fixed point theorem

1 Introduction

It is commonly believed that fractional calculus dates back to 1695. Fractional derivatives supply a powerful tool in describing the memory and hereditary properties of many materials and processes [1, 2]. Many researchers have focused their attention on fractional differential equations. For example, robust stability and stabilization of fractional-order interval systems were investigated in [3]. Li et al. presented a stability theorem for fractional-order nonlinear dynamic systems [4].

Dynamical behaviors such as existence and stability are basic problems of fractional differential equations [510]. Shen and Lam proved that for fractional-order nonlinear system described by Caputo’s or Riemann-Liouville’s definition, any equilibrium cannot be finite-time stable as long as the continuous solution corresponding to the initial value problem globally exists [5]. Song and Cao gave some sufficient conditions ensuring the existence and uniqueness of the nontrivial solution [6]. In recent years, scholars have paid more attention to impulsive differential equations. This is mainly because of many processes in which their state is changed suddenly at some instants. These phenomena can be described by impulsive differential equations. So far, there have been several interesting results that studied the existence of solutions for fractional impulsive differential equations, see [1120] and the references therein.

It is well known that time delays exist in different technical systems which may cause unpredictable system behaviors. There are some results about integer-order and fractional-order functional differential equations with infinite delay [11, 12, 2124]. Sakthivel et al. studied the existence of solutions for a class of nonlinear fractional differential equations with infinite delays by utilizing fractional calculations and a fixed point technique [11]. Another kind of time-delay, called neutral-type time-delay, has received considerable attention [2527]. Actually, many real delayed systems can be described as neutral differential equations. The differential expression includes the derivative terms of current state and past state. In [12], Liao et al. gave the existence theorem of solutions for fractional impulsive neutral functional differential equations with infinite delay by using the Caputo fractional derivative, Hausdorff’s measure of noncompactness and the theory of Mönch.

Since the real environment is influenced by noise inevitably, it is significant to consider the dynamical properties for a fractional stochastic impulsive neutral functional differential equation with infinite delay, especially for the existence of solutions. To the best of our knowledge, few results have studied this problem, and the aim of this paper is to shorten this gap.

Motivated by the above discussions, in this paper we aim to study the existence of solutions for fractional stochastic impulsive neutral functional differential equations with infinite delays. In the established model, the stochastic disturbances are described in terms of a Brownian motion. By using fixed point theorems, we derive sufficient criteria to ensure the existence of solutions. Moreover, our results take some well-studied models, such as integer-order functional differential equations with infinite delay, as special cases.

This paper is organized as follows. In Section 2, we introduce some useful preliminaries. In Section 3, we prove the existence of solutions for the fractional-order system under investigation. In Section 4, an example is given to demonstrate the correctness of the main theorems. Conclusions are made in Section 5.

2 Preliminaries

In this paper, we adopt the symbols as follows: \(K_{1}\) and \(K_{2}\) are separable Hilbert spaces. \({\mathcal{L}}(K_{2},K_{1})\) is the space which contains all the bounded linear operators from \(K_{2}\) into \(K_{1}\). \(\|\cdot\|\) and \((\cdot,\cdot)\) denote the norm and inner product in \(K_{1}\) and \(K_{2}\). \((\Omega, {\mathcal{F}},\{{\mathcal{F}}_{t}\}_{t\geq0},P)\) is a complete filtered probability space satisfying the fact that \({\mathcal{F}}_{0}\) contains all P-null sets of \(\mathcal{F}\). \(W=\{W(t)\}_{t\geq0}\) is a Q-Wiener process defined on \((\Omega, {\mathcal{F}},\{{\mathcal{F}}_{t}\}_{t\geq0},P)\) with the covariance operator Q such that \(TrQ<\infty\). \(E\{\cdot\}\) denotes the expectation. It is assumed that \(Q\delta_{k}=\gamma_{k} \delta_{k}\), \(k=1,2,\ldots\) , and \((w(u),\delta)_{K_{2}}=\sum_{k=1}^{\infty}\sqrt{\gamma_{k}}(\delta_{k},\delta )_{K_{2}}\beta_{k}(u)\), \(\delta\in K_{2}\), \(e\geq0\), where \(\{\delta_{k}\}_{k\geq1}\) in \(K_{2}\) is a complete orthonormal system, \(\gamma_{k}\) is a bounded sequence of nonnegative real numbers, \(\{\beta_{k}\}_{k\geq1}\) are independent Brownian motions.

We discuss the following fractional functional differential equations:
$$ \left \{ \textstyle\begin{array}{l} {}^{\mathrm{c}}D_{u}^{\alpha}[x(u)+g(u,x_{u})]=f(u,x_{u})+\sigma(u,x_{u})\frac {dW(u)}{du},\quad u\in H=[0,T], u\neq u_{k}, \\ \Delta x(u_{k})=I_{k}(x(u_{k})),\quad u=u_{k},k=1,2,\ldots,m, \\ x(u)=\xi(u)\in{\mathcal{B}}_{h}, \quad u\in (-\infty,0 ], \end{array}\displaystyle \right . $$
(2.1)
where \({}^{\mathrm{c}}D_{u}^{\alpha}\) denotes α-order Caputo fractional derivative, \(\alpha>\frac{1}{2}\); \(x(\cdot)\in K_{1}\). The history \(x_{u}: (-\infty,0]\rightarrow K_{1}\), \(x_{u}(v)=x(u+v)\in{\mathcal{B}}_{h}\), \(v\leq 0\). \(f:H\times {\mathcal{B}}_{h}\rightarrow K_{1}\), \(g:H\times{\mathcal{B}}_{h}\rightarrow K_{1}\), \(\sigma:H\times{\mathcal{B}}_{h}\rightarrow{\mathcal{L}}_{2}^{0}\), \(I_{k}: {\mathcal{B}}_{h}\rightarrow K_{1}\) (\(k=1,2,\ldots m\)) are appropriate functions. Here \(0=u_{0}\leq u_{1}\leq\cdots\leq u_{m}\leq u_{m+1}=T\), \(\Delta x(u_{k})=x(u_{k}^{+})-x(u_{k}^{-})\), \(x(u_{k}^{+})=\lim_{\epsilon\rightarrow0^{+}}x(u_{k}+\epsilon)\) and \(x(u_{k}^{-})=\lim_{\epsilon\rightarrow0^{+}}x(u_{k}-\epsilon)\). \(\xi=\{\xi(u), u\in(-\infty,0]\}\) denotes the initial condition, and it is an \({\mathcal{F}}_{0}\)-measurable \({\mathcal{B}}_{h}\)-values random variable which is independent of ω.

We adopt the following symbols in [22].

Suppose \(h:(-\infty,0]\rightarrow(0,\infty)\) is a continuous function satisfying \(l=\int_{-\infty}^{0}h(u)\,du<\infty\).

