Skip to main content

Theory and Modern Applications

Some explicit identities on Changhee-Genocchi polynomials and numbers

Abstract

In this paper, we introduce a new family of functions, which is called the Changhee-Genocchi polynomials. We study some explicit identities on these polynomials, which are related to Genocchi polynomials and Changhee polynomials. Also, we represent Changhee-Genocchi polynomials by gamma and beta functions.

We also study some properties of higher-order Changhee-Genocchi polynomials related to Changhee polynomials and Daehee polynomials.

1 Introduction

The Genocchi polynomials are defined by the generating function (see [1, 2])

$$ \frac{2t}{e^{t}+1} e^{xt} = \sum _{n}^{\infty}G_{n}(x) \frac{t^{n}}{n!}. $$
(1)

When \(x=0\), \(G_{n}=G_{n}(0)\) are called the Genocchi numbers. From (1) we see that

$$\begin{aligned} \sum_{n=0}^{\infty}G_{n}(x) \frac{t^{n}}{n!} &= \biggl(\frac{2t}{e^{t}+1} \biggr) e^{xt} = \Biggl( \sum_{l=0}^{\infty}G_{l} \frac{t^{l}}{l!} \Biggr) \Biggl( \sum_{m=0}^{\infty}x^{m} \frac{t^{m}}{m!} \Biggr) \\ &= \sum_{n=0}^{\infty}\Biggl( \sum _{l=0}^{n} {n \choose l} G_{l} x^{n-l} \Biggr) \frac{t^{n}}{n!}. \end{aligned}$$
(2)

We consider Changhee-Genocchi polynomials defined by the generating function

$$ \frac{2\log(1+t)}{2+t} (1+t)^{x} = \sum _{n=0}^{\infty}CG_{n}(x) \frac{t^{n}}{n!}. $$
(3)

When \(x=0\), \(CG_{n} = CG_{n}(0)\) are called the Changhee-Genocchi numbers.

The gamma and beta functions are defined by the following definite integrals:

$$ \Gamma(\alpha) = \int_{0}^{\infty}e^{-t} t^{\alpha-1}\,dt,\quad \alpha>0, $$
(4)

and

$$\begin{aligned} B(\alpha, \beta) &= \int_{0}^{1} t^{\alpha-1}(1-t)^{\beta-1}\,dt \\ &= \int_{0}^{\infty}\frac{t^{\alpha-1}}{(1+t)^{\alpha+\beta}}\,dt,\quad \alpha>0,\beta>0. \end{aligned}$$
(5)

From (4) and (5) we have (see [3])

$$ \Gamma(\alpha+1) = \alpha\Gamma(\alpha),\qquad B(\alpha, \beta) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha +\beta)}. $$
(6)

We recall that the classical Stirling numbers of the first kind \(S_{1}(n,k)\) and \(S_{2}(n,k)\) are defined by the relations (see [4])

$$\begin{aligned} &(x)_{n} = \sum_{k=0}^{n} S_{1}(n,k) x^{k} \quad\mbox{and}\\ &x^{n} = \sum_{k=0}^{n} S_{2}(n,k) (x)_{k}, \end{aligned}$$

respectively. Here \((x)_{n} = x(x-1)\cdots(x-n+1)\) denotes the falling factorial polynomial of order n. We also have

$$ \begin{aligned} &\sum_{n=m}^{\infty}S_{2}(n,m) \frac{t^{n}}{n!} = \frac{(e^{t}-1)^{m}}{m!} \quad\mbox{and}\\ &\sum_{n=m}^{\infty}S_{1}(n,m) \frac{t^{n}}{n!} = \frac{(\log(1+t))^{m}}{m!}. \end{aligned} $$
(7)

In this paper, we introduce a new family of functions, which is called the Changhee-Genocchi polynomials.

We study some properties of these polynomials, which are related to Genocchi polynomials and Changhee polynomials. Also we represent Changhee-Genocchi polynomials by gamma and beta functions.

