Skip to main content

Theory and Modern Applications

Global attractivity of a discrete competition model

Abstract

We study a discrete competition model of the form

$$\begin{aligned}& x_{1}(k+1)=x_{1}(k)\exp \biggl\{ r_{1} \biggl[ \frac{K_{1}+\alpha _{1}x_{2}(k)}{1+x_{2}(k)}-x_{1}(k) \biggr] \biggr\} , \\& x_{2}(k+1)=x_{2}(k)\exp \biggl\{ r_{2} \biggl[ \frac{K_{2}+\alpha _{2}x_{1}(k)}{1+x_{1}(k)}-x_{2}(k) \biggr] \biggr\} , \end{aligned}$$

where \(x_{i}(k)\) (\(i=1,2\)) are the population density of the ith species at k-generation. \(r_{i}\), \(K_{i}\), \(i=1, 2\), are all positive constants such that \(K_{i}>\alpha_{i}\), \(i=1, 2\). By using the iterative method and the comparison principle of difference equations we obtain sufficient conditions that ensure the global attractivity of the interior equilibrium of the system. Our result supplements and complements the main result of Yang et al. (Abstr. Appl. Anal. 2014:709124, 2014).

1 Introduction

Yang et al. [1] studied the dynamic behavior of the following autonomous discrete cooperative system (1.1):

$$\begin{aligned}& \begin{aligned} &x_{1}(k+1)=x_{1}(k)\exp \biggl\{ r_{1} \biggl[\frac{K_{1}+\alpha _{1}x_{2}(k)}{1+x_{2}(k)}-x_{1}(k) \biggr] \biggr\} , \\ &x_{2}(k+1)=x_{2}(k)\exp \biggl\{ r_{2} \biggl[ \frac{K_{2}+\alpha _{2}x_{1}(k)}{1+x_{1}(k)}-x_{2}(k) \biggr] \biggr\} , \end{aligned} \end{aligned}$$
(1.1)

where \(x_{i}(k)\) (\(i=1,2\)) are the population density of the ith species at k-generation. They showed that if

(\(H_{1}\)):

\(r_{i}\), \(K_{i}\), \(\alpha_{i}\) (\(i=1, 2\)) are all positive constants, and \(\alpha_{i}>K_{i}\) (\(i=1,2\)),

and

(\(H_{2}\)):

\(r_{i}\alpha_{i}\leq1\) (\(i=1,2\)),

then system (1.1) admits a unique positive equilibrium \((x_{1}^{*},x_{2}^{*})\), which is globally asymptotically stable.

It brought to our attention that the main results of [1] deeply depend on the assumption \(\alpha_{i}>K_{i}\), \(i=1,2\). Now, an interesting issue is proposed: Is it possible for us to investigate the stability property of system (1.1) under the assumption \(K_{i}>\alpha_{i}\), \(i=1, 2\)?

Note that in this case, the first equation of system (1.1) can be rewritten as

$$\begin{aligned}& x_{1}(k+1) \\& \quad =x_{1}(k)\exp \biggl\{ r_{1} \biggl[ \frac{K_{1}+\alpha _{1}x_{2}(k)}{1+x_{2}(k)}-x_{1}(k) \biggr] \biggr\} \\& \quad =x_{1}(k)\exp \biggl\{ r_{1} \biggl[ \frac{K_{1}(1+ x_{2}(k))}{1+x_{2}(k)}-x_{1}(k)-\frac{(K_{1}-\alpha _{1})x_{2}(k)}{1+x_{2}(k)} \biggr] \biggr\} \\& \quad =x_{1}(k)\exp \biggl\{ r_{1} \biggl[K_{1}-x_{1}(k)- \frac{(K_{1}-\alpha _{1})x_{2}(k)}{1+x_{2}(k)} \biggr] \biggr\} . \end{aligned}$$
(1.2)

Similarly to the above analysis, the second equation of system (1.1) can be rewritten as

$$ x_{2}(k+1)= x_{2}(k)\exp \biggl\{ r_{2} \biggl[K_{2}-x_{2}(k)-\frac {(K_{2}-\alpha_{2})x_{1}(k)}{1+x_{1}(k)} \biggr] \biggr\} . $$
(1.3)

From (1.2) and (1.3) we can easily see that both species have negative effect to the other species, that is, under the assumption \(K_{i}>\alpha _{i}\), \(i=1, 2\), the relationship between two species is competition. Also, we mention here that under the assumption \(K_{i}>\alpha_{i}\), \(i=1, 2\), system (1.1) admits a unique positive equilibrium \((x_{1}^{*},x_{2}^{*})\). Indeed, the positive equilibrium of system (1.1) satisfies

$$ \textstyle\begin{cases} \frac{K_{1}+\alpha_{1}x_{2}}{1+x_{2}}-x_{1}=0,\\ \frac{K_{2}+\alpha_{2}x_{1}}{1+x_{1}}-x_{2}=0, \end{cases} $$
(1.4)

which is equivalent to

$$ \textstyle\begin{cases} A_{1}x_{1}^{2}+A_{2}x_{1}+A_{3}=0,\\ B_{1}x_{2}^{2}+B_{2}x_{2}+B_{3}=0, \end{cases} $$
(1.5)

where

$$\begin{aligned}& \begin{aligned} &A_{1}=\alpha_{2}+1,\qquad A_{2}=-\alpha_{1}\alpha_{2}-K_{1}+K_{2}+1, \qquad A_{3}=-K_{2}\alpha _{1}-K_{1}, \\ &B_{1}=\alpha_{1}+1,\qquad B_{2}=- \alpha_{1}\alpha_{2}+K_{1}-K_{2}+1,\qquad B_{3}=-K_{1}\alpha_{2}-K_{1}. \end{aligned} \end{aligned}$$
(1.6)