Define the space \({\mathcal{B}}_{h}\) by
$$\begin{aligned} {\mathcal{B}}_{h} =&\biggl\{ \xi: (-\infty,0 ]\rightarrow K_{1}, \mbox{for any }a>0, \bigl(E\bigl\vert \xi(\theta)\bigr\vert ^{2}\bigr)^{\frac{1}{2}}\mbox{ is a bounded and measurable} \\ &{} \mbox{function on }[-a,0]\mbox{ with }\xi(0)=0\mbox{ and } \int_{-\infty}^{0}h(v)\sup_{v\leq\theta\leq0}\bigl(E\bigl| \xi(\theta)\bigr|^{2}\bigr)^{\frac {1}{2}}\,dv< \infty\biggr\} . \end{aligned}$$

Let \(\|\xi\|_{{\mathcal{B}}_{h}}=\int_{-\infty}^{0}h(v)\sup_{v\leq\theta\leq 0}(E|\xi(\theta)|^{2})^{\frac{1}{2}}\,dv\), \(\xi\in{\mathcal{B}}_{h}\), then \(({\mathcal{B}}_{h},\|\cdot\|_{{\mathcal{B}}_{h}})\) is a Banach space.

Define the space
$$\begin{aligned} {\mathcal{B}}_{b} =&\bigl\{ x: (-\infty,T ]\rightarrow K_{1}\mbox{ such that } x|_{H_{k}}\in C(H_{k},K_{1}) \mbox{ and there exist } x\bigl(u_{k}^{+}\bigr), \\ & x\bigl(u_{k}^{-}\bigr),x(u_{k})=x\bigl(u_{k}^{-} \bigr), x_{0}=\xi\in{\mathcal{B}}_{h},k=1,2,\ldots, m\bigr\} , \end{aligned}$$
where \(x|_{H_{k}}\) is the restriction of x to \(H_{k}=(u_{k},u_{k+1}]\), \(k=0,1,2,\ldots, m\). Define \(\|x\|_{{\mathcal{B}}_{b}}=\|\xi\|_{{\mathcal{B}}_{h}}+\sup_{v\in [0,T]}(E\|x(v)\|_{K_{1}}^{2})^{\frac{1}{2}}\), \(x\in{\mathcal{B}}_{b}\), then \(\|\cdot\|_{{\mathcal{B}}_{b}}\) is a seminorm in \({\mathcal{B}}_{b}\).

The following definitions and lemmas are needed to ensure the existence of solutions of (2.1).

Definition 2.1

[1, 2]

The fractional integral of order α for a function f is defined as
$$I^{\alpha}f(u)=\frac{1}{\Gamma(\alpha)} \int_{u_{0}}^{u}(u-v)^{\alpha-1}f(v)\,dv, $$
where \(u\geq u_{0}\) and \(\alpha>0\).

Definition 2.2

[1, 2]

Caputo’s derivative of order α for a function \(f\in C^{n}([u_{0},+\infty),R)\) is defined by
$${}^{\mathrm{c}}D_{\alpha}^{u}f(u)=\frac{1}{\Gamma(n-\alpha)} \int _{u_{0}}^{u}(u-v)^{n-\alpha-1}f^{(n)}(v) \,dv, $$
where \(u\geq u_{0}\) and n is a positive integer such that \(n-1<\alpha<n\).

Particularly, when \(0<\alpha<1\), \({}^{\mathrm{c}}D_{\alpha}^{u}f(u)=\frac{1}{\Gamma(1-\alpha)}\int _{u_{0}}^{u}(u-v)^{-\alpha}f'(v)\,dv\).

Definition 2.3

An \({\mathcal{F}}_{t}\)-adapted stochastic process \(x:(-\infty,T]\rightarrow K_{1}\) is called a solution of (2.1) if \(x_{0}=\xi\in{\mathcal{B}}_{h}\) satisfying \(x_{0}\in{\mathcal{L}}_{2}^{0}(\Omega, K_{1})\) and the following conditions hold:
  1. (i)

    \(x(u)\) is \({\mathcal{B}}_{h}\)-valued and the restriction of \(x(\cdot)\) to the interval \((u_{k},u_{k+1}]\) (\(k=1,2,\ldots,m\)) is continuous.

     
  2. (ii)
    $$ x(u)=\left \{ \textstyle\begin{array}{l@{\quad}l} \xi(u),& u\in(-\infty,0], \\ \xi(0)+g(0,\xi(0))-g(u,x_{u}) \\ \quad {}+\frac{1}{\Gamma(\alpha)}\int _{0}^{u}(u-v)^{\alpha-1}f(v,x_{v})\,dv \\ \quad {}+\frac{1}{\Gamma(\alpha)}\int_{0}^{u}(u-v)^{\alpha-1}\sigma(v,x_{v})\,dW(v),& u\in(0,u_{1}], \\ \xi(0)+g(0,\xi(0))-g(u,x_{u}) \\ \quad {}+\frac{1}{\Gamma(\alpha)}\int _{0}^{u}(u-v)^{\alpha-1}f(v,x_{v})\,dv \\ \quad {}+\frac{1}{\Gamma(\alpha)}\int_{0}^{u}(u-v)^{\alpha-1}\sigma (v,x_{v})\,dW(v) \\ \quad {}+\sum_{i=1}^{k}I_{i}(x(u_{i})),&u\in(u_{k},u_{k+1}], k=1,2,\ldots,m. \end{array}\displaystyle \right . $$
    (2.2)
     
  3. (iii)

    \(\Delta x|_{u=u_{k}}=I_{k}(x(u_{k}))\), \(k=1,2,\ldots,m\), the restriction of \(x(\cdot)\) to the interval \([0,T]\setminus\{u_{1},\ldots,u_{m}\}\) is continuous.

     

Lemma 2.4

Assume, for all \(u\in H=[0,T]\), \(x_{u}\in{\mathcal{B}}_{h}\), \(x_{0}=\xi\in{\mathcal{B}}_{h}\), then
$$\Vert x_{u}\Vert _{{\mathcal{B}}_{h}}\leq l\sup_{u\in [0,T]} \bigl(E\bigl\Vert x(u)\bigr\Vert _{K_{1}}^{2} \bigr)^{\frac{1}{2}}+\Vert x_{0}\Vert _{{\mathcal{B}}_{h}}. $$