We also study higher-order Changhee-Genocchi polynomials related to Changhee polynomials and Daehee polynomials.

Most of the ideas in this paper come from Kim and Kim [5]. Specifically, equations (14), (21), and (22) are related to the papers [5–8].

2 Changhee-Genocchi polynomials

First, we relate our newly defined Changhee-Genocchi polynomials to Genocchi polynomials.

Replacing t by \(e^{t}-1\) in (3) and applying (7), we get

$$\begin{aligned} \frac{2t}{e^{t}+1} e^{tx} &= \sum _{n=0}^{\infty}CG_{n}(x) \frac{1}{n!} \bigl(e^{t}-1\bigr)^{n} \\ &= \sum_{n=0}^{\infty}CG_{n}(x) \frac{1}{n!} n! \sum_{k=n}^{\infty}S_{2}(k,n) \frac{t^{k}}{k!} \\ &= \sum_{k=0}^{\infty}\Biggl( \sum _{n=0}^{k} CG_{n}(x) S_{2}(k,n) \Biggr)\frac{t^{k}}{k!}. \end{aligned}$$
(8)

The left-hand side of (8) is the generating function of the Genocchi polynomials.

Thus, by comparing the coefficients of (1) and (8) we have the following theorem.

Theorem 1

For any nonnegative integer k, we have

$$ G_{k}(x) = \sum_{n=0}^{k} CG_{n}(x) S_{2}(k,n). $$
(9)

On the other hand, if we replace t by \(\log(1+t)\) in (1) and apply (7), then we get

$$\begin{aligned} \frac{2\log(1+t)}{2+t} (1+t)^{x} &= \sum_{n=0}^{\infty}G_{n}(x) \frac{1}{n!} \bigl( \log(1+t) \bigr)^{n} \\ &= \sum_{n=0}^{\infty}G_{n}(x) \frac{1}{n!} n! \sum_{k=n}^{\infty}S_{1}(k,n) \frac{t^{k}}{k!} \\ &= \sum_{k=0}^{\infty}\Biggl( \sum _{n=0}^{k} G_{n}(x) S_{1}(k,n) \Biggr) \frac{t^{k}}{k!}, \end{aligned}$$
(10)

where \(S_{1}(k,n)\) are the Stirling numbers of the first kind.

By comparing the coefficients of both sides of (10), we get the following theorem.

Theorem 2

For any nonnegative integer k, we have

$$ CG_{k}(x) = \sum_{n=0}^{k} G_{n}(x) S_{1}(k,n). $$
(11)

Remark

When \(x=0\) in (11), we can see that Changhee-Genocchi numbers are integers.

We can consider equation (11) as the inversion formula for (9). From (3) we can consider the following identity:

$$\begin{aligned} \sum_{n=0}^{\infty}CG_{n}(x) \frac{t^{n}}{n!} &= \frac{2\log(1+t)}{2+t} (1+t)^{x} = \Biggl( \sum_{l=0}^{\infty}CG_{l} \frac{t^{l}}{l!} \Biggr) \Biggl(\sum_{m=0}^{\infty}(x)_{m} \frac{t^{m}}{m!} \Biggr) \\ &= \sum_{n=0}^{\infty}\Biggl(\sum _{l=0}^{n}{n \choose l}CG_{l}(x)_{n-l} \Biggr)\frac{t^{n}}{n!}. \end{aligned}$$
(12)

Thus, by comparing the coefficients of both sides of (12) we have

$$\begin{aligned} CG_{n}(x) &= \sum _{l=0}^{n} {n \choose l} CG_{l} (x)_{n-l} = \sum_{l=0}^{n} {n \choose l} CG_{n-l} (x)_{l} \\ &= \sum_{l=0}^{n} \Biggl( \sum _{m=0}^{n-l}{n \choose l} CG_{l} S_{1}(n-l, m) x^{m} \Biggr). \end{aligned}$$
(13)

From (13) we can derive the following theorem.

