Skip to main content

Advertisement

Integro-differential fractional boundary value problem on an unbounded domain

Article metrics

  • 1375 Accesses

  • 7 Citations

Abstract

This paper is concerned with the existence of solutions for nonlinear fractional differential equations of Volterra type with nonlocal fractional integro-differential boundary conditions on an infinite interval. The results are obtained by using the Altman fixed point theorem. An example is presented in order to illustrate the main results.

Introduction

The study of fractional calculus is gaining more and more attention. Compared with classical integer-order models, fractional-order models can describe reality more accurately, which has been shown recently in a variety of fields such as physics, chemistry, biology, economics, signal and image processing, control, porous media, aerodynamics, and so on [112].

In addition, scientists have found that many mathematics models can be reduced to the nonlocal problems with integral boundary conditions, such as the models on underground water flow, chemical engineering, plasma physics, and thermo-elasticity. For more information, see the excellent surveys by Corduneanu [13] and Agarwal and O’Regan [14] and some recent papers [1528].

In the past decades, nonlocal boundary value problems of fractional differential equations on finite/infinite interval have been extensively investigated; see, for instance, [2945]. However, to the best of our knowledge, very little is known regarding integro-differential fractional boundary value problem on an infinite interval.

Based on the reason mentioned, in this paper, we consider the following integro-differential fractional boundary value problem for nonlinear fractional differential equations of Volterra type on an infinite interval

$$ \left \{ \textstyle\begin{array}{l} D^{\alpha}u(t) + f(t, u(t),Tu(t))=0,\quad 3< \alpha\le4, \\ u(0)=u'(0)=u''(0)=0, \qquad D^{\alpha-1}u(\infty) = \xi I^{\beta}u(\eta), \quad \beta>0 , \end{array}\displaystyle \right . $$
(1.1)

where \(t\in J=[0,+\infty)\), \(f\in C[J\times\mathbb{R}\times \mathbb{R},\mathbb{R}]\), \(\xi\in\mathbb{R}\), \(\eta\in J\), \(D^{\alpha}\) is the Riemann-Liouville fractional derivative of order α, \(I^{\beta}\) is the Riemann-Liouville fractional integral of order β, and \((T u)(t)=\int_{0}^{t} k(t,s)u(s)\,ds\) with \(k(t,s)\in C[D,\mathbb{R}]\), \(D=\{(t,s)\in\mathbb{R}^{2} \mid 0\leq s\leq t\}\).

Define the space

$$X=\biggl\{ u\in C(J,\mathbb{R}):\sup_{t\in J}\frac{|u(t)|}{1+t^{\alpha -1}}< + \infty\biggr\} $$

equipped with the norm

$$\|u\|_{X}=\sup_{t\in J}\frac{|u(t)|}{1+t^{\alpha-1}}. $$

It is obvious that X is a Banach space.

Preliminaries

For the convenience of the reader, in this section, we first present some useful definitions and theorems.

Definition 2.1

[4]

The Riemann-Liouville fractional derivative of order δ for a continuous function f is defined by

$$ D^{\delta}f(t)=\frac{1}{\Gamma(n-\delta)}\biggl(\frac{d}{dt} \biggr)^{n} \int _{0}^{t}(t-s)^{n-\delta -1}f(s)\,ds,\quad n=[ \delta]+1, $$

provided that the right-hand side is pointwise defined on \((0,\infty)\).

Definition 2.2

[4]

The Riemann-Liouville fractional integral of order δ for a function f is defined as

$$ I^{\delta}f(t)=\frac{1}{\Gamma(\delta)} \int_{0}^{t}(t-s)^{\delta-1}f(s)\,ds,\quad \delta>0, $$

provided that such an integral exists.

Theorem 2.1

Altman theorem [46]

Let Ω be an open bounded subset of a Banach space E with \(0\in\Omega\), and \(T:\overline{\Omega}\rightarrow E\) be a completely continuous operator. Then T has a fixed point in Ω̅, provided that

$$\|Tx-x\|^{2}\ge\|Tx\|^{2}-\|x\|^{2}, \quad \forall x\in\partial\Omega. $$

Theorem 2.2

[47]

Let \(U\subset X\) be a bounded set. Then U is relatively compact in X if the following conditions hold:

  1. (i)

    for any \(u(t)\in U\), \(\frac{u(t)}{1+t^{\alpha-1}}\) is equicontinuous on any compact interval of J;

  2. (ii)

    for any \(\varepsilon>0\), there exists a constant \(T=T(\varepsilon)>0\) such that

    $$\biggl\vert \frac{u(t_{1})}{1+t_{1}^{\alpha-1}}-\frac{u(t_{2})}{1+t_{2}^{\alpha -1}}\biggr\vert < \varepsilon $$

    for any \(t_{1},t_{2}\ge T\) and \(u\in U\).

Before proving our main result, we list the following assumptions:

(H1):

\(\xi\ge0\), \(\Gamma(\alpha+\beta)>\xi\eta^{\alpha+\beta-1}\).