From \(A_{1}>0\), \(A_{3}<0\), \(B_{1}>0\), \(B_{3}<0\) we can easily see that system (1.5) admits a unique positive solution

$$ \begin{aligned} &x_{1}^{*}=\frac{-A_{2}+\sqrt{A_{2}^{2}-4A_{1}A_{3}}}{2A_{1}}, \\ &x_{2}^{*}= \frac {-B_{2}+\sqrt{B_{2}^{2}-4B_{1}B_{3}}}{2B_{1}}. \end{aligned}$$
(1.7)

Since the relationship between two species is competition, and the system admits a unique positive equilibrium, it is natural to seek some suitable conditions that ensure the global attractivity of the positive equilibrium. Since the existence of stable positive equilibrium represents the stable coexistence of the two species, establishing some similar result as that of [1] becomes a challenging problem.

The aim of this paper is to obtain a set of sufficient conditions to ensure the global attractivity of the interior equilibrium of system (1.1). More precisely, we will prove the following result.

Theorem 1.1

Assume that

(\(A_{1}\)):

\(r_{i}\), \(K_{i}\), \(\alpha_{i}\) (\(i=1, 2\)) are all positive constants, and \(K_{i}>\alpha_{i}\) (\(i=1,2\)),

and

(\(A_{2}\)):

\(r_{i}K_{i}\leq1\) (\(i=1,2\)).

Then system (1.1) admits a unique positive equilibrium \((x_{1}^{*},x_{2}^{*})\), which is globally attractive.

The rest of the paper is arranged as follows. With the help of several useful lemmas, we will prove Theorem 1.1 in Section 2. An example, together with its numeric simulations, is presented in Section 3 to show the feasibility of our results. We end this paper by a brief discussion. For more work on cooperative or competitive systems, we refer to [1–33] and the references therein.

2 Global attractivity

Before we prove Theorem 1.1, we need to introduce several useful lemmas.

Lemma 2.1

[12]

Let \(f(u)=u\exp(\alpha-\beta u)\), where α and β are positive constants. Then \(f(u)\) is nondecreasing for \(u\in(0,\frac{1}{\beta}]\).

Lemma 2.2

[12]

Assume that a sequence \(\{u(k) \}\) satisfies

$$u(k+1)=u(k)\exp \bigl(\alpha-\beta u(k) \bigr), \quad k=1, 2,\ldots, $$

where α and β are positive constants, and \(u(0)>0\). Then

  1. (i)

    if \(\alpha<2\), then \(\lim_{k\rightarrow+\infty}{u(k)}=\frac{\alpha}{\beta}\);

  2. (ii)

    if \(\alpha\leq1\), then \(u(k)\leq\frac{1}{\beta}\), \(k=2,3,\ldots\) .

Lemma 2.3

[24]

Suppose that functions \(f,g:Z_{+}\times[0,\infty)\rightarrow[0,\infty)\) satisfy \(f(k,x)\leq g(k,x)\) \((f(k,x)\geq g(k,x))\) for \(k\in Z_{+}\) and \(x\in[0,\infty)\) and \(g(k,x)\) is nondecreasing with respect to x. If \(\{x(k) \}\) and \(\{u(k) \}\) are the nonnegative solutions of the difference equations

$$x(k+1)=f \bigl(k,x(k) \bigr)\quad \textit{and}\quad u(k+1)=g \bigl(k,u(k) \bigr), $$

respectively, and \(x(0)\leq u(0)\) \((x(0)\geq u(0))\). Then

$$x(k)\leq u(k)\qquad \bigl(x(k)\geq u(k) \bigr)\quad \textit{for all }k\geq0. $$

Proof of Theorem 1.1

Let \((x_{1}(k),x_{2}(k))\) be an arbitrary solution of system (1.1) with \(x_{1}(0)>0\) and \(x_{2}(0)>0\). Denote

$$\begin{aligned}& U_{1}=\limsup_{k\rightarrow+\infty}{x_{1}(k)},\qquad V_{1}=\liminf_{k\rightarrow+\infty}{x_{1}(k)}, \\& U_{2}=\limsup_{k\rightarrow+\infty}{x_{2}(k)},\qquad V_{2}=\liminf_{k\rightarrow+\infty}{x_{2}(k)}. \end{aligned}$$

We claim that \(U_{1}=V_{1}={\overline{x}_{1}}\) and \(U_{2}=V_{2}={\overline{x}_{2}}\).