Theorem 3

For any nonnegative integer n, we have

$$ \int_{0}^{1} CG_{n}(x)\,dx = \sum _{l=0}^{n}\sum_{m=0}^{n-l}{n \choose l} CG_{l} S_{1}(n-l, m) \frac{1}{m+1}. $$
(14)

In this paper, we define the λ-Changhee-Genocchi polynomials by a generating function as follows:

$$ \frac{2\log(1+t)}{(1+t)^{\lambda}+ 1} (1+t)^{\lambda x} = \sum _{n=0}^{\infty}CG_{n,\lambda} (x) \frac{t^{n}}{n!}. $$
(15)

We recall that the λ-Changhee polynomials are defined in [9] by

$$ \frac{2}{(1+t)^{\lambda}+ 1} (1+t)^{\lambda x} = \sum _{n=0}^{\infty}Ch_{n,\lambda}(x) \frac{t^{n}}{n!}. $$
(16)

When \(\lambda=1\), Changhee-Genocchi polynomials are well-known Changhee polynomials, cf. [10–18]. In order to establish a reflexive symmetry on the Changhee-Genocchi polynomials, we consider the following:

$$\begin{aligned} \sum_{n=0}^{\infty}CG_{n}(1-x)\frac{t^{n}}{n!} &= \frac{2\log(1+t)}{1+(1+t)}(1+t)^{1-x} = -\frac{2\log(1+t)}{(1+t)^{-1}+1}(1+t)^{-x} \\ &= \sum_{n=0}^{\infty}CG_{n,-1}(x) \frac{t^{n}}{n!}. \end{aligned}$$
(17)

By comparing the coefficients of (17) we have the following theorem.

Theorem 4

For \(n\in\mathbb {N}\), we have

$$ CG_{n}(1-x) = CG_{n,-1}(x). $$
(18)

Thus, from (3) and (18) we have

$$\begin{aligned} \sum_{n=0}^{\infty}CG_{n}\bigl(-x+(1-y)\bigr)\frac{t^{n}}{n!} &= \frac{2\log(1+t)}{2+t}(1+t)^{-x+(1-y)} \\ &= \frac{2\log(1+t)}{2+t}(1+t)^{-x}(1+t)^{1-y} \\ &= \Biggl(\sum_{m=0}^{\infty}CG_{m}(-x)\frac{t^{m}}{m!} \Biggr) \Biggl(\sum _{l=0}^{\infty}(1-y)_{l}(-x)\frac{t^{l}}{l!} \Biggr) \\ &= \sum_{n=0}^{\infty}\Biggl( \sum _{m=0}^{n}{n\choose m} CG_{m}(-x) (1-y)_{n-m} \Biggr)\frac{t^{n}}{n!} \\ &= \sum_{n=0}^{\infty}\sum _{m=0}^{n} \sum_{k=0}^{n-m} {n\choose m} CG_{m}(-x)S_{1}(n-m, k) (1-y)^{k}. \end{aligned}$$
(19)

By comparing the coefficients of (19) we have

$$ CG_{n}\bigl(1-(x+y)\bigr) = \sum _{m=0}^{n}\sum_{k=0}^{n-m}{n \choose m}CG_{m}(-x) S_{1}(n-m, k) (1-y)^{k}. $$
(20)

On the other hand, by (5), (6), and (20) we have

$$\begin{aligned} &\int_{0}^{1} y^{n} CG_{n} \bigl(1-(x+y)\bigr)\,dy \\ &\quad= \sum_{m=0}^{n}\sum _{k=0}^{n-m}{n\choose m}CG_{m}(-x) S_{1}(n-m, k) B(n+1, k+1) \\ &\quad= \sum_{m=0}^{n}\sum _{k=0}^{n-m}{n\choose m}CG_{m}(-x)S_{1}(n-m,k) \frac{\Gamma(n+1)\Gamma(k+1)}{\Gamma(n+k+2)}. \end{aligned}$$
(21)