Proof

For all \(u\in[0,T]\),
$$\begin{aligned} \sup_{v\leq\theta\leq0}\bigl(E\bigl\Vert x(u+\theta)\bigr\Vert ^{2}\bigr)^{\frac{1}{2}} \leq&\max\Bigl\{ \sup_{v\leq\theta\leq-u} \bigl(E\bigl\Vert x(u+\theta)\bigr\Vert ^{2}\bigr)^{\frac {1}{2}}, \sup_{-u\leq\theta\leq0}\bigl(E\bigl\Vert x(u+\theta)\bigr\Vert ^{2}\bigr)^{\frac{1}{2}}\Bigr\} \\ \leq&\sup_{v\leq\theta\leq-u}\bigl(E\bigl\Vert x(u+\theta)\bigr\Vert ^{2}\bigr)^{\frac{1}{2}}+\sup_{-u\leq\theta\leq0}\bigl(E\bigl\Vert x(u+\theta)\bigr\Vert ^{2}\bigr)^{\frac{1}{2}} \\ =&\sup_{v+u\leq\theta\leq0}\bigl(E\bigl\Vert x(\theta)\bigr\Vert ^{2}\bigr)^{\frac{1}{2}}+\sup_{0\leq v\leq u}\bigl(E\bigl\Vert x(v)\bigr\Vert ^{2}\bigr)^{\frac{1}{2}} \\ \leq&\sup_{v\leq\theta\leq0}\bigl(E\bigl\Vert x(\theta)\bigr\Vert ^{2}\bigr)^{\frac{1}{2}}+\sup_{0\leq u\leq T}\bigl(E\bigl\Vert x(u)\bigr\Vert ^{2}\bigr)^{\frac{1}{2}}. \end{aligned}$$
So
$$\begin{aligned} \Vert x_{u}\Vert _{{\mathcal{B}}_{h}} =& \int_{-\infty}^{0}h(v)\sup_{v\leq\theta\leq 0}\bigl(E \bigl\vert x_{u}(\theta)\bigr\vert ^{2} \bigr)^{\frac{1}{2}}\,dv \\ =& \int_{-\infty}^{0}h(v)\sup_{v\leq\theta\leq0}\bigl(E \bigl\vert x(u+\theta)\bigr\vert ^{2}\bigr)^{\frac {1}{2}}\,dv \\ \leq& \int_{-\infty}^{0}h(v) \Bigl(\sup_{v\leq\theta\leq0} \bigl(E\bigl\Vert x(\theta )\bigr\Vert ^{2}\bigr)^{\frac{1}{2}}+ \sup_{0\leq u\leq T}\bigl(E\bigl\Vert x(u)\bigr\Vert ^{2} \bigr)^{\frac{1}{2}}\Bigr)\,dv \\ =& \int_{-\infty}^{0}h(v)\sup_{v\leq\theta\leq0}\bigl(E \bigl\Vert x(\theta)\bigr\Vert ^{2}\bigr)^{\frac {1}{2}}\,dv+ \int_{-\infty}^{0}h(v)\sup_{0\leq u\leq T}\bigl(E \bigl\Vert x(u)\bigr\Vert ^{2}\bigr)^{\frac{1}{2}}\,dv \\ =& \int_{-\infty}^{0}h(v)\,dv\sup_{0\leq u\leq T} \bigl(E\bigl\Vert x(u)\bigr\Vert ^{2}\bigr)^{\frac{1}{2}}+\Vert x_{0}\Vert _{{\mathcal{B}}_{h}} \\ =&l\sup_{0\leq u\leq T}\bigl(E\bigl\Vert x(u)\bigr\Vert ^{2}\bigr)^{\frac{1}{2}}+\Vert x_{0}\Vert _{{\mathcal{B}}_{h}}. \end{aligned}$$
This completes the proof. □

Lemma 2.5

Krasnoselskii’s fixed point theorem [19]

Let B be a nonempty closed convex set of a Banach space \((X,\|\cdot\|)\). Suppose that P and Q map B into X such that
  1. (i)

    \(Px+Qy\in B\) whenever \(x, y\in B\);

     
  2. (ii)

    P is compact and continuous;

     
  3. (iii)

    Q is a contraction mapping;

     
then there exists \(z\in B\) such that \(z=Pz+Qz\).

3 Main results

To obtain the existence of solutions of (2.1), we need the following assumptions:
  1. (H1)
    There exists \(L_{1}>0\) such that
    $$E\bigl\Vert f(u,x)-f(u,y)\bigr\Vert _{K_{1}}^{2}\leq L_{1}\Vert x-y\Vert _{{\mathcal{B}}_{h}}^{2},\quad \forall x,y\in{\mathcal{B}}_{h}. $$
     
  2. (H2)
    There exists \(L_{2}>0\) such that
    $$E\bigl\Vert g(u,x)-g(u,y)\bigr\Vert _{K_{1}}^{2}\leq L_{2}\Vert x-y\Vert _{{\mathcal{B}}_{h}}^{2},\quad \forall x,y \in{\mathcal{B}}_{h}. $$
     
  3. (H3)
    There exists \(L_{3}>0\) such that
    $$E\bigl\Vert \sigma(u,x)-\sigma(u,y)\bigr\Vert _{{\mathcal{L}}_{2}^{0}}^{2} \leq L_{3}\Vert x-y\Vert _{{\mathcal{B}}_{h}}^{2},\quad \forall x,y\in{\mathcal{B}}_{h}. $$
     
  4. (H4)
    There exists \(L_{4}>0\) such that
    $$E\bigl\Vert I_{k}(x)-I_{k}(y)\bigr\Vert _{K_{1}}^{2}\leq L_{4}\Vert x-y\Vert _{{\mathcal{B}}_{h}}^{2},\quad \forall x,y\in{\mathcal{B}}_{h} \mbox{ and } k=1,2,\ldots,m. $$
     

Now we will use the Banach fixed point theorem to prove the existence theorem for (2.1).

Theorem 3.1

Assume that conditions (H1)-(H4) hold, then (2.1) has a unique solution if the following condition holds:
$$ 4l^{2}\biggl(L_{2}+\frac{1}{\Gamma(\alpha)}L_{1} \frac{T^{2\alpha}}{\alpha^{2}}+\frac {1}{\Gamma(\alpha)}L_{3}\frac{T^{2\alpha-1}}{2\alpha-1}+m^{2}L_{4} \biggr)< 1. $$
(3.1)

