 Research
 Open Access
 Published:
Dynamics of a new delayed stagestructured predatorprey model with impulsive diffusion and releasing
Advances in Difference Equations volume 2016, Article number: 318 (2016)
Abstract
In this work, we propose a new delayed stagestructured predatorprey model with impulsive diffusion and releasing. By the stroboscopic map of the discrete dynamical system, we obtain a preyextinction boundary periodic solution. Furthermore, we prove that the preyextinction boundary periodic solution is globally attractive. We also prove that the investigated system is permanent by the theory on the delay and impulsive differential equations. Our results indicate that time delay, impulsive diffusion, and impulsive releasing have influence to the dynamical behaviors of the investigated system. The results of this paper also provide a tactical basis for pest management.
Introduction
Many authors [1–8] and papers [9, 10] have studied the predatorprey, competitive, and cooperative models. Permanence and extinction are significant concepts of those models which also show many interesting results. However, the stage structure of a species has been considered very little. In the real world, almost all animals have the stage structure of being immature and mature. Recently, [11–17] studied the stage structure of species with or without time delays. Aiello et al. [12] considered a time delayed stage structure of being immature and mature of the population model
where \(x_{i}(t)\) denotes the immature population density at time t, \(x_{m}(t)\) denotes the mature population density at time t, \(\alpha>0\) represents the birth rate, \(r>0\) represents the immature death rate, \(\beta>0\) represents the mature death and the overcrowding rate, \(\tau>0\), represents the time to maturity rate, the term \(\alpha e^{r\tau} x_{m}(t\tau)\) represents the immature who were born at time \(t\tau\) and survive at time t (with the immature death rate r) and therefore represents the transformation of the immature to the mature.
Dispersal is a ubiquitous phenomenon in the natural world. It is important for us to understand the ecological and evolutionary dynamics of populations mirrored by the large number of mathematical models devoted to it in the scientific literature [13–24]. If the population dynamics with the effects of spatial heterogeneity is modeled by a diffusion process, most previous papers focused on the population dynamical system modeled by the ordinary differential equations. But in practice, it is often the case that diffusion occurs in regular pulse. For example, when winter comes, birds will migrate between patches in search for a better environment, whereas they do not diffuse in other seasons, and the excursion of foliage seeds occurs at a fixed period of time every year. Thus impulsive diffusion provides a more natural description. Lately theories of impulsive differential equations [25, 26] have been introduced into population dynamics. Impulsive differential equations are found in most domains of applied science [16, 17, 20, 24, 27–29].
The organization of this paper is as follows. In the next section, we introduce the model and background concepts. In Section 3, some important lemmas are presented. In Section 4, we give the conditions of global attractivity and permanence for system (2.1). In Section 5, a brief discussion is given in the last section to conclude this work.
The model
Wang and Chen [17] considered a single population with impulsive diffusion. Jiao [24] considered a delayed predatorprey model with impulsive diffusion on predator and stage structure on prey. Inspired by [17, 24], we establish a new delayed stagestructured predatorprey model with impulsive diffusion and releasing
with initial condition
where system (2.1) is constructed of two patches. \(x_{i}(t)\), \(y_{i}(t)\) and \(z_{i}(t)\) represent the immature prey population, mature prey population, predator population in patch i (\(i=1,2\)) at time t. It is assumed that birth into the immature prey population is proportional to the existing mature prey population with proportionality constant \(r_{i}\) in patch i (\(i=1,2\)). \(\tau_{i}\) represents a constant time to maturity of prey population in patch i (\(i=1,2\)), that is, immature prey individuals and mature individuals are divided by age \(\tau_{i}\) in patch i (\(i=1,2\)). The natural death rates \(w_{i1}\), \(w_{i2}\) and \(w_{i3}\) (\(i=1,2\)) are assumed for the immature prey population, mature prey population, and predator population in patch i (\(i=1,2\)). \(\beta_{i}\) (\(i=1,2\)) is the mature prey population capture rate by the predator population in patch i (\(i=1,2\)). \(k_{i}\) (\(i=1,2\)) is the conversion rate of nutrients into the reproduction of the predator population in patch i (\(i=1,2\)). The pulse diffusion occurs every \(\tau>0\) period. The system evolves from its initial state without being further affected by diffusion until the next pulse appears. \(\triangle y_{i}((n+l)\tau) = y_{i}((n+l)\tau^{+})y_{i}((n+l)\tau)\) where \(y_{i}((n+l)\tau^{+})\) represents the density of population in the ith patch immediately after the nth diffusion pulse at time \(t = (n+l)\tau\), while \(y_{i}((n+l)\tau)\) represents the density of population in the ith patch before the nth diffusion pulse at time \(t = (n+l)\tau\) (\(n\in Z_{+}\), \(0< l<1\)). \(0 < D < 1\) is the dispersal rate of the predator population between two patches. It is assumed here that the net exchange from the jth patch to the ith patch is proportional to the difference \(y_{j}y_{i}\) of the predator population densities. The predator population is released with \(\mu_{i}\) in patch i (\(i=1,2\)) at moment \(t=(n+1)\tau\), \(n\in Z_{+}\).