Thus, by (18) and (21) we have the following identities, which relate the λ-Changhee-Genocchi polynomials, the Stirling numbers, and the beta and gamma polynomials:

$$\begin{aligned} &\int_{0}^{1} y^{n} CG_{n,-1}(x+y)\,dy \\ &\quad= -\sum_{l=0}^{n}\sum _{m=0}^{n-l}{n\choose l}S_{1}(n-l,m)CG_{l} \int_{0}^{1} y^{n} \bigl(1-(x+y) \bigr)^{m} \,dy \\ &\quad= -\sum_{l=0}^{n}\sum _{m=0}^{n-l}\sum_{k=0}^{m}{n \choose l} {m\choose k}S_{1}(n-l,m) (-x)^{m-k} CG_{l} \int_{0}^{1} y^{n} (1-y)^{k} \,dy \\ &\quad= -\sum_{l=0}^{n}\sum _{m=0}^{n-l}\sum_{k=0}^{m}{n \choose l} {m\choose k}S_{1}(n-l,m) (-x)^{m-k} CG_{l} B(n+1, k+1) \\ &\quad= -\sum_{l=0}^{n}\sum _{m=0}^{n-l}\sum_{k=0}^{m}{n \choose l} {m\choose k}S_{1}(n-l,m) (-x)^{m-k} CG_{l} \frac{\Gamma(n+1)\Gamma(k+1)}{\Gamma(n+k+2)}. \end{aligned}$$
(22)

From (16) we consider

$$\begin{aligned} \sum_{n=0}^{\infty}CG_{n,\lambda}(1-x) \frac{t^{n}}{n!} &= \frac{2\log(1+t)}{(1+t)^{\lambda}+ 1}(1+t)^{\lambda(1-x)} = \frac{2\log(1+t)}{1+(1+t)^{-\lambda}}(1+t)^{-\lambda x} \\ &= \sum_{n=0}^{\infty}CG_{n,-\lambda}(x) \frac{t^{n}}{n!}. \end{aligned}$$
(23)

By comparing the coefficients of (23) we have the following theorem.

Theorem 5

For any nonnegative integer n, we have

$$ CG_{n,\lambda}(1-x) = CG_{n,-\lambda}(x). $$
(24)

Remark

If we take \(\lambda=1\) in Theorem 5, then we have the result in Theorem 4.

From the second line of (23) and from (16) we have

$$\begin{aligned} & \Biggl( \sum _{l=1}^{\infty}\frac{(-1)^{l-1} t^{l}}{l} \Biggr) \Biggl( \sum _{m=0}^{\infty}Ch_{m,\lambda}(x) \frac{t^{m}}{m!} \Biggr) \\ &\quad= \sum_{n=1}^{\infty} \Biggl( \sum _{l=1}^{n} \frac{(-1)^{l-1}}{l} \frac{Ch_{n-l,\lambda}(x)}{(n-l)!}n! \Biggr)\frac{t^{n}}{n!}. \end{aligned}$$
(25)

By comparing the coefficients of (23) and (25) we have the following theorem.

Theorem 6

For any positive integer n, we have

$$ CG_{n,\lambda}(x) = \sum_{l=1}^{n} \frac{(-1)^{l-1}}{l} Ch_{n-l,\lambda }(x)\frac{n!}{(n-l)!}. $$

For \(r\in\mathbb {N}\), we define the Changhee-Genocchi polynomials \(CG_{n}^{(r)}(x)\) of order r by the generating function

$$ \biggl( \frac{2\log(1+t)}{2+t} \biggr)^{r} (1+t)^{x} = \sum_{n=0}^{\infty}CG_{n}^{(r)}(x)\frac{t^{n}}{n!}. $$
(26)