(H2):

There exists a constant \(k^{*}\) such that

$$k^{*}=\sup_{t\in J} \int_{0}^{t} \bigl\vert k(t,s)\bigr\vert \bigl(1+s^{\alpha-1}\bigr)\,ds< \infty. $$
(H3):

There exist nonnegative functions \(a(t)\), \(b(t)\), \(c(t)\) defined on \([0, \infty)\) and constants \(p,q\ge0\) such that

$$\bigl\vert f(t,u,v)\bigr\vert \le a(t)+b(t)|u|^{p}+c(t)|v|^{q} $$

and

$$\begin{aligned}& \int_{0}^{+\infty}a(t)\,dt=a^{*}< +\infty, \\& \int_{0}^{+\infty }b(t) \bigl(1+t^{\alpha-1} \bigr)^{p} \,dt=b^{*}< +\infty, \\& \int_{0}^{+\infty}c(t)\,dt=c^{*}< +\infty. \end{aligned}$$

Related lemmas

Firstly, we give an explicit expression of the Green’s function related to the associated linear problem.

Lemma 3.1

Let \(h\in C([0,{+\infty}))\) with \(\int_{0}^{\infty}h(s)\,ds<\infty\). If \(\Gamma(\alpha+\beta)\neq\xi\eta^{\alpha+\beta-1}\), then the fractional integral boundary value problem

$$ \left \{ \textstyle\begin{array}{l} D^{\alpha}u(t) +h(t)=0, \\ u(0)=u'(0)=u''(0)=0, \qquad D^{\alpha-1}u(\infty) = \xi I^{\beta}u(\eta), \quad \beta>0 , \end{array}\displaystyle \right . $$
(3.1)

has a unique solution

$$u(t)= \int_{0}^{+\infty}G(t,s)h(s)\,ds, $$

where

$$ G(t,s)=\frac{1}{\Delta} \left \{ \textstyle\begin{array}{l@{\quad}l} {[\Gamma(\alpha+\beta)-\xi(\eta-s)^{\alpha+\beta-1}]}t^{\alpha -1} \\ \quad {}-[\Gamma (\alpha+\beta)-\xi\eta^{\alpha+\beta-1}](t-s)^{\alpha-1},& s\le t, s\le\eta, \\ {[\Gamma(\alpha+\beta)-\xi(\eta-s)^{\alpha+\beta-1}]}t^{\alpha -1},& 0\le t\le s\le\eta, \\ \Gamma(\alpha+\beta)[t^{\alpha-1}-(t-s)^{\alpha-1}]+\xi\eta ^{\alpha +\beta-1}(t-s)^{\alpha-1},& 0\le \eta\le s\le t, \\ \Gamma(\alpha+\beta)t^{\alpha-1},& s\ge t, s\ge\eta, \end{array}\displaystyle \right . $$
(3.2)

and

$$\Delta=\Gamma(\alpha)\bigl[\Gamma(\alpha+\beta)-\xi\eta^{\alpha +\beta-1}\bigr]. $$

Proof

By (3.2) we have

$$\begin{aligned} u(t) =& \int_{0}^{+\infty}G(t,s)h(s)\,ds \\ =&- \int_{0}^{t} \frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)}h(s)\,ds+ \frac{\Gamma(\alpha +\beta )t^{\alpha-1}}{\Gamma(\alpha)[\Gamma(\alpha+\beta)-\xi\eta ^{\alpha+\beta-1}]} \biggl[ \int_{0}^{\infty}h(s)\,ds \\ &{}- \int_{0}^{\eta}\frac{\xi(\eta-s)^{\alpha+\beta-1}}{\Gamma(\alpha+\beta )}h(s)\,ds \biggr]. \end{aligned}$$
(3.3)

Then, it is easy to get that \(u(0)=u'(0)=u''(0)=0\).

By (3.3) we have

$$\begin{aligned} D^{\alpha-1} u(t) =&D^{\alpha-1} \biggl( \int_{0}^{+\infty}G(t,s)h(s)\,ds \biggr) \\ =&D^{\alpha-1} \biggl(- \int_{0}^{t} \frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)}h(s)\,ds+ \frac{\Gamma(\alpha +\beta )t^{\alpha-1}}{\Gamma(\alpha)[\Gamma(\alpha+\beta)-\xi\eta ^{\alpha+\beta-1}]} \biggl[ \int_{0}^{\infty}h(s)\,ds \\ &{} - \int_{0}^{\eta}\frac{\xi(\eta-s)^{\alpha+\beta-1}}{\Gamma(\alpha+\beta )}h(s)\,ds \biggr] \biggr) \\ =&- \int_{0}^{t} h(s)\,ds +\frac{\Gamma(\alpha+\beta)}{[\Gamma(\alpha+\beta)-\xi\eta ^{\alpha+\beta-1}]} \biggl[ \int_{0}^{\infty}h(s)\,ds \\ &{}- \int_{0}^{\eta}\frac{\xi(\eta-s)^{\alpha+\beta-1}}{\Gamma(\alpha+\beta )}h(s)\,ds \biggr] \end{aligned}$$
(3.4)