Because \(x_{i}(t)\) (\(i=1,2\)) does not affect the other equations of (2.1), we can simplify system (2.1) and restrict our attention to the following system:
with initial condition
The lemmas
The solution of (2.1), denoted by \(X(t)=(x_{1}(t),y_{1}(t),z_{1}(t),x_{2}(t),y_{2}(t),z_{2}(t))\), is a piecewise continuous function \(X: R_{+}\rightarrow R_{+}^{6}\), \(X(t)\) is continuous on \((n\tau,(n+l)\tau]\), \(((n+l)\tau,(n+1)\tau]\), \(n\in Z_{+}\) and \(X(n\tau^{+})=\lim_{t\rightarrow n\tau^{+}} X(t)\), \(X((n+l)\tau ^{+})=\lim_{t\rightarrow(n+l)\tau^{+}} X(t)\) exist. Obviously the global existence and uniqueness of solutions of (2.1) are guaranteed by the smoothness properties of f, which denotes the mapping defined by the right side of system (2.1) (see Lakshmikantham, [25]). Before we have the the main results, we need to give some lemmas which will be used in the following.
According to the biological meaning, it is assumed that \(x_{i}(t)\geq0\), \(y_{i}(t)\geq0\), and \(z_{i}(t)\geq0\) (\(i=1,2\)).
Let \(V:R_{+}\times R^{6}_{+}\rightarrow R_{+}\), then V is said to belong to class \(V_{0}\), if:

(i)
V is continuous in \((n\tau, (n+l)\tau]\times R_{+}^{6}\) and \(((n+l)\tau, (n+1)\tau]\times R_{+}^{6}\), for each \(z\in R^{6}_{+}\), \(n\in Z_{+}\), \(V(n\tau^{+},z)=\lim_{(t,y)\rightarrow(n\tau^{+},z)} V(t,y)\), \(V((n+l)\tau^{+},z) =\lim_{(t,y)\rightarrow((n+l)\tau^{+},y)} V(t,y)\) exist.

(ii)
V is locally Lipschitzian in z.
Definition 3.1
\(V\in V_{0}\), then, for \((t,z)\in(n\tau, (n+l)\tau]\times R_{+}^{6}\) and \(((n+l)\tau, (n+1)\tau ]\times R_{+}^{6}\), the upper right derivative of \(V(t,z)\) with respect to the impulsive differential system (2.1) is defined as
Lemma 3.2
[26]
Let the function \(m\in PC'[R^{+},R]\) satisfy the inequalities
where \(p,q\in PC[R^{+},R]\) and \(d_{k}\geq0\), \(b_{k}\) are constants, then
Now, we show that all solutions of (2.1) are uniformly ultimately bounded.
Lemma 3.3
There exists a constant \(M>0\) such that \(x_{i}(t)\leq M\), \(y_{i}(t)\leq M\), \(z_{i}(t)\leq M\) (\(i=1,2\)) for each solution \((x_{1}(t),y_{1}(t),z_{1}(t),x_{2}(t),y_{2}(t), z_{2}(t))\) of (2.1) with all t large enough.
