Erratum to: Existence of mild solutions for fractional nonlocal evolution equations with delay in partially ordered Banach spaces

Article metrics

• 2116 Accesses

The original article was published in Advances in Difference Equations 2017 2017:11

In the publication of this article , there was an error in Chapter 4 Application on page 9. The error:

$$h\bigl(t,y,x_{t}(\tau,y)\bigr) \textstyle\begin{cases} 1, & \mbox{if } x\leq 0,\\ 1+2x_{t} (\tau,y), & \mbox{if } 0< x< 2,\\ 5, & \mbox{if } 0\geq 2, \end{cases}\displaystyle \qquad g(x) (y) \textstyle\begin{cases} 1, & \mbox{if } x\leq 0,\\ 1+\frac{x(t,y)}{1+x(t,y)}, & \mbox{if } x>0. \end{cases}$$

$$h\bigl(t,y,x_{t}(\tau,y)\bigr)= \textstyle\begin{cases} 1, & \mbox{if } x\leq 0,\\ 1+2x_{t} (\tau,y), & \mbox{if } 0< x< 2,\\ 5, & \mbox{if } 0\geq 2, \end{cases}\displaystyle \qquad g(x) (y)= \textstyle\begin{cases} 1, & \mbox{if } x\leq 0,\\ 1+\frac{x(t,y)}{1+x(t,y)}, & \mbox{if } x>0. \end{cases}$$

This has now been included in the original article and the erratum.

References

1. 1.

Liang, Y, Yang, H, Guo, K: Existence of mild solutions for fractional nonlocal evolution equations with delay in partially ordered Banach spaces. Bound. Value Probl. 2017, 11 (2017). doi:10.1186/s13662-016-1058-1

Author information

Correspondence to Yue Liang. 