and

$$\begin{aligned} I^{\beta}u(t) =&I^{\beta}\biggl( \int_{0}^{+\infty}G(t,s)h(s)\,ds \biggr) \\ =&I^{\beta}\biggl(- \int_{0}^{t} \frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)}h(s)\,ds+ \frac{\Gamma(\alpha +\beta )t^{\alpha-1}}{\Gamma(\alpha)[\Gamma(\alpha+\beta)-\xi\eta ^{\alpha+\beta-1}]} \biggl[ \int_{0}^{\infty}h(s)\,ds \\ &{}- \int_{0}^{\eta}\frac{\xi(\eta-s)^{\alpha+\beta-1}}{\Gamma(\alpha+\beta )}h(s)\,ds \biggr] \biggr) \\ =&- \int_{0}^{t}\frac{(t-s)^{\alpha+\beta-1}}{\Gamma(\alpha+\beta)}h(s)\,ds + \frac{t^{\alpha+\beta-1}}{[\Gamma(\alpha+\beta)-\xi\eta ^{\alpha+\beta-1}]} \biggl[ \int_{0}^{\infty}h(s)\,ds \\ &{}- \int_{0}^{\eta}\frac{\xi(\eta-s)^{\alpha+\beta-1}}{\Gamma(\alpha+\beta )}h(s)\,ds \biggr]. \end{aligned}$$
(3.5)

Thus, we can get the relation \(D^{\alpha-1}u(\infty) = \xi I^{\beta}u(\eta)\).

Finally, applying (3.3), by a simple deduction it follows

$$\begin{aligned} D^{\alpha}u(t) =&D^{\alpha}\biggl(- \int_{0}^{t} \frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)}h(s)\,ds+ \frac{\Gamma(\alpha +\beta )t^{\alpha-1}}{\Gamma(\alpha)[\Gamma(\alpha+\beta)-\xi\eta ^{\alpha+\beta-1}]} \biggl[ \int_{0}^{\infty}h(s)\,ds \\ &{} - \int_{0}^{\eta}\frac{\xi(\eta-s)^{\alpha+\beta-1}}{\Gamma(\alpha+\beta )}h(s)\,ds \biggr] \biggr) \\ =&-h(t). \end{aligned}$$
(3.6)

Thus, the proof is complete. □

Through a careful computation, it is easy to obtain the following remark, so we omit its proof.

Remark 3.1

For \((s, t)\in J\times J\), if condition (H1) holds, then we have

$$ 0\le\frac{G(t,s)}{1+t^{\alpha-1}}\le\frac{\Gamma(\alpha+\beta)}{ \Gamma(\alpha)[\Gamma(\alpha+\beta)-\xi\eta^{\alpha+\beta-1}]}:=L. $$
(3.7)

Lemma 3.2

If conditions (H2) and (H3) are satisfied, then we have

$$ \int_{0}^{+\infty} \bigl\vert f\bigl(s,u(s),Tu(s)\bigr) \bigr\vert \,ds\le a^{*}+b^{*}\|u\|_{X}^{p}+c^{*}\bigl(k^{*} \bigr)^{q}\|u\|_{X}^{q},\quad \forall u\in X. $$
(3.8)

Proof

For all \(u\in X\), by conditions (H2) and (H3) we have

$$\begin{aligned}& \int_{0}^{+\infty} \bigl\vert f\bigl(s,u(s),Tu(s)\bigr) \bigr\vert \,ds \\& \quad \le \int_{0}^{+\infty} \bigl[a(s)+b(s)\bigl\vert u(s)\bigr\vert ^{p}+c(s)\bigl\vert Tu(s)\bigr\vert ^{q} \bigr] \,ds \\& \quad \le a^{*}+ \int_{0}^{+\infty} b(s) \bigl(1+s^{\alpha-1} \bigr)^{p} \frac{\vert u(s)\vert ^{p}}{(1+s^{\alpha-1})^{p}}\,ds+ \int_{0}^{+\infty} c(s) \biggl[ \int_{0}^{s}\bigl\vert K(s,r)u(r)\bigr\vert \,dr \biggr]^{q}\,ds \\& \quad \le a^{*}+b^{*}\|u\|_{X}^{p}+ \int_{0}^{+\infty} c(s) \biggl[ \int_{0}^{s}\bigl\vert K(s,r)\bigr\vert \bigl(1+r^{\alpha-1}\bigr) \frac{\vert u(r)\vert }{(1+r^{\alpha-1})}\,dr \biggr]^{q}\,ds \\& \quad \le a^{*}+b^{*}\|u\|_{X}^{p}+ \int_{0}^{+\infty} c(s) \bigl(k^{*}\bigr)^{q}\|u \|_{X}^{q}\,ds \\& \quad \le a^{*}+b^{*}\|u\|_{X}^{p}+c^{*}\bigl(k^{*} \bigr)^{q}\|u\|_{X}^{q}. \end{aligned}$$
(3.9)

 □

Main results

Define the operator Q by

$$ Qu(t)= \int_{0}^{+\infty} G(t,s)f\bigl(s,u(s),Tu(s)\bigr)\,ds. $$
(4.1)

Applying Lemma 3.1 with \(h(t) = f (t, u(t),Tu(t))\), problem (1.1) reduces to a fixed point problem \(u = Qu\), where Q is given by (4.1). Thus, problem (1.1) has a solution if and only if the operator Q has a fixed point.

Lemma 4.1

Assume that conditions (H1)-(H3) are satisfied. Then \(Q:X\rightarrow X\) is completely continuous.