Proof
Define
and \(d=\min\{w_{11},w_{12},w_{13},w_{21},w_{22},w_{23}\}\), then \(t\neq(n+l)\tau\), \(t\neq(n+1)\tau\), we have
When \(t=(n+l)\tau\),
When \(t=(n+1)\tau\),
By Lemma 3.2, for \(t\in(n\tau,(n+1)\tau]\), we have
So \(V(t)\) is uniformly ultimately bounded. Hence, by the definition of \(V(t)\), there exists a constant \(M>0\) such that \(x_{i}(t)\leq M/k_{i}\), \(y_{i}(t)\leq M/k_{i}\), \(z_{i}(t)\leq M\) (\(i=1,2\)) for t large enough. The proof is complete. □
If \(y_{i}(t)=0 \) (\(i=1,2\)), we have the following subsystem of (2.2):
We can easily obtain the analytic solution of (3.2) between pulses as follows:
Considering the third and fourth equations of (3.2), we have
Considering the fifth and sixth equations of (3.2), we also have
Substituting (3.4) into (3.5), we have the stroboscopic map of (3.2)
Equation (3.6) has one fixed point:
where
Lemma 3.4
The fixed point \((z_{1}^{\ast}, z_{2}^{\ast})\) of (3.6) is globally asymptotically stable.
Proof
For convenience, we use the notation \((z^{n}_{1},z^{n}_{2})=(z_{1}(n\tau^{+}),z_{2}(n\tau^{+}))\). The linear form of (3.6) can be written as
Obviously, the near dynamics of \((z_{1}^{\ast}, z_{2}^{\ast})\) is determined by linear system (3.6). The stability of \((z_{1}^{\ast}, z_{2}^{\ast})\) is determined by the eigenvalue of M less than 1. If M satisfies the Jury criterion [30], we can know the eigenvalue of M is less than 1,
We can easily know that \((z_{1}^{\ast},z_{2}^{\ast})\) is unique fixed point of (3.6), and
For
From the Jury criterion, \((z_{1}^{\ast}, z_{2}^{\ast})\) is locally stable, then it is globally asymptotically stable. This completes the proof. □
Lemma 3.5
The periodic solution \((\widetilde{z_{1}(t)},\widetilde{z_{2}(t)} )\) of system (3.2) is globally asymptotically stable, where
where \(z^{\ast}_{1}\) and \(z^{\ast}_{2}\) are determined as (3.7), \(z_{1}^{\ast\ast}\) and \(z_{2}^{\ast\ast}\) are defined as
Lemma 3.6
[31]
Consider the following equation:
where \(a_{1},a_{2},\omega>0\); \(x(t)>0\) for \(\omega\leq t\leq0\), we have:

(i)
if \(a_{1}< a_{2} \), then, \(\lim_{t\rightarrow\infty}x(t)=0\),

(ii)
if \(a_{1}>a_{2} \), then, \(\lim_{t\rightarrow\infty}x(t)=+\infty\).
The dynamics
From the above discussion, we know there exists a preyextinction boundary periodic solution \((0,\widetilde{z_{1}(t)}, 0, \widetilde{z_{2}(t)})\) of system (2.2). In this section, we will prove that the preyextinction boundary periodic solution \((0,\widetilde{z_{1}(t)}, 0, \widetilde{z_{2}(t)})\) of system (2.2) is globally attractive.
Theorem 4.1
If
holds, the preyextinction boundary periodic solution \((0,\widetilde{z_{1}(t)},0, \widetilde{z_{2}(t)})\) of (2.2) is globally attractive, where \(z^{\ast}_{i}\) (\(i=1,2\)) is determined by (3.7), \(z_{i}^{\ast\ast}\) (\(i=1,2\)) is defined by (3.12).