From (26) we have the following relation between the Changhee-Genocchi polynomials of order r and the Changhee polynomials of order r:

$$\begin{aligned} &\bigl(\log(1+t) \bigr)^{r} \biggl(\frac{2}{2+t} \biggr)^{r} (1+t)^{x} \\ &\quad= \Biggl( r!\sum_{l=r}^{\infty}S_{2}(l,r)\frac{t^{l}}{l!} \Biggr) \Biggl( \sum _{m=0}^{\infty}Ch_{m}^{(r)}(x) \frac{t^{m}}{m!} \Biggr) \\ &\quad= \Biggl( \sum_{l=0}^{\infty}S_{2}(l+r,r)\frac{r! t^{l+r}}{(l+r)!} \Biggr) \Biggl( \sum _{m=0}^{\infty}Ch_{m}^{(r)}(x) \frac{t^{m}}{m!} \Biggr) \\ &\quad= \Biggl( \sum_{l=0}^{\infty}S_{2}(l+r,r) {l+r \choose r}^{-1} \frac {t^{l}}{l!} \Biggr) \Biggl( \sum_{m=0}^{\infty}Ch_{m}^{(r)}(x) \frac{t^{m}}{m!} \Biggr) t^{r} \\ &\quad= \sum_{n=0}^{\infty}\Biggl( \sum _{l=0}^{n} {n\choose l} S_{2}(l+r,r){l+r \choose r}^{-1} Ch_{n-l}^{(r)}(x) \Biggr) \frac{t^{n+r}}{n!}. \end{aligned}$$
(27)

By comparing the coefficients of (26) and (27) we have the following theorem.

Theorem 7

For any nonnegative integer n, we have

$$ CG_{n}^{(r)}(x) = \sum_{l=0}^{n}{n \choose l} {l+r\choose r}^{-1}S_{2}(l+r,r)Ch_{n-l}^{(r)}(x). $$

For \(d\in\mathbb {N}\) with \(d\equiv1\ (\operatorname{mod}2)\), we have the following identity:

$$ \sum_{a=0}^{d-1}(-1)^{a}(1+t)^{a} = \frac{1+(1+t)^{d}}{2+t}. $$
(28)

So, for such \(d\equiv1\ (\operatorname{mod} 2)\), from (28), (3), and (15) we see that

$$\begin{aligned} \sum_{n=0}^{\infty}CG_{n}(x)\frac{t^{n}}{n!} &= \frac{2\log (1+t)}{2+t}(1+t)^{x} \\ &= \sum_{a=0}^{d-1}(-1)^{a} \frac{2\log(1+t)}{(1+t)^{d}+1}(1+t)^{d (\frac{a+x}{d} )} \\ &= \sum_{a=0}^{d-1}(-1)^{a}\sum _{n=0}^{\infty}CG_{n,d} \biggl( \frac {a+x}{d} \biggr)\frac{t^{n}}{n!} \\ &= \sum_{n=0}^{\infty}\Biggl(\sum _{a=0}^{d-1}(-1)^{a} CG_{n,d} \biggl(\frac {a+x}{d} \biggr) \Biggr)\frac{t^{n}}{n!}. \end{aligned}$$
(29)

By comparing the coefficients in (29), for \(d\equiv1\ (\operatorname{mod} 2)\), we have the following theorem.

Theorem 8

For any nonnegative integer n and \(d\equiv1\ (\operatorname{mod} 2)\), we have

$$ CG_{n}(x) = \sum_{a=0}^{d-1} (-1)^{a} CG_{n,d} \biggl(\frac{a+x}{d} \biggr). $$
(30)

We remark that, for \(d\equiv1\ (\operatorname{mod} 2)\), from (9) and (30) we have the inversion of Theorem 8.

Theorem 9

For any nonnegative integer n and \(d\equiv1\ (\operatorname{mod} 2)\), we have

$$\begin{aligned} G_{k}(x) &= \sum_{n=0}^{k} CG_{n}(x) S_{2}(k,n) \\ &= \sum_{n=0}^{k} \Biggl( \sum _{a=0}^{d-1} (-1)^{a} CG_{n,d} \biggl(\frac {a+x}{d} \biggr) S_{2}(k,n) \Biggr). \end{aligned}$$