Proof

Firstly, the operator \(Q:X\rightarrow X\) is relatively compact.

(1) Let Ω be any bounded subset of X. Then there exists a constant \(M>0\) such that \(\|u\|_{X}\le M\). By Lemma 3.2 and Remark 3.1 we have

$$\begin{aligned} \|Qu\|_{X}&=\sup_{t\in J} \int_{0}^{\infty}\frac{G(t,s)}{1+t^{\alpha-1}}\bigl\vert f \bigl(s,u(s),Tu(s)\bigr)\bigr\vert \,ds \\ &\le L \int_{0}^{+\infty} \bigl\vert f\bigl(s,u(s),Tu(s)\bigr) \bigr\vert \,ds \\ &\le L\bigl[a^{*}+b^{*}\|u\|_{X}^{p}+c^{*}\bigl(k^{*} \bigr)^{q}\|u\|_{X}^{q}\bigr] \\ &\le L\bigl[a^{*}+M^{p}b^{*}+M^{q}c^{*}\bigl(k^{*} \bigr)^{q}\bigr], \end{aligned}$$
(4.2)

which implies that TΩ is uniformly bounded.

(2) We prove that Q is equicontinuous.

(I) Let \(I\subset J\) be any compact interval. Let Ω be any bounded subset of X. For all \(t_{1},t_{2}\in I\), \(t_{2}>t_{1}\), and \(u\in\Omega\), we have

$$\begin{aligned} \biggl\vert \frac{Qu(t_{2})}{1+t_{2}^{\alpha-1}}-\frac{Qu(t_{1})}{1+t_{1}^{\alpha -1}}\biggr\vert &=\biggl\vert \int_{0}^{\infty}{ \biggl(\frac{G(t_{2},s)}{1+t_{2}^{\alpha -1}}- \frac {G(t_{1},s)}{1+t_{1}^{\alpha-1}} \biggr)f\bigl(s,u(s),Tu(s)\bigr)\,ds}\biggr\vert \\ &\le \int_{0}^{\infty}\biggl\vert \frac{G(t_{2},s)}{1+t_{2}^{\alpha-1}}- \frac {G(t_{1},s)}{1+t_{1}^{\alpha-1}}\biggr\vert \bigl\vert f\bigl(s,u(s),Tu(s)\bigr)\bigr\vert \,ds. \end{aligned}$$
(4.3)

Since \(G(t,s)\in C(J \times J)\), \(\frac{G(t,s)}{1+t^{\alpha-1}}\) is uniformly continuous on any compact set \(I \times I\). Note that this function only depends on t for \(s \ge t\), so it is uniformly continuous on \(I \times(J \backslash I)\). Thus, for all \(s \in J\) and \(t_{1}, t_{2} \in I\), we have

$$ \forall\varepsilon>0, \exists \delta(\varepsilon) >0\mbox{ such that if }|t_{1}-t_{2}|< \delta, \mbox{then }\biggl\vert \frac{G(t_{2},s)}{1+t_{2}^{\alpha -1}}-\frac{G(t_{1},s)}{1+t_{1}^{\alpha-1}}\biggr\vert < \varepsilon. $$
(4.4)

By Lemma 3.2, for all \(u\in\Omega\), we have

$$ \int_{0}^{\infty}\bigl\vert f\bigl(s,u(s),Tu(s)\bigr) \bigr\vert \,ds < \infty,\quad \forall u\in\Omega. $$
(4.5)

This, together with (4.3) and (4.4), implies that QΩ is equicontinuous on I.

(II) We have

$$ \lim_{t\rightarrow \infty}\frac{G(t,s)}{1+t^{\alpha-1}}=\frac{1}{\Gamma(\alpha )[\Gamma (\alpha+\beta)-\xi\eta^{\alpha+\beta-1}]} \left \{ \textstyle\begin{array}{l@{\quad}l} \xi\eta^{\alpha+\beta-1}-\xi(\eta-s)^{\alpha+\beta-1},& 0\le s\le\eta, \\ \xi\eta^{\alpha+\beta-1},& \eta\le s. \end{array}\displaystyle \right . $$
(4.6)

From this it is easy to verify that, for any \(\varepsilon>0\), there exists a constant \(T'=T'(\varepsilon)>0\) such that

$$\biggl\vert \frac{G(t_{2},s)}{1+t_{2}^{\alpha-1}}-\frac {G(t_{1},s)}{1+t_{1}^{\alpha -1}}\biggr\vert < \varepsilon $$

for any \(t_{1},t_{2}\ge T'\) and \(s \in J\). Combining this with Lemma 3.2 and (4.3), we get that the same property holds for QΩ, uniformly on \(u\in\Omega\). Hence, Q is equiconvergent at ∞.

Therefore, by Theorem 2.2 we know that Q is relatively compact on J.

Next, we show that \(Q:X\rightarrow X\) is continuous.