Proof

Define the operator \(\Pi: {\mathcal{B}}_{b}\rightarrow{\mathcal{B}}_{b}\) by
$$ \Pi x(t)=\left \{ \textstyle\begin{array}{l@{\quad}l} \xi(u),& u\in (-\infty,0 ], \\ \xi(0)+g(0,\phi(0))-g(u,x_{u}) \\ \quad {}+\frac{1}{\Gamma(\alpha)}\int _{0}^{u}(u-v)^{\alpha-1}f(v,x_{v})\,dv \\ \quad {}+\frac{1}{\Gamma(\alpha)}\int_{0}^{u}(u-v)^{\alpha-1}\sigma(v,x_{v})\,dW(v),& u\in (0,u_{1} ], \\ \xi(0)+g(0,\phi(0))-g(u,x_{u}) \\ \quad {}+\frac{1}{\Gamma(\alpha)}\int _{0}^{u}(u-v)^{\alpha-1}f(v,x_{v})\,dv \\ \quad {}+\frac{1}{\Gamma(\alpha)}\int_{0}^{u}(u-v)^{\alpha-1}\sigma (v,x_{v})\,dW(v) \\ \quad {}+\sum_{i=1}^{k}I_{i}(x(u_{i})),& u\in (u_{k},u_{k+1} ], k=1,2,\ldots,m. \end{array}\displaystyle \right . $$
(3.2)
For \(\xi\in{\mathcal{B}}_{b}\), define
$$\bar{\xi}(t)=\left \{ \textstyle\begin{array}{l@{\quad}l} \xi(u),& u\in(-\infty,0], \\ 0, &u\in H, \end{array}\displaystyle \right . $$
then \(\bar{\xi}_{0}=\xi\). Next, define the function
$$\bar{\eta}(t)=\left \{ \textstyle\begin{array}{l@{\quad}l} 0,& u\in(-\infty,0], \\ \eta(u),& u\in H, \end{array}\displaystyle \right . $$
for each \(\eta\in C(H,R)\), with \(\eta(0)=0\).
If \(x(\cdot)\) satisfies (2.2), then \(x(u)=\bar{\xi}(u)+\bar{\eta}(u)\) for \(u\in H\), which implies \(x_{u}=\bar{\xi}_{u}+\bar{\eta}_{u}\) for \(u\in H\), and the function \(\eta(\cdot)\) satisfies
$$\begin{aligned} \eta(u) =&\left \{ \textstyle\begin{array}{l@{\quad}l} g(0,\xi(0))-g(u,x_{u})+\frac{1}{\Gamma(\alpha)}\int_{0}^{u}(u-v)^{\alpha -1}f(v,x_{v})\,dv \\ \quad {}+\frac{1}{\Gamma(\alpha)}\int_{0}^{u}(u-v)^{\alpha-1}\sigma(v,x_{v})\,dW(v),& u\in (0,u_{1} ], \\ g(0,\xi(0))-g(u,x_{u})+\frac{1}{\Gamma(\alpha)}\int_{0}^{u}(u-v)^{\alpha -1}f(v,x_{v})\,dv \\ \quad {}+\frac{1}{\Gamma(\alpha)}\int_{0}^{u}(u-v)^{\alpha-1}\sigma(v,x_{v})\,dW(v) \\ \quad {}+\sum_{i=1}^{k}I_{i}(x(u_{i})),& u\in (u_{k},u_{k+1} ], \\ &k=1,2,\ldots,m \end{array}\displaystyle \right . \\ =&\left \{ \textstyle\begin{array}{l@{\quad}l} g(0,\xi(0))-g(u,\bar{\xi}_{u}+\bar{\eta}_{u})+\frac{1}{\Gamma(\alpha)}\int _{0}^{u}(u-v)^{\alpha-1}f(v,\bar{\xi}_{v}+\bar{\eta}_{v})\,dv \\ \quad {}+\frac{1}{\Gamma(\alpha)}\int_{0}^{u}(u-v)^{\alpha-1}\sigma(v,\bar{\phi }_{v}+\bar{\eta}_{v})\,dW(v),& u\in (0,u_{1} ], \\ g(0,\xi(0))-g(u,\bar{\xi}_{u}+\bar{\eta}_{u})+\frac{1}{\Gamma(\alpha)}\int _{0}^{u}(u-v)^{\alpha-1}f(v,\bar{\xi}_{v}+\bar{\eta}_{v})\,dv \\ \quad {}+\frac{1}{\Gamma(\alpha)}\int_{0}^{u}(u-v)^{\alpha-1}\sigma(v,\bar{\xi }_{v}+\bar{\eta}_{v})\,dW(v) \\ \quad {}+\sum_{i=1}^{k}I_{i}(\bar{\xi}(u_{i})+\bar{\eta}(u_{i})),& u\in (u_{k},u_{k+1} ], \\ &k=1,2,\ldots,m. \end{array}\displaystyle \right . \end{aligned}$$
Set \({\mathcal{B}}_{b}^{0}=\{\eta\in{\mathcal{B}}_{b}, \mbox{such that }\eta_{0}=0\}\) and for any \(\eta\in{\mathcal{B}}_{b}^{0}\), one has
$$\Vert \eta \Vert _{{\mathcal{B}}_{b}^{0}}=\Vert \eta_{0}\Vert _{{\mathcal{B}}_{h}}+\sup_{u\in H}\bigl(E\bigl\Vert \eta(u)\bigr\Vert _{K_{1}}^{2}\bigr)^{\frac{1}{2}}=\sup _{u\in H}\bigl(E\bigl\Vert \eta (u)\bigr\Vert _{K_{1}}^{2}\bigr)^{\frac{1}{2}}, $$
thus \(({\mathcal{B}}_{b}^{0},\|\cdot\|_{{\mathcal{B}}_{b}^{0}})\) is a Banach space.
Define the operator \(\Psi:{\mathcal{B}}_{b}^{0}\rightarrow{\mathcal {B}}_{b}^{0}\) by
$$(\Psi\eta) (u)=\left \{ \textstyle\begin{array}{l@{\quad}l} g(0,\xi(0))-g(u,\bar{\xi}_{u}+\bar{\eta}_{u})+\frac{1}{\Gamma(\alpha)}\int _{0}^{u}(u-v)^{\alpha-1}f(v,\bar{\xi}_{v}+\bar{\eta}_{v})\,dv \\ \quad {}+\frac{1}{\Gamma(\alpha)}\int_{0}^{u}(u-v)^{\alpha-1}\sigma(v,\bar{\xi }_{v}+\bar{\eta}_{v})\,dW(v), & u\in (0,u_{1} ], \\ g(0,\xi(0))-g(u,\bar{\xi}_{u}+\bar{\eta}_{u})+\frac{1}{\Gamma(\alpha)}\int _{0}^{u}(u-v)^{\alpha-1}f(v,\bar{\xi}_{v}+\bar{\eta}_{v})\,dv \\ \quad {}+\frac{1}{\Gamma(\alpha)}\int_{0}^{u}(u-v)^{\alpha-1}\sigma(v,\bar{\xi }_{v}+\bar{\eta}_{v})\,dW(v) \\ \quad {}+\sum_{i=1}^{k}I_{i}(\bar{\xi}(u_{i})+\bar{\eta }(u_{i})),& u\in (u_{k},u_{k+1} ], \\ & k=1,2,\ldots,m. \end{array}\displaystyle \right . $$
In order to prove the existence result, it is enough to show that Ψ has a unique fixed point. Let \(\eta, \eta^{*}\in{\mathcal {B}}_{b}^{0}\), then for all \(u\in(0,u_{1}]\), we have
$$\begin{aligned}& E\bigl\Vert (\Psi\eta) (u)-\bigl(\Psi \eta^{*}\bigr) (u)\bigr\Vert _{K_{1}}^{2} \\& \quad \leq 3E\bigl\Vert g(u,\bar{\xi}_{u}+\bar{\eta}_{u})-g \bigl(u,\bar{\xi}_{u}+\bar{\eta }_{u}^{*}\bigr)\bigr\Vert _{K_{1}}^{2} \\& \qquad {} +3E\biggl\Vert \frac{1}{\Gamma(\alpha)} \int_{0}^{u}(u-v)^{\alpha-1}\bigl[f(v,\bar{\xi }_{v}+\bar{\eta}_{v})-f\bigl(v,\bar{\xi}_{v}+ \bar{\eta}_{v}^{*}\bigr)\bigr]\,dv\biggr\Vert _{K_{1}}^{2} \\& \qquad {} +3E\biggl\Vert \frac{1}{\Gamma(\alpha)} \int_{0}^{u}(u-v)^{\alpha-1}\bigl[\sigma(v,\bar { \xi}_{v}+\bar{\eta}_{v})-\sigma\bigl(v,\bar{ \xi}_{v}+\bar{\eta }_{v}^{*}\bigr)\bigr]\,dW(v)\biggr\Vert _{K_{1}}^{2} \\& \quad \leq 3L_{2}\bigl\Vert \bar{\eta}_{u}-\bar{ \eta}_{u}^{*}\bigr\Vert _{\mathcal{B}_{h}}^{2}+3\biggl( \frac {1}{\Gamma(\alpha)}\biggr)^{2} \int_{0}^{u}(u-v)^{\alpha-1}\,dv \int_{0}^{u}(u-v)^{\alpha-1} \\& \qquad {} \times E\bigl\Vert f(v,\bar{\xi}_{v}+\bar{ \eta}_{v})-f\bigl(v,\bar{\xi}_{v}+\bar{\eta }_{v}^{*}\bigr)\bigr\Vert _{K_{1}}^{2}\,dv \\& \qquad {} +3\biggl(\frac{1}{\Gamma(\alpha)}\biggr)^{2} \int_{0}^{u}(u-v)^{2(\alpha-1)} E\bigl\Vert \sigma(v,\bar{\xi}_{v}+\bar{\eta}_{v})-\sigma\bigl(v,\bar{ \xi}_{v}+\bar{\eta }_{v}^{*}\bigr)\bigr\Vert _{{\mathcal{L}}_{2}^{0}}^{2}\,dv \\& \quad \leq 3L_{2}\bigl\Vert \bar{\eta}_{u}-\bar{ \eta}_{u}^{*}\bigr\Vert _{\mathcal{B}_{h}}^{2}+3\biggl( \frac {1}{\Gamma(\alpha)}\biggr)^{2}\frac{T^{\alpha}}{\alpha} \int_{0}^{u}(u-v)^{\alpha-1} L_{1} \bigl\Vert \bar{\eta}_{v}-\bar{\eta}_{v}^{*}\bigr\Vert _{\mathcal{B}_{h}}^{2}\,dv \\& \qquad {} +3\biggl(\frac{1}{\Gamma(\alpha)}\biggr)^{2} \int_{0}^{u}(u-v)^{2(\alpha-1)}L_{3}\bigl\Vert \bar {\eta}_{v}-\bar{\eta}_{v}^{*}\bigr\Vert _{\mathcal{B}_{h}}^{2}\,dv \\& \quad \leq 3L_{2}l^{2}\sup_{v\in[0,T]}\bigl\Vert \eta(v)-\eta^{*}(v)\bigr\Vert _{K_{1}}^{2} \\& \qquad {} +3\biggl(\frac{1}{\Gamma(\alpha)}\biggr)^{2}\frac{T^{\alpha}}{\alpha}L_{1} \int _{0}^{u}(u-v)^{\alpha-1} l^{2}\sup _{v\in[0,T]}\bigl\Vert \eta(v)-\eta^{*}(v)\bigr\Vert _{K_{1}}^{2}\,dv \\& \qquad {} +3\biggl(\frac{1}{\Gamma(\alpha)}\biggr)^{2}L_{3} \int_{0}^{u}(u-v)^{2(\alpha-1)}l^{2}\sup _{v\in[0,T]}\bigl\Vert \eta(v)-\eta^{*}(v)\bigr\Vert _{K_{1}}^{2}\,dv \\& \quad \leq 3L_{2}l^{2}\bigl\Vert \eta-\eta^{*}\bigr\Vert _{{\mathcal{B}}_{b}^{0}}^{2}+3\biggl(\frac{1}{\Gamma (\alpha)}\biggr)^{2}l^{2} \frac{T^{2\alpha}}{{\alpha}^{2}}L_{1}\bigl\Vert \eta-\eta ^{*}\bigr\Vert _{{\mathcal{B}}_{b}^{0}}^{2} \\& \qquad {} +3\biggl(\frac{1}{\Gamma(\alpha)}\biggr)^{2}L_{3} \frac{T^{2\alpha-1}}{2\alpha -1}l^{2}\bigl\Vert \eta-\eta^{*}\bigr\Vert _{{\mathcal{B}}_{b}^{0}}^{2} \\& \quad = 3l^{2}\biggl[L_{2}+\biggl(\frac{1}{\Gamma(\alpha)} \biggr)^{2}\frac{T^{2\alpha}}{{\alpha }^{2}}L_{1}+\biggl(\frac{1}{\Gamma(\alpha)} \biggr)^{2}L_{3}\frac{T^{2\alpha-1}}{2\alpha -1}\biggr]\bigl\Vert \eta- \eta^{*}\bigr\Vert _{{\mathcal{B}}_{b}^{0}}^{2}. \end{aligned}$$
For \(u\in(u_{k},u_{k+1}]\), \(k=1,2,\ldots,m\), one can obtain
$$\begin{aligned}& E\bigl\Vert (\Psi\eta) (u)-\bigl(\Psi \eta^{*}\bigr) (u)\bigr\Vert _{K_{1}}^{2} \\& \quad \leq 4E\bigl\Vert g(u,\bar{\xi}_{u}+\bar{\eta}_{u})-g \bigl(u,\bar{\xi}_{u}+\bar{\eta }_{u}^{*}\bigr)\bigr\Vert _{K_{1}}^{2} \\& \qquad {} +4E\Biggl\Vert \sum_{i=1}^{k} \bigl(I_{i}\bigl(\bar{\eta}(u_{1})+\bar{ \xi}(u_{1})\bigr)-I_{i}\bigl(\bar{\eta }^{*}(u_{1})+ \bar{\xi}(u_{1})\bigr)\bigr)\Biggr\Vert _{K_{1}}^{2} \\& \qquad {} +4E\biggl\Vert \frac{1}{\Gamma(\alpha)} \int_{0}^{u}(u-v)^{\alpha-1}\bigl[f(v,\bar{\xi }_{v}+\bar{\eta}_{v})-f\bigl(v,\bar{\xi}_{v}+ \bar{\eta}_{v}^{*}\bigr)\bigr]\,dv\biggr\Vert _{K_{1}}^{2} \\& \qquad {} +4E\biggl\Vert \frac{1}{\Gamma(\alpha)} \int_{0}^{u}(u-v)^{\alpha-1}\bigl[\sigma(v,\bar { \xi}_{v}+\bar{\eta}_{v})-\sigma\bigl(v,\bar{ \xi}_{v}+\bar{\eta }_{v}^{*}\bigr)\bigr]\,dW(v)\biggr\Vert _{K_{1}}^{2} \\& \quad \leq 4L_{2}\bigl\Vert \bar{\eta}_{u}-\bar{ \eta}_{u}^{*}\bigr\Vert _{\mathcal {B}_{h}}^{2}+4m^{2}l^{2}L_{4}E \bigl\Vert \bar{\eta}(u_{1})-\bar{\eta}^{*}(u_{1})\bigr\Vert _{K_{1}}^{2} \\& \qquad {} +4\biggl(\frac{1}{\Gamma(\alpha)}\biggr)^{2}\frac{T^{\alpha}}{\alpha} \int _{0}^{u}(u-v)^{\alpha-1} L_{1} \bigl\Vert \bar{\eta}_{v}-\bar{\eta}_{v}^{*}\bigr\Vert _{\mathcal{B}_{h}}^{2}\,dv \\& \qquad {} +4\biggl(\frac{1}{\Gamma(\alpha)}\biggr)^{2} \int_{0}^{u}(u-v)^{2(\alpha-1)}L_{3}\bigl\Vert \bar {\eta}_{v}-\bar{\eta}_{v}^{*}\bigr\Vert _{\mathcal{B}_{h}}^{2}\,dv \\& \quad \leq 4L_{2}l^{2}\sup_{v\in[0,T]}\bigl\Vert \eta(v)-\eta ^{*}(v)\bigr\Vert _{K_{1}}^{2}+4m^{2}l^{2}L_{4} \sup_{v\in[0,T]}\bigl\Vert \eta(v)-\eta ^{*}(v)\bigr\Vert _{K_{1}}^{2} \\& \qquad {} +4\biggl(\frac{1}{\Gamma(\alpha)}\biggr)^{2}\frac{T^{\alpha}}{\alpha}L_{1} \int _{0}^{u}(u-v)^{\alpha-1} l^{2}\sup _{v\in[0,T]}\bigl\Vert \eta(v)-\eta^{*}(v)\bigr\Vert _{K_{1}}^{2}\,dv \\& \qquad {} +4\biggl(\frac{1}{\Gamma(\alpha)}\biggr)^{2}L_{3} \int_{0}^{u}(u-v)^{2(\alpha-1)}l^{2}\sup _{v\in[0,T]}\bigl\Vert \eta(v)-\eta^{*}(v)\bigr\Vert _{K_{1}}^{2}\,dv \\& \quad \leq \biggl(4l^{2}\biggl[L_{2}+\biggl( \frac{1}{\Gamma(\alpha)}\biggr)^{2}L_{1}\frac{T^{2\alpha }}{{\alpha}^{2}}+\biggl( \frac{1}{\Gamma(\alpha)}\biggr)^{2}L_{3}\frac{T^{2\alpha -1}}{2\alpha-1}\biggr] +4m^{2}l^{2}L_{4}\biggr)\bigl\Vert \eta-\eta^{*} \bigr\Vert _{{\mathcal{B}}_{b}^{0}}^{2}. \end{aligned}$$
Therefore, for all \(u\in[0,T]\),
$$\begin{aligned}& E\bigl\Vert (\Psi\eta) (u)-\bigl(\Psi \eta^{*}\bigr) (u)\bigr\Vert _{K_{1}}^{2} \\& \quad \leq4l^{2}\biggl(L_{2}+\biggl( \frac{1}{\Gamma(\alpha)}\biggr)^{2}L_{1}\frac {T^{2\alpha}}{{\alpha}^{2}} +\biggl( \frac{1}{\Gamma(\alpha)}\biggr)^{2}L_{3}\frac{T^{2\alpha-1}}{2\alpha-1}+m^{2}L_{4} \biggr) \bigl\Vert \eta-\eta^{*}\bigr\Vert _{{\mathcal{B}}_{b}^{0}}^{2}. \end{aligned}$$
From (3.1), we conclude that Ψ is a contraction mapping. This implies that (2.1) has a unique solution on \((-\infty, T]\). The proof is complete. □
The next result is established by using Krasnoselskii’s fixed point theorem. We need the following assumptions.
  1. (H5)
    \(f:H\times{\mathcal{B}}_{h}\rightarrow K_{1}\) is continuous, and there exists a continuous function \(\mu_{1}:H\rightarrow(0,+\infty)\) such that
    $$E\bigl\Vert f(u,x)\bigr\Vert _{K_{1}}^{2}\leq \mu_{1}(u)\Vert x\Vert _{{\mathcal{B}}_{h}}^{2},\quad \forall (u,x)\in H\times{\mathcal{B}}_{h}, $$
    where \(\mu_{1}^{*}=\sup_{0\leq v\leq u}\mu_{1}(v)\).
     