From the generating function of the Changhee-Genocchi polynomials in (1), replacing t by \(\lambda\log(1+t)\), we get

$$\begin{aligned} \frac{2\lambda\log(1+t)}{(1+t)^{\lambda}+1}(1+t)^{\lambda x} &= \sum_{n=0}^{\infty}G_{n}(x) \frac{1}{n!} \bigl( \lambda\log(1+t) \bigr)^{n} \\ &= \sum_{n=0}^{\infty}\lambda^{n} G_{n}(x) \Biggl( \sum_{k=n}^{\infty}S_{1}(k,n)\frac{t^{k}}{k!} \Biggr) \\ &= \sum_{k=0}^{\infty}\Biggl( \sum _{n=0}^{k}\lambda^{n} G_{n}(x) S_{1}(k,n) \Biggr)\frac{t^{k}}{k!}. \end{aligned}$$
(31)

Thus, the left-hand side of (31) can be represented by the λ-Changhee-Genocchi polynomials as follows:

$$ \frac{2\lambda\log(1+t)}{(1+t)^{\lambda}+1} (1+t)^{\lambda x} = \lambda\sum _{k=0}^{\infty}CG_{k,\lambda}(x)\frac{t^{k}}{k!}. $$
(32)

By comparing the coefficients of (31) and (32) we have the following theorem.

Theorem 10

For any nonnegative integer k, we have

$$ CG_{k,\lambda}(x) = \sum_{n=0}^{k} \lambda^{n-1} G_{n}(x) S_{1}(k,n). $$

From the generating function of the Changhee-Genocchi numbers in (3) we want to see the recurrence relation for the Changhee-Genocchi numbers:

$$\begin{aligned} 2\log(1+t) &= \sum _{n=0}^{\infty}CG_{n} \frac{t^{n}}{n!}(t+2) \\ &= \sum_{n=1}^{\infty}CG_{n} \frac{t^{n+1}}{n!} + \sum_{n=0}^{\infty}2 CG_{n} \frac{t^{n}}{n!} \\ &= \sum_{n=2}^{\infty}n CG_{n-1} \frac{t^{n}}{n!} + 2\sum_{n=1}^{\infty}CG_{n} \frac{t^{n}}{n!} \\ &= 2CG_{1} t + \sum_{n=2}^{\infty}(n CG_{n-1} + 2CG_{n})\frac{t^{n}}{n!}. \end{aligned}$$
(33)

On the other hand, from the left-hand side of (33) we have

$$ 2\log(1+t) = \sum_{n=1}^{\infty}(-1)^{n-1} 2(n-1)! \frac{t^{n}}{n!}. $$
(34)

By comparing the coefficients of (33) and (34) we have the following recurrence relation for the Changhee-Genocchi numbers.

Theorem 11

We have

$$\begin{aligned} & CG_{0} = 0,\\ & nCG_{n-1} + 2CG_{n} = 2(n-1)!(-1)^{n-1} \quad\textit{for } n\ge1. \end{aligned}$$

From the higher-order Changhee-Genocchi polynomials

$$ \biggl( \frac{2\log(1+t)}{2+t} \biggr)^{r}(1+t)^{x} = \sum_{n=0}^{\infty}CG_{n}^{(r)}(x) \frac{t^{n}}{n!} $$
(35)

we can deduce

$$ CG_{0}^{(r)}(x) = CG_{1}^{(r)}(x) = \cdots= CG_{r-1}^{(r)}(x) = 0. $$
(36)

Thus, from (36) we can rewrite (35) as follows:

$$ \biggl( \frac{2\log(1+t)}{2+t} \biggr)^{r}(1+t)^{x} = \sum_{n=0}^{\infty}CG_{n+r}^{(r)}(x) \frac{t^{n+r}}{(n+r)!}. $$
(37)

We recall that the Dahee polynomials are defined by the generating function (see [9, 19])

$$ \frac{\log(1+t)}{t} (1+t)^{x} = \sum_{n=0}^{\infty}D_{n}(x) \frac{t^{n}}{n!}. $$

When \(x=0\), \(D_{n} = D_{n}(0)\) are called the Dahee numbers.