Let \(u_{n},u\in X\) be such that \(u_{n}\rightarrow u\) (\(n\rightarrow \infty\)). Then, \(\|u_{n}\|_{X}<\infty\) and \(\|u\|_{X}<\infty\). By Lemma 3.2 we have

$$\begin{aligned} \int_{0}^{\infty}\frac{G(t,s)}{1+t^{\alpha-1}}f \bigl(s,u_{n}(s),Tu_{n}(s)\bigr)\,ds &\le L \int_{0}^{\infty}\bigl\vert f\bigl(s,u_{n}(s),Tu_{n}(s) \bigr)\bigr\vert \,ds \\ &\le L\bigl[a^{*}+b^{*}\|u_{n}\|_{X}^{p}+c^{*}\bigl(k^{*} \bigr)^{q}\|u_{n}\|_{X}^{q}\bigr]< \infty, \end{aligned}$$
(4.7)

where L is defined in (3.7).

By the Lebesgue dominated convergence theorem and continuity of f we get

$$\lim_{n\rightarrow \infty} \int_{0}^{\infty}\frac{G(t,s)}{1+t^{\alpha -1}}f \bigl(s,u_{n}(s),Tu_{n}(s)\bigr)\,ds= \int_{0}^{\infty}\frac{G(t,s)}{1+t^{\alpha-1}}f\bigl(s,u(s),Tu(s) \bigr)\,ds. $$

Hence, we have

$$\begin{aligned} \|Qu_{n}-Qu\|_{X} =&\sup_{t\in J} \int_{0}^{\infty}\frac{G(t,s)}{1+t^{\alpha -1}}\bigl\vert f \bigl(s,u_{n}(s),Tu_{n}(s)\bigr)-f\bigl(s,u(s),Tu(s)\bigr) \bigr\vert \,ds \\ \rightarrow& 0 \quad (n\rightarrow \infty), \end{aligned}$$
(4.8)

which shows that Q is continuous. Therefore, \(Q:X\rightarrow X\) is completely continuous. This completes the proof. □

Next, we give several existence results for integro-differential fractional boundary value problem (1.1).

According to the range of p and q, we have the following theorems.

Theorem 4.1

Assume that conditions (H1)-(H3) are satisfied. If \(0\le p,q<1\), then problem (1.1) has at least one solution.

Proof

Let us choose

$$ R\ge\max \bigl\{ 3La^{*}, \bigl(3Lb^{*}\bigr)^{\frac{1}{1-p}}, \bigl(3Lc^{*} \bigl(k^{*}\bigr)^{q}\bigr)^{\frac{1}{1-q}} \bigr\} $$

and define \(U=\{u\in X,\|u\|_{X}< R\}\). In view of Theorem 2.1, we just need to show that

$$ \|Qu\|_{X}\le\|u\|_{X},\quad \forall u\in \partial U. $$
(4.9)

For any \(u\in\partial U\), by Lemma 3.2 and Remark 3.1 we have

$$\begin{aligned} \|Qu\|_{X}&=\sup_{t\in J} \int_{0}^{\infty}\frac{G(t,s)}{1+t^{\alpha-1}}\bigl\vert f \bigl(s,u(s),Tu(s)\bigr)\bigr\vert \,ds \\ &\le L \int_{0}^{+\infty} \bigl\vert f\bigl(s,u(s),Tu(s)\bigr) \bigr\vert \,ds \\ &\le L\bigl[a^{*}+b^{*}\|u\|_{X}^{p}+c^{*}\bigl(k^{*} \bigr)^{q}\|u\|_{X}^{q}\bigr] \\ &\le L\bigl[a^{*}+R^{p}b^{*}+R^{q}c^{*}\bigl(k^{*} \bigr)^{q}\bigr] \\ &\le L\biggl(\frac{R}{3L}+\frac{R}{3L}+\frac{R}{3L}\biggr) \\ &=R. \end{aligned}$$
(4.10)

Thus, \(QU\subset U\) and \(\|Qu\|_{X}\le\|u\|_{X}\) for all \(u\in \partial U\), which completes the proof. □

Theorem 4.2

Assume that conditions (H1)-(H3) are satisfied. Then problem (1.1) has at least one solution, provided that one of the following eight conditions holds:

Case 1.:

\(p=q=1\), \(L(b^{*}+c^{*}k^{*})<1\);

Case 2.:

\(0\le p<1\), \(q=1\), \(2Lc^{*}k^{*}<1\);

Case 3.:

\(p>1\), \(q=1\), \(2La^{*}(1-2Lc^{*}k^{*})^{-1}\le(2Lb^{*})^{\frac{1}{1-p}}\), \(2Lc^{*}k^{*}<1\);

Case 4.:

\(p=1\), \(0\le q<1\), \(2Lb^{*}<1\);

Case 5.:

\(p=1\), \(q>1\), \(2La^{*}(1-2Lb^{*})^{-1}\le(2Lc^{*}(k^{*})^{q})^{\frac{1}{1-q}}\), \(2Lb^{*}<1\);

Case 6.:

\(p,q>1\), \(3La^{*}\le\min \{(3Lb^{*})^{\frac{1}{1-p}}, (3Lc^{*}(k^{*})^{q})^{\frac{1}{1-q}} \}\);

Case 7.:

\(0\le p<1\), \(q>1\), \(\max \{3La^{*}, (3Lb^{*})^{\frac{1}{1-p}} \} \le (3Lc^{*}(k^{*})^{q})^{\frac{1}{1-q}}\);

Case 8.:

\(p>1\), \(0\le q<1\), \(\max \{3La^{*}, (3Lc^{*}(k^{*})^{q})^{\frac {1}{1-q}} \}\le(3Lb^{*})^{\frac{1}{1-p}}\);

here L is defined in (3.7).