  2. (H6)
    \(g:H\times{\mathcal{B}}_{h}\rightarrow K_{1}\) is continuous, and there exists a continuous function \(\mu_{2}:H\rightarrow(0,+\infty)\) such that
    $$E\bigl\Vert g(u,x)\bigr\Vert _{K_{1}}^{2}\leq \mu_{2}(u)\Vert x\Vert _{{\mathcal{B}}_{h}}^{2},\quad \forall (u,x)\in H\times{\mathcal{B}}_{h}, $$
    where \(\mu_{2}^{*}=\sup_{0\leq v\leq u}\mu_{2}(v)\).
     
  3. (H7)
    \(\sigma:H\times {\mathcal{B}}_{h}\rightarrow{\mathcal{L}}_{2}^{0}\) is continuous, and there exists a continuous function \(\mu_{3}:H\rightarrow(0,+\infty)\) such that
    $$E\bigl\Vert \sigma(u,x)\bigr\Vert _{{\mathcal{L}}_{2}^{0}}^{2}\leq \mu_{3}(u)\Vert x\Vert _{{\mathcal {B}}_{h}}^{2},\quad \forall(u,x)\in H\times{\mathcal{B}}_{h}, $$
    where \(\mu_{3}^{*}=\sup_{0\leq v\leq u}\mu_{3}(v)\).
     
  4. (H8)

    There exists \(K>0\) such that \(I_{k}:{\mathcal{B}}_{h}\rightarrow K_{1}\), \(k=1,2,\ldots,m\), \(E\|I_{k}(x)\|_{K_{1}}^{2}\leq K\).

     

Let \(B_{q}=\{y\in{\mathcal{B}}_{b}^{0}, \|y\|_{{\mathcal{B}}_{b}^{0}}^{2}\leq q, q>0\}\), then \(B_{q}\) is a bounded closed convex set in \({\mathcal{B}}_{b}^{0}\), \(\forall y\in B_{q}\).