From (1.2) we obtain

$$ x_{1}(k+1)\leq x_{1}(k)\exp \bigl\{ r_{1}K_{1}-r_{1}x_{1}(k) \bigr\} ,\quad k=0, 1, 2,\ldots. $$
(2.1)

Consider the auxiliary equation

$$ u(k+1)=u(k)\exp \bigl\{ r_{1}K_{1}-r_{1}u(k) \bigr\} ,\quad k=0, 1, 2,\ldots. $$
(2.2)

Because of \(0< r_{1}K_{1}\leq1\), according to (ii) of Lemma 2.2, we can obtain \(u(k)\leq\frac{1}{r_{1}}\) for all \(k\geq2\), where \(u(k)\) is an arbitrary positive solution of (2.2) with initial value \(u(0)>0\). By Lemma 2.1, \(f(u)=u\exp(r_{1} K_{1}-r_{1}u)\) is nondecreasing for \(u\in(0,\frac{1}{r_{1}}]\). According to Lemma 2.3, we obtain \(x_{1}(k)\leq u(k)\) for all \(k\geq2\), where \(u(k)\) is the solution of (2.2) with initial value \(u(2)= x_{1}(2)\). According to (i) of Lemma 2.2, we obtain

$$ U_{1}=\limsup_{k\rightarrow+\infty}{x_{1}(k)}\leq\lim _{k\rightarrow +\infty}{u(k)}=K_{1}\stackrel{\mathrm{def}}{=}M_{1}^{x_{1}}. $$
(2.3)

From (1.3) we obtain

$$ x_{2}(k+1)\leq x_{2}(k)\exp \bigl\{ r_{2}K_{2}-r_{2}x_{2}(k) \bigr\} ,\quad k=0, 1, 2,\ldots. $$
(2.4)

Similarly to the above analysis, we have

$$ U_{2}=\limsup_{k\rightarrow+\infty}{x_{2}(k)}\leq\lim _{k\rightarrow +\infty}{u(k)}=K_{2}\stackrel{\mathrm{def}}{=}M_{1}^{x_{2}}. $$
(2.5)

Then, for a sufficiently small constant \(\varepsilon>0\), there is an integer \(k_{1}>2\) such that

$$ x_{1}(k)< M_{1}^{x_{1}}+\varepsilon,\qquad x_{2}(k)< M_{1}^{x_{2}}+\varepsilon \quad \mbox{for all } k>k_{1}. $$
(2.6)

According to (1.2), we obtain

$$\begin{aligned}& x_{1}(k+1) \\& \quad =x_{1}(k)\exp \biggl\{ r_{1} \biggl[K_{1}-x_{1}(k)- \frac{(K_{1}-\alpha _{1})x_{2}(k)}{1+x_{2}(k)} \biggr] \biggr\} \\& \quad \geq x_{1}(k)\exp \biggl\{ r_{1} \biggl[K_{1}-x_{1}(k)- \frac{(K_{1}-\alpha _{1})(M_{1}^{x_{2}}+\varepsilon)}{1+(M_{1}^{x_{2}}+\varepsilon)} \biggr] \biggr\} \\& \quad \geq x_{1}(k)\exp \biggl\{ r_{1} \biggl[K_{1}-x_{1}(k)- \frac{(K_{1}-\alpha _{1})(M_{1}^{x_{2}}+\varepsilon)}{ M_{1}^{x_{2}}+\varepsilon} \biggr] \biggr\} \\& \quad \geq x_{1}(k)\exp \bigl\{ r_{1} \bigl[K_{1}-x_{1}(k)- (K_{1}-\alpha_{1}) \bigr] \bigr\} \\& \quad = x_{1}(k)\exp \bigl\{ r_{1}\alpha_{1}-r_{1}x_{1}(k) \bigr\} . \end{aligned}$$
(2.7)

Consider the auxiliary equation

$$ u(k+1)= u(k)\exp \bigl\{ r_{1}\alpha_{1}-r_{1}u(k) \bigr\} . $$
(2.8)

Since \(0< r_{1}\alpha_{1}\leq r_{1}K_{1}\leq1\), according to (ii) of Lemma 2.2, we obtain \(u(k)\leq\frac{1}{r_{1}}\) for all \(k\geq2\), where \(u(k)\) is an arbitrary positive solution of (2.8) with initial value \(u(0)>0\). By Lemma 2.1, \(f(u)=u\exp(r_{1}\alpha_{1}-r_{1}u)\) is nondecreasing for \(u\in(0,\frac{1}{r_{1}}]\). According to Lemma 2.3, we obtain \(x_{1}(k)\geq u(k)\) for all \(k\geq2\), where \(u(k)\) is the solution of (2.8) with initial value \(u(k_{1})= x_{1}(k_{1})\). According to (i) of Lemma 2.2, we have

$$ V_{1}=\liminf_{k\rightarrow+\infty}{x_{1}(k)}\geq\lim _{k\rightarrow +\infty}{u(k)}=\alpha_{1}\stackrel{\mathrm{def}}{=}m_{1}^{x_{1}}. $$
(2.9)

From (1.3) we obtain

$$ x_{2}(k+1)\geq x_{2}(k)\exp \bigl\{ r_{2} \alpha_{2}-r_{2}x_{2}(k) \bigr\} . $$
(2.10)

Similarly to the analysis of (2.7)-(2.9), we have

$$ V_{2}=\liminf_{k\rightarrow+\infty}{x_{2}(k)}\geq\lim _{k\rightarrow +\infty}{u(k)}=\alpha_{2}\stackrel{\mathrm{def}}{=}m_{1}^{x_{2}}. $$
(2.11)

Then, for a sufficiently small constant \(\varepsilon>0\) (without loss of generality, we may assume that \(\varepsilon< \frac{1}{2}\{\alpha_{1}, \alpha_{2}\}\)), there exists an integer \(k_{2}>k_{1}\) such that

$$ x_{1}(k)> m_{1}^{x_{1}}-\varepsilon,\qquad x_{2}(k)> m_{1}^{x_{2}}-\varepsilon\quad \mbox{for all } k>k_{2}. $$
(2.12)