Proof

The proofs of Cases 1-5 are similar, so we only give the proof of Case 1.

For \(p=q=1\), let us take

$$ R\ge\frac{La^{*}}{1-L(b^{*}+c^{*}k^{*})} $$

and define \(U=\{u\in X,\|u\|_{X}< R\}\).

For any \(u\in\partial U\), by Lemma 3.2 and Remark 3.1 we have

$$\begin{aligned} \|Qu\|_{X}&=\sup_{t\in J} \int_{0}^{\infty}\frac{G(t,s)}{1+t^{\alpha-1}}\bigl\vert f \bigl(s,u(s),Tu(s)\bigr)\bigr\vert \,ds \\ &\le L \int_{0}^{+\infty} \bigl\vert f\bigl(s,u(s),Tu(s)\bigr) \bigr\vert \,ds \\ &\le L\bigl[a^{*}+b^{*}\|u\|_{X}+c^{*}k^{*}\|u\|_{X}\bigr] \\ &\le L\bigl[a^{*}+\bigl(b^{*}+c^{*}k^{*}\bigr)R\bigr] \\ &\le R. \end{aligned}$$
(4.11)

Thus, \(QU\subset U\) and \(\|Qu\|_{X}\le\|u\|_{X}\) for all \(u\in \partial U\). In view of Theorem 2.1, we get that problem (1.1) has at least one solution \(u(t)\) satisfying

$$0\le\frac{|u(t)|}{1+t^{\alpha-1}}\le R \quad \mbox{for } t\in J. $$

The proofs of Cases 6-8 are similar to that of Theorem 4.1, so we omit it. This completes the proof. □

Example

Example 5.1

Take \(\alpha=3.5\) and \(\beta=1.5\). We consider the following integro-differential fractional boundary value problem for nonlinear fractional differential equations of Volterra type on an unbounded domain:

$$ \left \{ \textstyle\begin{array}{l} D^{3.5} u(t) +\frac{\ln(1+t)}{(1+t^{2})^{2}}+\frac{e^{-t}|u(t)|^{p}}{(1+t^{2.5})^{p}} +\frac{1}{(3+t)^{2}} |\int_{0}^{t} \frac{e^{-t}\cos(t^{2}-s)}{(1+s^{2.5})}u(s)\,ds |^{q}=0,\quad t\in [0,+\infty ), \\ u(0)=u'(0)=u''(0)=0,\qquad D^{2.5}u(\infty) = \xi I^{1.5} u(\eta), \end{array}\displaystyle \right . $$
(5.1)

where \(f(t,u,v)=\frac{\ln(1+t)}{(1+t^{2})^{2}}+\frac{e^{-t}|u|^{p}}{(1+t^{2.5})^{p}} +\frac{1}{(3+t)^{2}}|v|^{q}\), \(0\le p,q\le1\), and ξ, η satisfy \(0\le\xi\eta^{4}<24\). For example, we take \(\xi=8\), \(\eta=1\).

Firstly, it is obvious that \(\Gamma(\alpha+\beta)=24\) and \(\xi\eta^{\alpha+\beta-1}=\xi\eta^{4}=8\). Then (H1) holds.

Secondly, we have

$$\begin{aligned} \bigl\vert f(t,u,v)\bigr\vert =&\frac{\ln(1+t)}{(1+t^{2})^{2}}+\frac{e^{-t}|u|^{p}}{(1+t^{2.5})^{p}} + \frac{1}{(3+t)^{2}}|v|^{q} \\ \le&\frac{t}{(1+t^{2})^{2}}+\frac {e^{-t}|u|^{p}}{(1+t^{2.5})^{p}} + \frac{1}{(3+t)^{2}}|v|^{q}. \end{aligned}$$

Take \(a(t)=\frac{t}{(1+t^{2})^{2}}\), \(b(t)=\frac{e^{-t}}{(1+t^{2.5})^{p}}\), \(c(t)=\frac {1}{(3+t)^{2}}\). By a direct computation we can obtain

$$\begin{aligned}& a^{*}= \int_{0}^{+\infty}a(t)\,dt=\frac{1}{2}< +\infty, \\& b^{*}= \int _{0}^{+\infty }b(t) \bigl(1+t^{\alpha-1} \bigr)^{p} \,dt=1< +\infty, \\& c^{*}= \int_{0}^{+\infty}c(t)\,dt=1< +\infty, \end{aligned}$$

which implies that (H3) holds.

Noting that \(k(t,s)=\frac{e^{-t}\cos(t^{2}-s)}{(1+s^{2.5})}\), we have

$$k^{*}=\sup_{t\in J} \int_{0}^{t} \bigl\vert k(t,s)\bigr\vert \bigl(1+s^{\alpha-1}\bigr)\,ds\le1. $$

Thus, conditions (H1)-(H3) hold.

Therefore, for the case \(0\le p,q<1\), by Theorem 4.1 the nonlinear fractional differential equation (5.1) has at least one solution.