Proof
From (4.1), we can obtain
Then, we can choose \(\varepsilon_{0}\) sufficiently small such that
From the second and fourth equations of system (2.2), we obtain \(\frac{dz_{i}(t)}{dt}\geqw_{i3}z_{i}(t)\) (\(i=1,2\)). So we consider the following comparison impulsive differential system:
In view of Lemma 3.4 and (3.5), we find that the boundary periodic solution of system (4.1)
is globally asymptotically stable, where \(z^{\ast}_{1}\) and \(z^{\ast }_{2}\) are determined as (3.7), \(z_{1}^{\ast\ast}\) and \(z_{2}^{\ast\ast}\) are defined as (3.12).
From Lemma 3.5 and comparison theorem of impulsive equation [2], we have \(z_{i}(t)\geq z_{i1}(t)\) (\(i=1,2\)) and \(z_{i1}(t)\rightarrow \widetilde{z_{i}(t)}\) as \(t\rightarrow\infty\). Then there exists an integer \(k_{2}>k_{1}\), \(t>k_{2}\) such that
that is,
From (2.2), we get
Consider the following comparison differential system referring to (4.6):
From (4.3) and Lemma 3.6, we have \(\lim_{t\rightarrow \infty}R_{i}(t)=0\).
Let \((y_{1}(t), z_{1}(t),y_{2}(t), z_{2}(t))\) be the solution of system (2.2) with initial conditions and \(y_{1}(\zeta)=\varphi_{2}(\zeta)\) (\(\zeta\in[\tau_{1},0] \)), \(y_{2}(\zeta )=\varphi_{5}(\zeta)\) (\(\zeta\in[\tau_{1},0] \)). \(R_{i}(t)\) (\(i=1,2\)) is the solution of system (4.7) with initial conditions \(R_{1}(\zeta)=\varphi_{2}(\zeta)\) (\(\zeta\in[\tau_{1},0] \)), \(R_{2}(\zeta)=\varphi_{5}(\zeta)\) (\(\zeta\in[\tau_{1},0] \)). By the comparison theorem, we have
Incorporating the positivity of \(y_{i}(t)\), we know that \(\lim_{t\rightarrow\infty}y_{i}(t)=0\). Therefore, for any \(\varepsilon_{1}>0\) (sufficiently small) and \(\varepsilon_{1}<\min\{ \frac{w_{i3}}{k_{i}\beta_{i}}\}\), there exists an integer \(k_{3}\) (\(k_{3}\tau>k_{2}\tau+\tau_{1}\)) such that \(y_{i}(t)<\varepsilon_{1}\) (\(i=1,2\)) for all \(t >k_{3}\tau\).
From the second and fourth equations of system (2.2), we have
Then we have \(z_{i2}(t)\leq z_{i}(t)\leq z_{i3}(t)\) and \(z_{i2}(t)\rightarrow\widetilde{z_{i}(t)},z_{i3}(t)\rightarrow \widetilde{z_{i3}(t)}\) (\(i=1,2\)) as \(t\rightarrow\infty\). While \((z_{12}(t),z_{22}(t))\) and \((z_{13}(t),z_{23}(t))\) are the solutions of
and
respectively, we have
where
and
and
Therefore, for any \(\varepsilon_{2}>0\) (\(\varepsilon_{2}\) is small enough), there exists an integer \(k_{4}\), \(n>k_{4}\) such that \(\widetilde{z_{i2}(t)}\varepsilon_{2}< z_{i}(t)<\widetilde {z_{i3}(t)}+\varepsilon_{2}\) (\(i=1,2\)). Let \(\varepsilon_{1}\rightarrow0\), so we have \(\widetilde{z_{i}(t)}\varepsilon_{2}< z_{i}(t)<\widetilde {z_{i}(t)}+\varepsilon_{2}\) (\(i=1,2\)), for t large enough. This implies \(z_{i}(t)\rightarrow \widetilde{z_{i}(t)}\) (\(i=1,2\)) as \(t\rightarrow\infty\). This completes the proof. □
The next work is to investigate the permanence of system (2.2). Before starting our theorem, we give the following definition.