The second inequality in (2.12), combined with (1.2), leads to

$$\begin{aligned}& x_{1}(k+1) \\& \quad =x_{1}(k)\exp \biggl\{ r_{1} \biggl[K_{1}-x_{1}(k)- \frac{(K_{1}-\alpha _{1})x_{2}(k)}{1+x_{2}(k)} \biggr] \biggr\} \\& \quad \leq x_{1}(k)\exp \biggl\{ r_{1} \biggl[K_{1}-x_{1}(k)- \frac{(K_{1}-\alpha _{1})( m_{1}^{x_{2}}-\varepsilon)}{1+( m_{1}^{x_{2}}-\varepsilon)} \biggr] \biggr\} . \end{aligned}$$
(2.13)

Noting that

$$\begin{aligned} 0 < &r_{1} \alpha_{1} =r_{1} \biggl[K_{1} -\frac{(K_{1}-\alpha_{1})( m_{1}^{x_{2}}-\varepsilon)}{( m_{1}^{x_{2}}-\varepsilon)} \biggr] \\ < &r_{1} \biggl[K_{1} -\frac{(K_{1}-\alpha_{1})( m_{1}^{x_{2}}-\varepsilon)}{1+( m_{1}^{x_{2}}-\varepsilon)} \biggr]\leq r_{1}K_{1}\leq1, \end{aligned}$$

similarly to the analysis of (2.1)-(2.3), we have

$$ U_{1}=\limsup_{k\rightarrow+\infty}{x_{1}(k)}\leq K_{1} -\frac{(K_{1}-\alpha_{1})( m_{1}^{x_{2}}-\varepsilon)}{1+( m_{1}^{x_{2}}-\varepsilon)}\stackrel{\mathrm{def}}{=}M_{2}^{x_{1}}. $$
(2.14)

Obviously,

$$ M_{2}^{x_{1}}=K_{1} -\frac{(K_{1}-\alpha_{1})( m_{1}^{x_{2}}-\varepsilon)}{1+( m_{1}^{x_{2}}-\varepsilon)}< K_{1}=M_{1}^{x_{1}}. $$
(2.15)

For \(k>k_{2}\), the second inequality in (2.12), combined with (1.3), leads to

$$ x_{2}(k+1)\leq x_{2}(k)\exp \biggl\{ r_{2} \biggl[K_{2}-x_{2}(k)-\frac {(K_{2}-\alpha_{2})(m_{1}^{x_{1}}-\varepsilon)}{1+(m_{1}^{x_{1}}-\varepsilon)} \biggr] \biggr\} . $$
(2.16)

By applying Lemma 2.3 to the above inequality we obtain

$$ U_{2}=\limsup_{k\rightarrow+\infty}{x_{2}(k)}\leq K_{2}-\frac {(K_{2}-\alpha_{2})(m_{1}^{x_{1}}-\varepsilon)}{1+(m_{1}^{x_{1}}-\varepsilon)}\stackrel{\mathrm{def}}{=}M_{2}^{x_{2}}. $$
(2.17)

Obviously, we have

$$ M_{2}^{x_{2}}=K_{2}-\frac{(K_{2}-\alpha_{2})(m_{1}^{x_{1}}-\varepsilon)}{1+(m_{1}^{x_{1}}-\varepsilon)}< K_{2}=M_{1}^{x_{2}}. $$
(2.18)

Then, for a sufficiently small constant \(\varepsilon>0\), there is an integer \(k_{3}>k_{2}\) such that

$$ x_{1}(k)< M_{2}^{x_{1}}+\varepsilon,\qquad x_{2}(k)< M_{2}^{x_{2}}+\varepsilon\quad \mbox{for all } k>k_{3}. $$
(2.19)

The second inequality in (2.19), combined with (1.2), leads to

$$\begin{aligned}& x_{1}(k+1) \\& \quad = x_{1}(k)\exp \biggl\{ r_{1} \biggl[K_{1}-x_{1}(k)- \frac{(K_{1}-\alpha _{1})x_{2}(k)}{1+x_{2}(k)} \biggr] \biggr\} \\& \quad \geq x_{1}(k)\exp \biggl\{ r_{1} \biggl[K_{1}-x_{1}(k)- \frac{(K_{1}-\alpha _{1})(M_{2}^{x_{2}}+\varepsilon)}{1+(M_{2}^{x_{2}}+\varepsilon)} \biggr] \biggr\} . \end{aligned}$$
(2.20)

Noting that

$$\begin{aligned} 0 < &r_{1}\alpha_{1}= r_{1} \biggl[K_{1} -\frac{(K_{1}-\alpha _{1})(M_{2}^{x_{2}}+\varepsilon)}{(M_{2}^{x_{2}}+\varepsilon)} \biggr] \\ < &r_{1} \biggl[K_{1} -\frac{(K_{1}-\alpha_{1})(M_{2}^{x_{2}}+\varepsilon)}{1+(M_{2}^{x_{2}}+\varepsilon)} \biggr]\leq r_{1}K_{1}\leq1, \end{aligned}$$

from this we finally obtain

$$ V_{1}=\liminf_{k\rightarrow+\infty}{x_{1}(k)}\geq K_{1} -\frac {(K_{1}-\alpha_{1})(M_{2}^{x_{2}}+\varepsilon)}{1+(M_{2}^{x_{2}}+\varepsilon)} \stackrel{\mathrm{def}}{=}m_{2}^{x_{1}}. $$
(2.21)