In addition, since \(L=\frac{\Gamma(\alpha+\beta)}{ \Gamma(\alpha)[\Gamma(\alpha+\beta)-\xi\eta^{\alpha+\beta -1}]}=\frac {4}{5\sqrt{\pi}}\), Cases 1, 2, and 4 of Theorem 4.2 hold, Thus, all conditions of Theorem 4.2 are satisfied.

To sum up our arguments, for \(0\le p,q\le1\), the integro-differential fractional boundary value problem (5.1) has at least one solution.

References

  1. 1.

    Podlubny, I: Fractional Differential Equations. Academic Press, San Diego (1999)

  2. 2.

    Zaslavsky, GM: Hamiltonian Chaos and Fractional Dynamics. Oxford University Press, Oxford (2005)

  3. 3.

    Magin, RL: Fractional Calculus in Bioengineering. Begell House Publisher, Danbury (2006)

  4. 4.

    Kilbas, AA, Srivastava, HM, Trujillo, JJ: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, vol. 204. Elsevier, Amsterdam (2006)

  5. 5.

    Sabatier, J, Agrawal, OP, Machado, JAT (eds.): Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering. Springer, Dordrecht (2007)

  6. 6.

    Baleanu, D, Diethelm, K, Scalas, E, Trujillo, JJ: Fractional Calculus Models and Numerical Methods. Series on Complexity, Nonlinearity and Chaos. World Scientific, Boston (2012)

  7. 7.

    Baleanu, D, Mustafa, OG: On the global existence of solutions to a class of fractional differential equations. Comput. Math. Appl. 59(5), 1835-1841 (2010)

  8. 8.

    Purohit, SD, Kalla, SL: On fractional partial differential equations related to quantum mechanics. J. Phys. A, Math. Theor. 44(4), 1-8 (2011)

  9. 9.

    Purohit, SD: Solutions of fractional partial differential equations of quantum mechanics. Adv. Appl. Math. Mech. 5(5), 639-651 (2013)

  10. 10.

    Chouhan, A, Purohit, SD, Saraswat, S: An alternative method for solving generalized differential equations of fractional order. Kragujev. J. Math. 37(2), 299-306 (2013)

  11. 11.

    Nisar, KS, Purohit, SD, Saiful, R: Mondal generalized fractional kinetic equations involving generalized Struve function of the first kind. J. King Saud Univ., Sci. 28(2), 167-171 (2016)

  12. 12.

    Lazarevic, MP, Spasic, AM: Finite-time stability analysis of fractional order time delay systems: Gronwall’s approach. Math. Comput. Model. 49, 475-481 (2009)

  13. 13.

    Corduneanu, C: Integral Equations and Applications. Cambridge University Press, Cambridge (1991)

  14. 14.

    Agarwal, RP, O’Regan, D: Infinite Interval Problems for Differential, Difference and Integral Equations. Kluwer Academic, Dordrecht (2001)

  15. 15.

    Feng, M, Zhang, X, Ge, W: New existence results for higher-order nonlinear fractional differential equation with integral boundary conditions. Bound. Value Probl. 2011, Article ID 720702 (2011)

  16. 16.

    Salem, HAH: Fractional order boundary value problem with integral boundary conditions involving Pettis integral. Acta Math. Sci. Ser. B 31, 661-672 (2011)

  17. 17.

    Ahmad, B, Nieto, JJ, Alsaedi, A: Existence and uniqueness of solutions for nonlinear fractional differential equations with non-separated type integral boundary conditions. Acta Math. Sci. Ser. B 31, 2122-2130 (2011)

  18. 18.

    Ahmad, B, Nieto, JJ: Existence results for nonlinear boundary value problems of fractional integrodifferential equations with integral boundary conditions. Bound. Value Probl. 2009, Article ID 708576 (2009)

  19. 19.

    Ahmad, B, Ntouyas, SK: A four-point nonlocal integral boundary value problem for fractional differential equations of arbitrary order. Electron. J. Qual. Theory Differ. Equ. 2011, 22 (2011)

  20. 20.

    Benchohra, M, Graef, JR, Hamani, S: Existence results for boundary value problems with nonlinear fractional differential equations. Appl. Anal. 87, 851-863 (2008)

  21. 21.

    Hamani, S, Benchohra, M, Graef, JR: Existence results for boundary value problems with nonlinear fractional inclusions and integral conditions. Electron. J. Differ. Equ. 2010, 20 (2010)

  22. 22.

    Liu, X, Jia, M, Wu, B: Existence and uniqueness of solution for fractional differential equations with integral boundary conditions. Electron. J. Qual. Theory Differ. Equ. 2009, 69 (2009)

  23. 23.

    Wang, G, Liu, S, Zhang, L: Neutral fractional integro-differential equation with nonlinear term depending on lower order derivative. J. Comput. Appl. Math. 260, 167-172 (2014)

  24. 24.

    Liu, S, Wang, G, Zhang, L: Existence results for a coupled system of nonlinear neutral fractional differential equations. Appl. Math. Lett. 26, 1120-1124 (2013)

  25. 25.