Definition 4.2
System (2.2) is said to be permanent if there are constants \(m,M >0 \) (independent of initial value) and a finite time \(T_{0}\) such that, for all solutions \((y_{1}(t), z_{1}(t), y_{2}(t), z_{2}(t))\) with all initial values \(y_{i}(0^{+})>0\), \(z_{i}(0^{+})>0\) (\(i=1,2\)), \(m\leq y_{i}(t)\leq M\), \(m\leq z_{i}(t)\leq M\) (\(i=1,2\)) hold for all \(t\geq T_{0}\). Here \(T_{0}\) may depend on the initial values \((y_{1}(0^{+}), z_{1}(0^{+}),y_{2}(0^{+}), z_{2}(0^{+}))\).
Theorem 4.3
If
there is a positive constant q such that each positive solution \((y_{1}(t),z_{1}(t),y_{2}(t),z_{2}(t))\) of (2.2) satisfies \(y_{i}(t)\geq q \), for t large enough, where \(y^{\ast}_{i}\) (\(i=1,2\)) is determined by
where \(z^{\ast}_{i4}\) (\(i=1,2\)) and \(z^{\ast\ast}_{i4}\) (\(i=1,2\)) are defined as (4.19) and (4.20), respectively.
Proof
The second and fourth equations of (2.2) can be rewritten as
According to (4.14), \(Q_{i}(t)\) (\(i=1,2\)) is defined as
We calculate the derivative of \(Q_{i}(t)\) (\(i=1,2\)) along the solution of (2.2):
Since
we can easily see that there exists a sufficiently small \(\varepsilon>0\) such that
We claim that for any \(t_{0}>0\), it is impossible that \(y_{i}(t)< y_{i}^{\ast}\) (\(i=1,2\)) for all \(t>t_{0}\). Suppose that the claim is not valid. Then, there is a \(t_{0}>0\) such that \(y_{i}(t)< y_{i}^{\ast}\) (\(i=1,2\)) for all \(t>t_{0}\). It follows from the first and third equations of (2.2) that for all \(t>t_{0}\)
Consider the following comparison impulsive system for all \(t>t_{0}\):
where
here
and
and
By the comparison theorem for impulsive differential equations [28], we know that there exists a sufficient small \(\varepsilon >0\) and \(t_{1}\) (\(>t_{0}+\tau_{1}\)) such that the inequality \(z_{i}(t)\leq\widetilde{z_{i4}(t)}+\varepsilon\) (\(i=1,2\)) holds for \(t\geq t_{1}\), thus \(z_{i}(t)\leq[z^{\ast}_{i4}e^{(w_{i3}k_{i}\beta_{i}y^{\ast }_{i})l\tau}+z^{\ast\ast}_{i4}e^{(w_{i3}+k_{i}\beta_{i}y^{\ast }_{i})(1l)\tau}]+\varepsilon\) for all \(t\geq t_{1}\). We use the notation \(\sigma_{i} \stackrel{\Delta}{=} [z^{\ast}_{i4}e^{(w_{i3}k_{i}\beta _{i}y^{\ast}_{i})l\tau}+z^{\ast\ast}_{i4}e^{(w_{i3}+k_{i}\beta _{i}y^{\ast}_{i})(1l)\tau}]+\varepsilon\) (\(i=1,2\)) for convenience. So we have
then we have
for all \(t>t_{1}\). Set \(y_{i}^{m}=\min_{t\in[t_{1}, t_{1}+\tau_{1}]}y_{i}(t)\), we will show that \(y_{i}(t)\geq y^{m}_{i}\) for all \(t\geq t_{1}\). Suppose the contrary, then there is a \(T_{0}>0\) such that \(y_{i}(t)\geq y^{m}_{i}\) for \(t_{1}\leq t\leq t_{1}+\tau_{1}+T_{0}\), \(y_{i}(t_{1}+\tau_{1}+T_{0})=y^{m}_{i}\) and \(y_{i}'(t_{1}+\tau_{1}+T_{0})<0\). Hence, the second and fourth equations of system (2.2) imply that
This is a contradiction. Thus, \(y_{i}(t)\geq y^{m}_{i}\) for all \(t>t_{1}\). As a consequence, then \(Q_{i}'(t)> y^{m}_{i}[r_{i} e^{w_{i1}\tau _{i}}(w_{i2}+\beta_{i}\sigma_{i})]>0\) (\(i=1,2\)) for all \(t>t_{1}\). This implies that as \(t\rightarrow\infty\), \(Q_{i}(t)\rightarrow \infty\). It is a contradiction to \(Q_{i}(t)\leq M(1+\tau_{i}r_{i} e^{w_{i1}\tau_{i}})\). Hence, the claim is complete.