From the monotonicity of the function \(g(x)=\frac{x}{1+x}\) and (2.18) we have

$$ m_{2}^{x_{1}}>m_{1}^{x_{1}}. $$
(2.22)

The first inequality in (2.19), combined with (1.3), leads to

$$\begin{aligned}& x_{2}(k+1) \\& \quad = x_{2}(k)\exp \biggl\{ r_{2} \biggl[K_{2}-x_{2}(k)- \frac{(K_{2}-\alpha _{2})x_{1}(k)}{1+x_{1}(k)} \biggr] \biggr\} \\& \quad \geq x_{2}(k)\exp \biggl\{ r_{2} \biggl[K_{2}-x_{2}(k)- \frac{(K_{2}-\alpha _{2})(M_{2}^{x_{1}}+\varepsilon)}{1+(M_{2}^{x_{1}}+\varepsilon)} \biggr] \biggr\} . \end{aligned}$$
(2.23)

From this inequality we obtain

$$ V_{2}=\liminf_{k\rightarrow+\infty}{x_{2}(k)}\geq K_{2} -\frac {(K_{2}-\alpha_{2})(M_{2}^{x_{1}}+\varepsilon)}{1+(M_{2}^{x_{1}}+\varepsilon)}\stackrel{\mathrm{def}}{=}m_{2}^{x_{2}}. $$
(2.24)

From the monotonicity of the function \(g(x)=\frac{x}{1+x}\) and (2.15) we have

$$ m_{2}^{x_{2}}>m_{1}^{x_{2}}. $$
(2.25)

Then, for a sufficiently small constant \(\varepsilon>0\), there is an integer \(k_{4}>k_{3}\) such that

$$ x_{1}(k)> m_{2}^{x_{1}}-\varepsilon,\qquad x_{2}(k)> m_{2}^{x_{2}}-\varepsilon\quad \mbox{for all } k>k_{4}. $$
(2.26)

Continuing the above steps, we get four sequences \(\{M_{k}^{x_{1}} \}\), \(\{M_{k}^{x_{2}} \}\), \(\{m_{k}^{x_{1}} \}\), and \(\{m_{k}^{x_{2}} \}\) such that

$$\begin{aligned}& \begin{aligned} &M_{k}^{x_{1}}=K_{1} -\frac{(K_{1}-\alpha_{1})( m_{k-1}^{x_{2}}-\varepsilon)}{1+( m_{k-1}^{x_{2}}-\varepsilon)}, \\ &M_{k}^{x_{2}}=K_{2} -\frac{(K_{2}-\alpha_{2})( m_{k-1}^{x_{1}}-\varepsilon)}{1+( m_{k-1}^{x_{1}}-\varepsilon)}, \end{aligned} \end{aligned}$$
(2.27)
$$\begin{aligned}& \begin{aligned} &m_{k}^{x_{1}}=K_{1} - \frac{(K_{1}-\alpha_{1})(M_{k}^{x_{2}}+\varepsilon)}{1+(M_{k}^{x_{2}}+\varepsilon)}, \\ &m_{k}^{x_{2}}=K_{2} -\frac{(K_{2}-\alpha_{2})(M_{k}^{x_{1}}+\varepsilon)}{1+(M_{k}^{x_{1}}+\varepsilon)}. \end{aligned} \end{aligned}$$
(2.28)

Clearly, we have

$$ m_{k}^{x_{1}}< V_{1}\leq U_{1} < M_{k}^{x_{1}},\qquad m_{k}^{x_{2}}< V_{2} \leq U_{2} < M_{k}^{x_{2}},\quad k=0, 1, 2, \ldots. $$
(2.29)

Now, we will prove by induction that \(\{M_{k}^{x_{i}} \}\) (\(i=1,2\)) is monotonically decreasing and \(\{m_{k}^{x_{i}} \}\) (\(i=1,2\)) is monotonically increasing.

First of all, it is clear that \(M_{2}^{x_{i}}< M_{1}^{x_{i}}\) and \(m_{2}^{x_{i}}> m_{1}^{x_{i}}\) (\(i=1, 2\)). For \(i\geq2\), we assume that \(M_{i}^{x_{1}}< M_{i-1}^{x_{1}}\) and \(m_{i}^{x_{1}}>m_{i-1}^{x_{1}}\). Then, since the function \(g(x)=\frac {x}{1+x}\) is increasing, we have

$$\begin{aligned}& \begin{aligned}[b] M_{i+1}^{x_{2}}&=K_{2} -\frac{(K_{2}-\alpha_{2})( m_{i}^{x_{1}}-\varepsilon)}{1+( m_{i}^{x_{1}}-\varepsilon)} \\ & < K_{2} -\frac{(K_{2}-\alpha_{2})( m_{i-1}^{x_{1}}-\varepsilon)}{1+( m_{i-1}^{x_{1}}-\varepsilon)}=M_{i}^{x_{2}}, \end{aligned} \end{aligned}$$
(2.30)
$$\begin{aligned}& \begin{aligned}[b] M_{i+1}^{x_{1}}&=K_{1} -\frac{(K_{1}-\alpha_{1})( m_{i}^{x_{2}}-\varepsilon)}{1+( m_{i}^{x_{2}}-\varepsilon)} \\ &< K_{1} -\frac{(K_{1}-\alpha_{1})( m_{i-1}^{x_{2}}-\varepsilon)}{1+( m_{i-1}^{x_{2}}-\varepsilon)}=M_{i}^{x_{1}}, \end{aligned} \end{aligned}$$
(2.31)