From Lemma 2.4, we get
$$\begin{aligned} \Vert y_{u}+\bar{\eta}_{u}\Vert _{{\mathcal{B}}_{h}}^{2} \leq&2\bigl(\Vert y_{u}\Vert _{{\mathcal {B}}_{h}}^{2}+\Vert \bar{\eta}_{u}\Vert _{{\mathcal{B}}_{h}}^{2}\bigr) \\ \leq&4\Bigl(l^{2}\sup_{v\in[0,u]}E\bigl\Vert y(v)\bigr\Vert _{K_{1}}^{2}+\Vert y_{0}\Vert _{{\mathcal{B}}_{h}}^{2}\Bigr) +4\Bigl(l^{2}\sup _{v\in[0,u]}E\bigl\Vert \bar{\eta}(v)\bigr\Vert _{K_{1}}^{2}+\Vert \bar{\eta }_{0}\Vert _{{\mathcal{B}}_{h}}^{2}\Bigr) \\ \leq&8\bigl(\Vert \xi \Vert _{{\mathcal{B}}_{h}}^{2}+l^{2}q \bigr)\triangleq M. \end{aligned}$$

Theorem 3.2

Assume that conditions (H1)-(H8) hold, then (2.1) has at least one solution if the following conditions hold:
$$ 40l^{2}\biggl[\mu_{2}^{*}+\biggl(\frac{1}{\Gamma(\alpha)} \biggr)^{2}\mu_{1}^{*}\frac{T^{2\alpha }}{\alpha^{2}} +\biggl( \frac{1}{\Gamma(\alpha)}\biggr)^{2}\mu_{3}^{*}\frac{T^{2\alpha-1}}{2\alpha -1} \biggr]< 1, $$
(3.3)
and
$$ 2\biggl(\frac{1}{\Gamma(\alpha)}\biggr)^{2}\biggl(\frac{T^{2\alpha}}{\alpha^{2}}L_{1}+ \frac {T^{2\alpha-1}}{2\alpha-1}L_{3}\biggr)l^{2}< 1. $$
(3.4)

Proof

See Appendix. □

4 Example

The existence, uniqueness and stability of integer-order Volterra integro-differential equation have been investigated for its wide and important application in the fields of financial mathematics, physics, biology, medicine, automatic control, demography, dynamics etc. But there are few results about fractional stochastic Volterra integro-differential equations. In this section, we provide an example for which there is at least one solution due to the fact that the conditions in Theorem 3.2 are satisfied.

Example 4.1

Consider the following fractional stochastic impulsive neural functional differential equations with infinite delay:
$$ \left \{ \textstyle\begin{array}{l@{\quad}l} {}^{\mathrm{c}}D_{u}^{\frac{2}{3}}[x(u)-\frac{1}{8}\int_{-\infty}^{0}e^{2v}x(u+v)\,dv] \\ \quad = \frac{1}{8}\int_{-\infty}^{0}e^{2v}x(u+v)\,dv+\frac{1}{8}\int_{-\infty }^{0}e^{2v}x(u+v)\,dv\frac{dW(v)}{dv},& u\in(0,\frac{1}{2})\cup(\frac{1}{2},1], \\ \Delta x(\frac{1}{2})=\frac{1}{4}, \\ x(u)=0,& u\in(-\infty,0], \end{array}\displaystyle \right . $$
(4.1)
where \(g(u,x_{u})=-\frac{1}{8}\int_{-\infty}^{0}e^{2v}x(u+v)\,dv\), \(f(u,x_{u})=\frac{1}{8}\int_{-\infty}^{0}e^{2v}x(u+v)\,dv\), \(\sigma(u,x_{u})=\frac{1}{8}\int_{-\infty}^{0}e^{2v} x(u+v)\,dv\), \(H=[0,\frac{1}{2})\cup(\frac{1}{2},1]\), \(T=1\), \(m=1\).
For \(\xi\in{\mathcal{B}}_{h}\), define \(\|\xi\|_{{\mathcal{B}}_{h}}=\int_{-\infty}^{0}h(v)\sup_{v\leq\theta\leq 0}(E|\xi(\theta)|^{2})^{\frac{1}{2}}\,dv\), \(h(v)=e^{2v}\), \(l=\frac{1}{2}\), then \(\xi\in{\mathcal{B}}_{h}\), and \(({\mathcal{B}}_{h},\|\cdot\|_{{\mathcal{B}}_{h}})\) is a Banach space which has the following properties.
  1. A1.

    If \(x(u):(-\infty,T]\rightarrow R\) is continuous on H, and \(x_{0}\in{\mathcal{B}}_{h}\), then \(x_{u}\in{\mathcal{B}}_{h}\), and \(x_{u}\) is continuous on H.

     
  2. A2.

    \({\mathcal{B}}_{h}\) is a Banach space.

     
  3. A3.

    \(\|x_{u}\|_{{\mathcal{B}}_{h}}\leq\frac{1}{2}\sup_{u\in [0,T]}(E\|x(u)\|_{K_{1}}^{2})^{\frac{1}{2}}+\|x_{0}\|_{{\mathcal{B}}_{h}}\).

     
In addition, let \(\mu_{1}(u)=\frac{1}{64}\), \(\mu_{2}(u)=\frac{1}{64}\), \(\mu_{3}(u)=\frac{1}{64}\), \(\mu_{1}^{*}=\frac{1}{64}\), \(\mu_{2}^{*}=\frac{1}{64}\), \(\mu_{3}^{*}=\frac{1}{64}\). \(L_{1}=\frac{1}{64}\), \(L_{2}=\frac{1}{64}\), \(L_{3}=\frac{1}{64}\), \(K=\frac{1}{16}\), \(L_{4}=0\), we have that conditions (H1)-(H8) are satisfied and (3.3), (3.4) hold, i.e.,
$$\begin{aligned}& 40l^{2}\biggl[\mu_{2}^{*}+\biggl(\frac{1}{\Gamma(\alpha)} \biggr)^{2}\mu_{1}^{*}\frac{T^{2\alpha }}{\alpha^{2}} +\biggl( \frac{1}{\Gamma(\alpha)}\biggr)^{2}\mu_{3}^{*}\frac{T^{2\alpha-1}}{2\alpha-1}\biggr] \\& \quad \approx 40*\frac{1}{4}*\biggl[\frac{1}{64}+ \frac{1}{1.3541^{2}}*\frac{1}{64}*\frac {9}{4}+\frac{1}{64}* \frac{1}{1.3541^{2}}*3\biggr]=0.6036< 1, \end{aligned}$$
and
$$\begin{aligned}& 2\biggl(\frac{1}{\Gamma(\alpha)}\biggr)^{2}\biggl(\frac{T^{2\alpha}}{\alpha^{2}}L_{1}+ \frac {T^{2\alpha-1}}{2\alpha-1}L_{3}\biggr)l^{2} \\& \quad \approx 2* \frac{1}{1.3541^{2}}\biggl(\frac{1}{64}*\frac{9}{4}+ \frac{1}{64}*3\biggr)*\biggl(\frac {1}{2}\biggr)^{2}=0.0224< 1, \end{aligned}$$
then (4.1) has at least one solution by Theorem 3.2.

5 Conclusions

Fractional stochastic impulsive neutral functional differential equations are very useful in viscoelasticity, electrochemistry, automatic control etc. In this paper, based on fractional calculation, fixed point theorems and the stochastic analysis technique, new existence theorems of solutions for these equations are given. Moreover, our results take some well-studied models, such as integer-order functional differential equations with infinite delay, as special cases. The main result is verified by an example.