By the claim, we are left to consider two cases. First, \(y_{i}(t)\geq y_{i}^{\ast}\) (\(i=1,2\)) for all t large enough. Second, \(y_{i}(t)\) (\(i=1,2\)) oscillates about \(y_{i}^{\ast}\) (\(i=1,2\)) for t large enough.
Define
where \(q_{i}=y_{i}^{\ast}e^{(w_{i1}+\beta_{i}M)\tau_{i}}\) (\(i=1,2\)). We hope to show that \(y_{i}(t)\geq q_{i}\) (\(i=1,2\)) for all t large enough. The conclusion is evident in the first case. For the second case, let \(t^{\ast}>0\) and \(\xi>0\) satisfy \(y_{i}(t^{\ast})=y_{i}(t^{\ast}+\xi)=y_{i}^{\ast}\) (\(i=1,2\)) and \(y_{i}(t)< y_{i}^{\ast}\) (\(i=1,2\)) for all \(t^{\ast}< t< t^{\ast}+\xi\) where \(t^{\ast}\) is sufficiently large such that \(y_{i}(t)>\sigma _{i}\) (\(i=1,2\)) for \(t^{\ast}< t< t^{\ast}+\xi\), \(y_{i}(t)\) (\(i=1,2\)) is uniformly continuous. The positive solutions of (2.2) are ultimately bounded and \(y_{i}(t)\) (\(i=1,2\)) is not affected by impulses. Hence, there is a T (\(0< t<\tau_{1}\)) and T is dependent on the choice of \(t^{\ast}\) such that \(y_{i}(t^{\ast})>\frac{y_{i}^{\ast}}{2}\) (\(i=1,2\)) for \(t^{\ast}< t< t^{\ast}+T\). If \(\xi< T\), there is nothing to prove. Let us consider the case \(T<\xi<\tau_{1}\). Since \(y_{i}'(t)>(w_{i1}+\beta _{i}M)y_{i}(t)\) (\(i=1,2\)) and \(y_{i}(t^{\ast})=y_{i}^{\ast}\) (\(i=1,2\)), it is clear that \(y_{i}(t)\geq q_{i}\) (\(i=1,2\)) for \(t\in[t^{\ast}, t^{\ast}+\tau_{1}]\). Then, proceeding exactly as the proof for the above claim, we see that \(y_{i}(t)\geq q_{i}\) for \(t\in[t^{\ast}+\tau_{1}, t^{\ast}+\xi]\). Because the kind of interval \(t\in[t^{\ast}, t^{\ast}+\xi]\) is chosen in an arbitrary way (we only need \(t^{\ast}\) to be large). We conclude that \(y_{i}(t)\geq q \) for all large t. In the second case, in view of the above discussion, the choice of q is independent of the positive solution, and we prove that any positive solution of (2.2) satisfies \(y_{i}(t)\geq q\) for all sufficiently large t. This completes the proof of the theorem. □
Theorem 4.4
If
system (2.2) is permanent.