and so,

$$\begin{aligned}& \begin{aligned}[b] m_{i+1}^{x_{1}}&=K_{1} -\frac{(K_{1}-\alpha _{1})(M_{i+1}^{x_{2}}+\varepsilon)}{1+(M_{i+1}^{x_{2}}+\varepsilon)} \\ &> K_{1} -\frac{(K_{1}-\alpha_{1})(M_{i}^{x_{2}}+\varepsilon)}{1+(M_{i}^{x_{2}}+\varepsilon)}=m_{i}^{x_{1}}, \end{aligned} \end{aligned}$$
(2.32)
$$\begin{aligned}& \begin{aligned}[b] m_{i+1}^{x_{2}}&=K_{2} -\frac{(K_{2}-\alpha _{2})(M_{i+1}^{x_{1}}+\varepsilon)}{1+(M_{i+1}^{x_{1}}+\varepsilon)} \\ &>K_{2} -\frac{(K_{2}-\alpha_{2})(M_{i}^{x_{1}}+\varepsilon)}{1+(M_{i}^{x_{1}}+\varepsilon)}=m_{i}^{x_{2}}. \end{aligned} \end{aligned}$$
(2.33)

Inequalities (2.30)-(2.33) show that \(\{M_{k}^{x_{1}} \}\) and \(\{M_{k}^{x_{2}} \}\) are decreasing and \(\{m_{k}^{x_{1}} \}\) and \(\{m_{k}^{x_{2}} \}\) are increasing. Consequently, \(\lim_{k\rightarrow+\infty} \{M_{k}^{x_{i}} \}\) and \(\lim_{k\rightarrow+\infty} \{m_{k}^{x_{i}} \}\) (\(i=1,2\)) both exist. Let

$$ \lim_{k\rightarrow+\infty}M_{k}^{x_{i}}=\overline{X}_{i}, \qquad \lim_{k\rightarrow+\infty}m_{k}^{x_{i}}= \underline{X}_{i}, \quad i=1, 2. $$
(2.34)

From (2.27) and (2.28) we have

$$\begin{aligned}& \overline{X}_{1}=K_{1} -\frac{(K_{1}-\alpha_{1}) \underline{X}_{2}}{1+\underline{X}_{2}}, \qquad \overline{X}_{2}=K_{2} -\frac{(K_{2}-\alpha_{2})\underline{X}_{1}}{1+\underline{X}_{1}}; \end{aligned}$$
(2.35)
$$\begin{aligned}& \underline{X}_{1}=K_{1} -\frac{(K_{1}-\alpha_{1})\overline {X}_{2}}{1+\overline{X}_{2}}, \qquad \underline{X}_{2}=K_{2} -\frac{(K_{2}-\alpha _{2})\overline{X}_{1}}{1+\overline{X}_{1}}. \end{aligned}$$
(2.36)

Equalities (2.35) and (2.36) are equivalent to

$$\begin{aligned}& \overline{X}_{1}= \frac{K_{1}+\alpha_{1} \underline {X}_{2}}{1+\underline{X}_{2}},\qquad \overline{X}_{2}= \frac{K_{2}+\alpha _{2}\underline{X}_{1}}{1+\underline{X}_{1}}; \end{aligned}$$
(2.37)
$$\begin{aligned}& \underline{X}_{1}= \frac{K_{1}+\alpha_{1}\overline{X}_{2}}{1+\overline {X}_{2}},\qquad \underline{X}_{2}= \frac{K_{2}+\alpha_{2}\overline {X}_{1}}{1+\overline{X}_{1}}. \end{aligned}$$
(2.38)

Equalities (2.37) and (2.38) show that \((\overline{X}_{1}, \underline {X}_{2})\) and \((\underline{X}_{1}, \overline{X}_{2})\) both are solutions of system (1.4). However, under the assumption of Theorem 1.1, system (1.4) has a unique positive solution \((x_{1}^{*},x_{2}^{*})\). Therefore,

$$ U_{i}=V_{i}=\lim_{k\rightarrow+\infty}{x_{i}(k)}=x_{i}^{*}, \quad i=1, 2, $$
(2.39)

that is, \(E_{+}(x_{1}^{*},x_{2}^{*})\) is globally attractive. This ends the proof of Theorem 1.1. □

3 Example

In this section, we give an example to illustrate the feasibility of the main result.

Example

Considering the following competition system:

$$\begin{aligned}& \begin{aligned} &x_{1}(k+1)=x_{1}(k)\exp \biggl\{ 2 \biggl[\frac {0.3+0.1x_{2}(k)}{1+x_{2}(k)}-x_{1}(k) \biggr] \biggr\} , \\ &x_{2}(k+1)=x_{2}(k)\exp \biggl\{ 3 \biggl[ \frac {0.2+0.1x_{1}(k)}{1+x_{1}(k)}-x_{2}(k) \biggr] \biggr\} . \end{aligned} \end{aligned}$$
(3.1)

For system (1.1), we have \(r_{1}=2\), \(r_{2}=3\), \(K_{1}=0.3\), \(K_{2}=0.2\), \(\alpha _{1}=0.1\), \(\alpha_{2}=0.1\). By calculation we have that the positive equilibrium \(E_{+}(x_{1}^{*},x_{2}^{*})\approx(0.27,0.18)\), \(r_{1}K_{1}=0.6<1\), \(r_{2}K_{2}=0.6<1\), \(K_{i}>\alpha_{i}\) (\(i=1,2\)), and the coefficients of system (3.1) satisfy (\(A_{1}\)) and (\(A_{2}\)) in Theorem 1.1. By Theorem 1.1 the unique positive equilibrium \(E_{+}(x_{1}^{*},x_{2}^{*})\) is globally attractive. Numeric simulations also support our finding (see Figures 1 and 2).

