Skip to main content

Table 7 The convergence performance and CPU time of the decoupled Algorithm  3.3 at time \(\pmb{T=1.0}\) , with varying time step Δ t but fixed mesh \(\pmb{h=\frac{1}{32}}\)

From: Stability and convergence of some novel decoupled schemes for the non-stationary Stokes-Darcy model

Δ t \(\boldsymbol {\frac{\|{\mathbf{u}}_{f}-{\mathbf{u}}^{m,h}_{3.4}\|_{0}}{\|{\mathbf{u}}_{f}\|_{0}}}\) \(\boldsymbol {\frac{\|{\mathbf{u}}_{f}-{\mathbf{u}}^{m,h}_{3.4}\|_{1}}{\|{\mathbf{u}}_{f}\|_{1}}}\) \(\boldsymbol {\frac{\|p_{f}-p^{m,h}_{3.4}\|_{0}}{\|p_{f}\|_{0}}}\) \(\boldsymbol {\frac{\|\phi-\phi^{m,h}_{3.4}\|_{0}}{\|\phi\|_{0}}}\) \(\boldsymbol {\frac{\|\phi-\phi^{m,h}_{3.4}\|_{1}}{\|\phi\|_{1}}}\) CPU(S)
0.1 0.00171481 0.025736 0.122266 0.00421803 0.0391679 22.188
0.05 0.00114236 0.0255008 0.103001 0.0030826 0.0391483 43.696
0.025 0.000973109 0.0254374 0.0987402 0.00255426 0.0391433 87.973
0.0125 0.000991764 0.0254223 0.0971713 0.00227914 0.0391421 177.212