Proof
Denote \((y_{1}(t),z_{1}(t),y_{2}(t), z_{2}(t))\) for any solution of system (2.2). From system (2.2) and Lemma 3.3, we can easily obtain
Consider the comparison impulsive system (4.9) for all \(t>t_{0}\). By Lemma 3.5, we obtain
here \(z^{\ast}_{1}\) and \(z^{\ast}_{2}\) are defined as (3.7), \(z^{\ast\ast}_{1}\) and \(z^{\ast\ast}_{2}\) are defined as (3.12). By the comparison theorem for impulsive differential equation [28], we know that there exists a sufficient small \(\varepsilon >0\) and \(t_{1}\) (\(>t_{0}+\tau_{1}\)) such that the inequality \(z_{i}(t)\geq\widetilde{z_{i}(t)}\varepsilon\) (\(i=1,2\)) holds for \(t\geq t_{1}\), thus \(z_{i}(t)\geq[z_{i}^{\ast}e^{w_{i3}l\tau}+z_{i}^{\ast\ast }e^{w_{i3}(1l)\tau}]\varepsilon\stackrel{\Delta}{=}p_{i}\) for all \(t\geq t_{1}\). By Theorem 4.3, Lemma 3.3, and the above discussion, system (2.2) is permanent. The proof of Theorem 4.4 is complete. □
Discussion
In this paper, we investigate a new delayed stagestructured predatorprey model with impulsive diffusion and releasing. We analyze that the preyextinction boundary periodic solution of system (2.2) is globally attractive, and we also obtain the permanent condition of system (2.2). From Theorem 4.1 and Theorem 4.4, we can easily guess that there must exist a threshold \(\mu^{\ast}\) (\(\mu^{\ast}=\max_{i=1,2}\{\mu^{\ast}_{i}\}\) and \(\mu^{\ast}_{i}\) (\(i=1,2\))) is determined by the condition of Theorem 4.1), if \(\mu>\mu^{\ast}\), the preyextinction boundary periodic solution \((0,\widetilde{z_{1}(t)},0,\widetilde{z_{2}(t)})\) of (2.2) is globally attractive. If \(\mu<\mu^{\ast\ast}\) (\(\mu ^{\ast\ast}=\min_{i=1,2}\{\mu^{\ast\ast}_{i}\}\) and \(\mu^{\ast\ast }_{i}\) (\(i=1,2\)) is determined by the condition of Theorem 4.4), system (2.2) is permanent. From Theorem 4.1 and Theorem 4.4, we can also easily guess that there must exist a threshold \(D^{\ast}\) (\(0< D^{\ast}<1\)). If \(D < D^{\ast}\), the preyextinction boundary periodic solution \((0,\widetilde{z_{1}(t)},0,\widetilde{z_{2}(t)})\) of (2.2) is globally attractive. If \(D > D^{\ast}\), system (2.2) is permanent. This indicates that impulsive diffusion and impulsive releasing can affect the dynamical behaviors of the investigated system (2.2). That is to say, impulsive diffusion and impulsive releasing of the predator population play important roles for the preyextinction of system (2.2). The parameters as \(\tau_{i}\) (\(i=1,2\)) and τ can also be discussed, its change also affects the dynamical system of (2.2). The results of this paper provide a tactical basis for pest management.
References
Chen, LS, Chen, J: Nonlinear Biological Dynamic Systems. Science, Beijing (1993) (in Chinese)
Chen, LS: Mathematical Models and Methods in Ecology. Science, Beijing (1988) (in Chinese)
Hofbauer, J, Sigmund, K: Evolutionary Games and Population Dynamics. Cambridge University, Cambridge (1998)
Freedman, HI: Deterministic Mathematical Models in Population Ecology. Marcel Dekker, New York (1980)
Murray, JD: Mathematical Biology, 2nd, corrected edn. Springer, Heidelberg (1993)
Takeuchi, Y: Global Dynamical Properties of LotkaVolterra Systems. World Scientific, Singapore (1996)
May, RM: Stability and Complexity in Model Ecosystems, 2nd edn. Princeton University, Princeton, NJ (1975)
May, RM: Theoretical Ecology, Principles and Applications, 2nd edn. Blackwell, Oxford (1981)
Takeuchi, Y, Oshime, Y, Matsuda, H: Persistence and periodic orbits of a threecompetitor model with refuges. Math. Biosci. 108(1), 105125 (1992)
Matsuda H, Namba T: Coevolutionarily stable community structure in a patchy environment. J. Theor. Biol. 136(2), 229243 (1989)
Aiello, WG, Freedman, HI, Wu, J: Analysis of a model representing stagestructured population growth with stagedependent time delay. SIAM J. Appl. Math. 52, 855869 (1992)