Figure 1
figure 1

Dynamic behavior of the first component of the solution \(\pmb{(x_{1}(k), x_{2}(k))}\) of system ( 3.1 ) with initial conditions \(\pmb{(x_{1}(0), x_{2}(0))= (0.14,0.19)}\) , \(\pmb{(0.27,0.69)}\) , \(\pmb{(0.4, 0.1)}\) , and \(\pmb{(0.10,0.24)}\) , respectively.

Figure 2
figure 2

Dynamic behavior of the second component of the solution \(\pmb{(x_{1}(k), x_{2}(k))}\) of system ( 3.1 ), with initial conditions \(\pmb{(x_{1}(0), x_{2}(0))= (0.14,0.19)}\) , \(\pmb{(0.27,0.69)}\) , \(\pmb{(0.4, 0.1)}\) , and \(\pmb{(0.10,0.24)}\) , respectively.

4 Discussion

Yang et al. [1] proposed system (1.1) under the assumption \(\alpha_{i}>K_{i}\), \(i=1, 2\), and showed that if \(r_{i}\alpha _{i}\leq1\), then the mutualism model admits a unique globally asymptotically stable positive equilibrium.

In this paper, we try to deal with the case \(K_{i}>\alpha_{i}\). We first show that under this assumption, the relationship between two species is competition, and then we show that if \(r_{i}K_{i}\leq1\), then two species can coexist in a stable state.

We mention here that a more suitable model should consider the past state of the species, and this leads to the competition system with delay; indeed, delay is one of the most important factors to influence the dynamic behavior of the competition system ([31–37]). It seems interesting to incorporate the time delay to system (1.1) and investigate the dynamic behavior of the system. We leave this for future study.

References

  1. Yang, K, Xie, XD, Chen, FD: Global stability of a discrete mutualism model. Abstr. Appl. Anal. 2014, Article ID 709124 (2014)

    MathSciNet  Google Scholar 

  2. Chen, LJ, Chen, LJ, Li, Z: Permanence of a delayed discrete mutualism model with feedback controls. Math. Comput. Model. 50, 1083-1089 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chen, LJ, Xie, XD: Permanence of an n-species cooperation system with continuous time delays and feedback controls. Nonlinear Anal., Real World Appl. 12, 34-38 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, LJ, Xie, XD: Feedback control variables have no influence on the permanence of a discrete N-species cooperation system. Discrete Dyn. Nat. Soc. 2009, Article ID 306425 (2009)

    MathSciNet  MATH  Google Scholar 

  5. Chen, FD, Liao, XY, Huang, ZK: The dynamic behavior of N-species cooperation system with continuous time delays and feedback controls. Appl. Math. Comput. 181, 803-815 (2006)

    MathSciNet  MATH  Google Scholar 

  6. Chen, FD: Permanence of a discrete N-species cooperation system with time delays and feedback controls. Appl. Math. Comput. 186, 23-29 (2007)

    MathSciNet  MATH  Google Scholar 

  7. Chen, FD: Permanence for the discrete mutualism model with time delays. Math. Comput. Model. 47, 431-435 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, FD, Yang, JH, Chen, LJ, Xie, XD: On a mutualism model with feedback controls. Appl. Math. Comput. 214, 581-587 (2009)

    MathSciNet  MATH  Google Scholar 

  9. Chen, FD, Xie, XD, Chen, XF: Dynamic behaviors of a stage-structured cooperation model. Commun. Math. Biol. Neurosci. 2015, Article ID 4 (2015)

    Google Scholar 

  10. Chen, FD, Xie, XX: Study on the Dynamic Behaviors of Cooperative System. Science Press, Beijing (2014)

    Google Scholar 

  11. Chen, FD, Pu, LQ, Yang, LY: Positive periodic solution of a discrete obligate Lotka-Volterra model. Commun. Math. Biol. Neurosci. 2015, Article ID 14 (2015)

    Google Scholar 

  12. Chen, GY, Teng, ZD: On the stability in a discrete two-species competition system. J. Appl. Math. Comput. 38, 25-36 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Yang, LY, Xie, XD, Chen, FD: Dynamic behaviors of a discrete periodic predator-prey-mutualism system. Discrete Dyn. Nat. Soc. 2015, Article ID 247269 (2015)

    MathSciNet  Google Scholar 

  14. Yang, LY, Xie, XD, Chen, FD: Permanence of the periodic predator-prey-mutualist system. Adv. Differ. Equ. 2015, 331 (2015)

    Article  MathSciNet  Google Scholar 

  15. Liu, ZJ, Tan, RH, Chen, YP, Chen, LS: On the stable periodic solutions of a delayed two-species model of facultative mutualism. Appl. Math. Comput. 196, 105-117 (2008)