Declarations

Acknowledgements

This work was jointly supported by the National Natural Science Foundation of China under Grant Nos. 61573291, 61573096 and 11072059, the Specialized Research Fund through the Doctoral Program of Higher Education under Grant 20130092110017, the Natural Science Foundation of Jiangsu Province, China, under Grant BK2012741, the scholarship under the State Scholarship Fund of the China Scholarship Council and the Fundamental Research Funds for Central Universities XDJK2016B036.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors’ Affiliations

(1)
School of Mathematics and Statistics, Southwest University
(2)
School of Mathematics, Southeast University
(3)
Department of Mathematics, Faculty of Science, King Abdulaziz University

References

  1. Kilbas, AA, Srivastava, HM, Trujillo, JJ: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006) MATHGoogle Scholar
  2. Podlubny, I: Fractional Differential Equations. Academic Press, New York (1999) MATHGoogle Scholar
  3. Lu, J-G, Chen, G: Robust stability and stabilization of fractional-order interval systems: an LMI approach. IEEE Trans. Autom. Control 54(6), 1294-1299 (2009) MathSciNetView ArticleGoogle Scholar
  4. Li, Y, Chen, Y, Podlubny, I: Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability. Comput. Math. Appl. 59(5), 1810-1821 (2010) MathSciNetView ArticleMATHGoogle Scholar
  5. Shen, J, Lam, J: Non-existence of finite-time stable equilibria in fractional-order nonlinear systems. Automatica 50(2), 547-551 (2014) MathSciNetView ArticleGoogle Scholar
  6. Song, C, Cao, J: Dynamics in fractional-order neural networks. Neurocomputing 142, 494-498 (2014) View ArticleGoogle Scholar
  7. Li, X, Wu, B: Approximate analytical solutions of nonlocal fractional boundary value problems. Appl. Math. Model. 39(5), 1717-1724 (2015) MathSciNetView ArticleGoogle Scholar
  8. Zhang, Q-G, Sun, H-R, Li, Y-N: Existence of solution for a fractional advection dispersion equation in \(\mathbb{R}^{N}\). Appl. Math. Model. 38(15), 4062-4075 (2014) MathSciNetView ArticleGoogle Scholar
  9. Thiramanus, P, Ntouyas, SK, Tariboon, J: Positive solutions for Hadamard fractional differential equations on infinite domain. Adv. Differ. Equ. 2016, 83 (2016) MathSciNetView ArticleMATHGoogle Scholar
  10. Agarwal, RP, Ntouyas, SK, Ahmad, B, Alzahrani, AK: Hadamard-type fractional functional differential equations and inclusions with retarded and advanced arguments. Adv. Differ. Equ. 2016, 92 (2016) MathSciNetView ArticleMATHGoogle Scholar
  11. Sakthivel, R, Revathi, P, Ren, Y: Existence of solutions for nonlinear fractional stochastic differential equations. Nonlinear Anal., Theory Methods Appl. 81, 70-86 (2013) MathSciNetView ArticleMATHGoogle Scholar
  12. Liao, J, Chen, F, Hu, S: Existence of solutions for fractional impulsive neutral functional differential equations with infinite delay. Neurocomputing 122, 156-162 (2013) View ArticleGoogle Scholar
  13. Ahmad, B, Sivasundaram, S: Existence results for nonlinear impulsive hybrid boundary value problems involving fractional differential equations. Nonlinear Anal. Hybrid Syst. 3(3), 251-258 (2009) MathSciNetView ArticleMATHGoogle Scholar
  14. Ahmad, B, Nieto, JJ, O’Regan, D: Existence results for nonlinear boundary value problems of fractional integrodifferential equations with integral boundary conditions. Bound. Value Probl. 2009, 38 (2009) MathSciNetGoogle Scholar
  15. Zhang, X, Huang, X, Liu, Z: The existence and uniqueness of mild solutions for impulsive fractional equations with nonlocal conditions and infinite delay. Nonlinear Anal. Hybrid Syst. 4(4), 775-781 (2010) MathSciNetView ArticleMATHGoogle Scholar
  16. Fečkan, M, Zhou, Y, Wang, J: On the concept and existence of solution for impulsive fractional differential equations. Commun. Nonlinear Sci. Numer. Simul. 17(7), 3050-3060 (2012) MathSciNetView ArticleMATHGoogle Scholar
  17. Chen, F: Coincidence degree and fractional boundary value problems with impulses. Comput. Math. Appl. 64(10), 3444-3455 (2012) MathSciNetView ArticleMATHGoogle Scholar
  18. Kosmatov, N: Initial value problems of fractional order with fractional impulsive conditions. Results Math. 63(3-4), 1289-1310 (2013) MathSciNetView ArticleMATHGoogle Scholar
  19. Dabas, J, Chauhan, A, Kumar, M: Existence of the mild solutions for impulsive fractional equations with infinite delay. Int. J. Differ. Equ. 2011, Article ID 793023 (2011) MathSciNetMATHGoogle Scholar
  20. Chauhan, A, Dabas, J: Existence of mild solutions for impulsive fractional order semilinear evolution equations with nonlocal conditions. Electron. J. Differ. Equ. 2011, 107 (2011) MathSciNetMATHGoogle Scholar
  21. Hale, JK, Lunel, SMV: Introduction to Functional Differential Equations. Springer, Berlin (1993) View ArticleMATHGoogle Scholar
  22. Bao, H, Jiang, D: The Banach spaces and with application to the approximate controllability of stochastic partial functional differential equations with infinite delay. Stoch. Anal. Appl. 25(5), 995-1024 (2007) MathSciNetView ArticleMATHGoogle Scholar
  23. Kao, Y, Zhu, Q, Qi, W: Exponential stability and instability of impulsive stochastic functional differential equations with Markovian switching. Appl. Math. Comput. 271, 795-804 (2015) MathSciNetGoogle Scholar
  24. Zhu, Q: pth moment exponential stability of impulsive stochastic functional differential equations with Markovian switching. J. Franklin Inst. 351(7), 3965-3986 (2014) MathSciNetView ArticleMATHGoogle Scholar
  25. Ning, HW, Liu, B: Existence results for impulsive neutral stochastic evolution inclusions in Hilbert space. Acta Math. Sin. Engl. Ser. 27(7), 1405-1418 (2011) MathSciNetView ArticleMATHGoogle Scholar
  26. Li, Y, Liu, B: Existence of solution of nonlinear neutral stochastic differential inclusions with infinite delay. Stoch. Anal. Appl. 25(2), 397-415 (2007) MathSciNetView ArticleMATHGoogle Scholar
  27. Yang, X, Zhu, Q: Existence, uniqueness, and stability of stochastic neutral functional differential equations of Sobolev-type. J. Math. Phys. 56(12), 122701 (2015) MathSciNetView ArticleMATHGoogle Scholar

Copyright

© The Author(s) 2017