Aiello, WG, Freedman, HI: A time delay model of singlespecies growth with stage structure. Math. Biosci. 101, 139153 (1990)
Agarwal, M, Tandon, A: Modeling of the urban heat island in the form of mesoscale wind and of its effect on air pollution dispersal. Appl. Math. Model. 34, 25202530 (2010)
Jiao, J, et al.: Dynamics of a stagestructured predatorprey model with prey impulsively diffusing between two patches. Nonlinear Anal., Real World Appl. 11, 27482756 (2010)
Beretta, E, Takeuchi, Y: Global asymptotic stability of LotkaVolterra diffusion models with continuous time delays. SIAM J. Appl. Math. 48, 627651 (1998)
Hui, J, Chen, LS: A single species model with impulsive diffusion. Acta Math. Appl. Sin. 21(1) 4348 (2005)
Wang, L, Chen, L, et al.: Impulsive diffusion in single species model. Chaos Solitons Fractals 33, 12131219 (2007)
Wang, H: Dispersal permanence of periodic predatorprey model with Ivlevtype functional response and impulsive effects. Appl. Math. Model. 34, 37133725 (2010)
Kouchea, M, Tata, N: Existence and global attractivity of a periodic solution to a nonautonomous dispersal system with delays. Appl. Math. Model. 31, 780793 (2007)
Jiao, J, et al.: Impulsive vaccination and dispersal on dynamics of an SIR epidemic model with restricting infected individuals boarding transports. Physica A 449, 145159 (2016)
Levin, SA: Dispersion and population interaction. Am. Nat. 108, 207228 (1994)
Cui, JA, Chen, LS: Permanence and extinction in logistic and LotkaVolterra system with diffusion. J. Math. Anal. Appl. 258(2), 512535 (2001)
Freedman, HI, Takeuchi, Y: Global stability and predator dynamics in a model of prey dispersal in a patchy environment. Nonlinear Anal. 13, 9931002 (1989)
Jiao, J: The effect of impulsive diffusion on dynamics of a stagestructured predatorprey system. Discrete Dyn. Nat. Soc. 2010, 117 (2010)
Lakshmikantham, V: Theory of Impulsive Differential Equations. World scientific, Singapor (1989)
Bainov D, Simeonov P: Impulsive Differential Equations: Periodic Solution and Applications. Longman, London (1993)
Jiao, J, et al.: An appropriate pest management SI model with biological and chemical control concern. Appl. Math. Comput. 196, 285293 (2008)
Jiao, J, et al.: A delayed stagestructured predatorprey model with impulsive stocking on prey and continuous harvesting on predator. Appl. Math. Comput. 195, 316325 (2008)
Jiao, J, et al.: Analysis of a stagestructured predatorprey system with birth pulse and impulsive harvesting at different moments. Nonlinear Anal., Real World Appl. 12, 22322244 (2011)
Jury, EL: Inners and Stability of Dynamics System. Wiley, New York (1974)
Gao, S, Chen, L, Nieto, JJ, Torres, A: Analysis of a delayed epidemic model with pulse vaccination and saturation incidence. Vaccine 24, 60376045 (2006)
Acknowledgements
Supported by National Natural Science Foundation of China (11361014, 10961008), Natural Science Foundation of Guizhou Education Department (2008038), the Project of High Level Creative Talents in Guizhou Province (No. 20164035), and the Science Technology Foundation of Guizhou Province (2008J2250).
Author information
Authors and Affiliations
Corresponding author
Additional information
Competing interests
The authors declare that they have no competing interests.
Authors’ contributions
All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Jiao, J., Cai, S. & Li, L. Dynamics of a new delayed stagestructured predatorprey model with impulsive diffusion and releasing. Adv Differ Equ 2016, 318 (2016). https://doi.org/10.1186/s1366201610385
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s1366201610385
Keywords
 delayed stage structure
 predatorprey model
 impulsive diffusion
 impulsive releasing
 preyextinction