    MathSciNet  MATH  Google Scholar 

  16. Li, XP, Yang, WS: Permanence of a discrete model of mutualism with infinite deviating arguments. Discrete Dyn. Nat. Soc. 2010, Article ID 931798 (2010)

    MathSciNet  MATH  Google Scholar 

  17. Han, RY, Chen, FD: Global stability of May cooperative system with feedback controls. Adv. Differ. Equ. 2015, Article ID 360 (2015)

    Article  MathSciNet  Google Scholar 

  18. Li, Z: Permanence for the discrete mutualism model with delays. J. Math. Study 43(1), 51-54 (2010)

    MathSciNet  Google Scholar 

  19. Muhammadhaji, A, Teng, ZD: Global attractivity of a periodic delayed n-species model of facultative mutualism. Discrete Dyn. Nat. Soc. 2013, Article ID 580185 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Yang, LY, Xie, XD: Periodic solution of a periodic predator-prey-mutualist system. Commun. Math. Biol. Neurosci. 2015, Article ID 7 (2015)

    Google Scholar 

  21. Xie, XD, Chen, FD, Yang, K, Xue, Y: Global attractivity of an integrodifferential model of mutualism. Abstr. Appl. Anal. 2014, Article ID 928726 (2014)

    MathSciNet  Google Scholar 

  22. Xie, XD, Chen, FD, Xue, YL: Note on the stability property of a cooperative system incorporating harvesting. Discrete Dyn. Nat. Soc. 2014, Article ID 327823 (2014)

    MathSciNet  Google Scholar 

  23. Xie, XD, Miao, ZS, Xue, YL: Positive periodic solution of a discrete Lotka-Volterra commensal symbiosis model. Commun. Math. Biol. Neurosci. 2015, Article ID 2 (2015)

    Google Scholar 

  24. Wang, L, Wang, MQ: Ordinary Difference Equation. Xinjing Univ. Press, Urmuqi (1989)

    Google Scholar 

  25. Wei, FY, Li, CY: Permanence and globally asymptotic stability of cooperative system incorporating harvesting. Adv. Pure Math. 3, 627-632 (2013)

    Article  Google Scholar 

  26. Yang, WS, Li, XP: Permanence of a discrete nonlinear N-species cooperation system with time delays and feedback controls. Appl. Math. Comput. 218, 3581-3586 (2011)

    MathSciNet  MATH  Google Scholar 

  27. Xue, YL, Xie, XD, Chen, FD, Han, RY: Almost periodic solution of a discrete commensalism system. Discrete Dyn. Nat. Soc. 2015, Article ID 295483 (2015)

    MathSciNet  Google Scholar 

  28. Miao, ZS, Xie, XD, Pu, LQ: Dynamic behaviors of a periodic Lotka-Volterra commensal symbiosis model with impulsive. Commun. Math. Biol. Neurosci. 2015, Article ID 3 (2015)

    Google Scholar 

  29. Wu, RX, Lin, L, Zhou, XY: A commensal symbiosis model with Holling type functional response. J. Math. Comput. Sci. 16(3), 364-371 (2016)

    Google Scholar 

  30. Yang, K, Miao, ZS, Chen, FD, Xie, XD: Influence of single feedback control variable on an autonomous Holling-II type cooperative system. J. Math. Anal. Appl. 435(1), 874-888 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. Chen, FD, Li, Z, Chen, XX, Laitochová, JJ: Dynamic behaviors of a delay differential equation model of plankton allelopathy. J. Comput. Appl. Math. 206(2), 733-754 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  32. Li, Z, Chen, FD, He, MX: Almost periodic solutions of a discrete Lotka-Volterra competition system with delays. Nonlinear Anal., Real World Appl. 12(4), 2344-2355 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  33. Chen, FD, Li, Z, Xie, XD: Permanence of a nonlinear integro-differential prey-competition model with infinite delays. Commun. Nonlinear Sci. Numer. Simul. 13(10), 2290-2297 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  34. Zhao, L, Xie, XD, Yang, LY, et al.: Dynamic behaviors of a discrete Lotka-Volterra competition system with infinite delays and single feedback control. Abstr. Appl. Anal. 2014, Article ID 867313 (2014)

    MathSciNet  Google Scholar 

  35. Chen, FD, Wang, HN: Dynamic behaviors of a Lotka-Volterra competitive system with infinite delays and single feedback control. J. Nonlinear Funct. Anal. 2016, Article ID 43 (2016)

    Google Scholar 

  36. Chen, LJ, Chen, LJ: Positive periodic solution of a nonlinear integro-differential prey-competition impulsive model with infinite delays. Nonlinear Anal., Real World Appl. 11(4), 2273-2279 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  37. Li, Z, Han, MA, Chen, FD: Influence of feedback controls on an autonomous Lotka-Volterra competitive system with infinite delays. Nonlinear Anal., Real World Appl. 14(1), 402-413 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author is grateful to the anonymous referees for their excellent suggestions, which greatly improved the presentation of the paper. This work is supported by National Social Science Foundation of China (16BKS132), Humanities and Social Science Research Project of Ministry of Education Fund (15YJA710002), and the Natural Science Foundation of Fujian Province (2015J01283).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baoguo Chen.

Additional information

Competing interests

The author declares that there is no conflict of interests.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, B. Global attractivity of a discrete competition model. Adv Differ Equ 2016, 273 (2016). https://doi.org/10.1186/s13662-016-1000-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13662-016-1000-6

MSC

Keywords