    Zhang, L, Ahmad, B, Wang, G: The existence of an extremal solution to a nonlinear system with the right-handed Riemann-Liouville fractional derivative. Appl. Math. Lett. 31, 1-6 (2014)

  26. 26.

    Zhang, L, Ahmad, B, Wang, G: Successive iterations for positive extremal solutions of nonlinear fractional differential equations on a half-line. Bull. Aust. Math. Soc. 91, 116-128 (2015)

  27. 27.

    Cabada, A, Wang, G: Positive solutions of nonlinear fractional differential equations with integral boundary value conditions. J. Math. Anal. Appl. 389, 403-411 (2012)

  28. 28.

    Wang, G, Cabada, A, Zhang, L: Integral boundary value problem for nonlinear differential equations of fractional order on an unbounded domain. J. Integral Equ. Appl. 26, 117-129 (2014)

  29. 29.

    Ramirez, JD, Vatsala, AS: Monotone iterative technique for fractional differential equations with periodic boundary conditions. Opusc. Math. 29, 289-304 (2009)

  30. 30.

    Zhang, S: Existence results of positive solutions to boundary value problem for fractional differential equation. Positivity 13(3), 583-599 (2009)

  31. 31.

    Jankowski, T: Fractional equations of Volterra type involving a Riemann-Liouville derivative. Appl. Math. Lett. 26, 344-350 (2013)

  32. 32.

    Zhao, Y, Sun, S, Han, Z, Zhang, M: Positive solutions for boundary value problems of nonlinear fractional differential equations. Appl. Math. Comput. 217(16), 6950-6958 (2011)

  33. 33.

    Wang, G: Monotone iterative technique for boundary value problems of a nonlinear fractional differential equations with deviating arguments. J. Comput. Appl. Math. 236, 2425-2430 (2012)

  34. 34.

    Wang, G, Baleanu, D, Zhang, L: Monotone iterative method for a class of nonlinear fractional differential equations. Fract. Calc. Appl. Anal. 15, 244-252 (2012)

  35. 35.

    Wang, G: Explicit iteration and unbounded solutions for fractional integral boundary value problem on an infinite interval. Appl. Math. Lett. 47, 1-7 (2015)

  36. 36.

    Babakhani, A: Positive solutions for system of nonlinear fractional differential equations in two dimensions with delay. Abstr. Appl. Anal. 2010, Article ID 536317 (2010)

  37. 37.

    Gafiychuk, V, Datsko, B, Meleshko, V, Blackmore, D: Analysis of the solutions of coupled nonlinear fractional reaction-diffusion equations. Chaos Solitons Fractals 41, 1095-1104 (2009)

  38. 38.

    Arara, A, Benchohra, M, Hamidia, N, Nieto, JJ: Fractional order differential equations on an unbounded domain. Nonlinear Anal. 72, 580-586 (2010)

  39. 39.

    Zhao, XK, Ge, WG: Unbounded solutions for a fractional boundary value problem on the infinite interval. Acta Appl. Math. 109, 495-505 (2010)

  40. 40.

    Liang, S, Zhang, J: Existence of three positive solutions for m-point boundary value problems for some nonlinear fractional differential equations on an infinite interval. Comput. Math. Appl. 61, 3343-3354 (2011)

  41. 41.

    Su, X: Solutions to boundary value problem of fractional order on unbounded domains in a Banach space. Nonlinear Anal. 74, 2844-2852 (2011)

  42. 42.

    Liang, S, Zhang, J: Existence of multiple positive solutions for m-point fractional boundary value problems on an infinite interval. Math. Comput. Model. 54, 1334-1346 (2011)

  43. 43.

    Wang, G, Ahmad, B, Zhang, L: A coupled system of nonlinear fractional differential equations with multi-point fractional boundary conditions on an unbounded domain. Abstr. Appl. Anal. 2012, Article ID 248709 (2012)

  44. 44.

    Zhang, L, Ahmad, B, Wang, G, Agarwal, RP, Al-Yami, M, Shammakh, W: Nonlocal integrodifferential boundary value problem for nonlinear fractional differential equations on an unbounded domain. Abstr. Appl. Anal. 2013, Article ID 813903 (2013)

  45. 45.

    Zhang, L, Ahmad, B, Wang, G, Agarwal, RP: Nonlinear fractional integro-differential equations on unbounded domains in a Banach space. J. Comput. Appl. Math. 249, 51-56 (2013)

  46. 46.

    Altman, M: A fixed point theorem in Banach space. Bull. Acad. Polon. Sci. Cl. III 5, 19-22 (1957)

  47. 47.

    Liu, YS: Existence and unboundedness of positive solutions for singular boundary value problems on half-line. Appl. Math. Comput. 144, 543-556 (2003)

Download references

Acknowledgements

This work was supported by the NNSF of China (No. 61373174), Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (Nos. 2014135 and 2014136) and Natural Science Foundation for Young Scientists of Shanxi Province, China (No. 2012021002-3).

Author information

Correspondence to Guotao Wang.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

Both authors have equal contributions. Both authors read and approved the final manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

MSC

  • 26A33
  • 34B15
  • 34B40

Keywords

  • equations of Volterra type
  • integro-differential fractional boundary conditions
  • unbounded domain
  • fixed point
  • Riemann-Liouville fractional derivatives