For \(r\in\mathbb {N}\), the higher-order Daehee numbers are given by the generating function (see [9, 19, 20])

$$ \biggl(\frac{\log(1+t)}{t} \biggr)^{r} = \sum _{n=0}^{\infty}D_{n}^{(r)}(x) \frac{t^{n}}{n!}. $$

From (28) we have

$$\begin{aligned} 2\log(1+t)\sum _{a=0}^{d-1}(-1)^{a}(1+t)^{a} &= \frac{2\log(1+t)}{2+t} + \frac{2\log(1+t)}{t+2}(1+t)^{d} \\ &= \frac{2\log(1+t)}{t} \Biggl( \sum_{a=0}^{d-1}(-1)^{a}(1+t)^{a} \Biggr) \\ &= \sum_{n=0}^{\infty}CG_{n} \frac{t^{n-1}}{n!} + \sum_{n=0}^{\infty}CG_{n}(d)\frac{t^{n-1}}{n!} \\ &= \sum_{n=0}^{\infty}\Biggl( 2\sum _{a=0}^{d-1}(-1)^{a} D_{n}(a) \Biggr) \frac{t^{n}}{n!} \\ &= \sum_{n=0}^{\infty}\biggl( \frac{CG_{n+1}}{n+1} + \frac {CG_{n+1}(d)}{n+1} \biggr)\frac{t^{n}}{n!}. \end{aligned}$$
(38)

Thus, from (38) we have the following theorem.

Theorem 12

For any nonnegative integer n and \(d\equiv1\ (\operatorname{mod} 2)\), we have

$$ 2\sum_{a=0}^{d-1}(-1)^{a} D_{n}(a) = \frac{CG_{n+1}}{n+1} + \frac{CG_{n+1,d}}{n+1}. $$

3 Changhee-Genocchi polynomials arising from differential equations

In this section, we give new identities on the Changhee-Genocchi numbers by using differential equations. We use the idea recently developed by Kwon et al. [21].

By equation (3) we can write the generating function for the Changhee-Genocchi numbers as follows:

$$ F(t) = \frac{2\log(1+t)}{2+t} = \sum_{n=0}^{\infty}CG_{n}\frac{t^{n}}{n!}. $$
(39)

Let

$$\begin{aligned} G(t) = \log(1+t) \quad\mbox{and}\quad H(t) = \frac{2}{2+t}. \end{aligned}$$

Then

$$\begin{aligned} G^{(N)}(t) &= \biggl(\frac{d}{dt} \biggr)^{N} G(t) = (-1)^{N-1}(N-1)! e^{-N\cdot G(t)}, \quad\mbox{and}\\ H^{(N)}(t) &= \biggl(\frac{d}{dt} \biggr)^{N} H(t)\\ &= \biggl(-\frac{1}{2} \biggr)^{N} N! e^{-(N+1)\cdot K(t)},\quad \mbox{where } K(t)= \log(1+t/2). \end{aligned}$$

Thus,

$$\begin{aligned} F^{(N)}(t) ={}& \biggl( \frac{d}{dt} \biggr)^{N} F(t) = \sum _{k=0}^{N}{N\choose k}G^{(N-k)}H^{(k)} \\ ={}& \sum_{k=0}^{N} {N\choose k} (-1)^{N-k-1} (N-k-1)! e^{-(N-k)G(t)} \\ &{} \times \biggl(-\frac{1}{2} \biggr)^{k} k! e^{-(k+1)K(t)} \\ ={}& \sum_{k=0}^{N} {N\choose k} (-1)^{N-1} \biggl(\frac{1}{2} \biggr)^{k} k! (N-k-1)! e^{-(N-k)G(t)} e^{-(k+1)K(t)}. \end{aligned}$$
(40)

On the other hand,

$$\begin{aligned} e^{-(N-k)G} e^{-(k+1)K} ={}& \Biggl( \sum_{n=0}^{\infty}(-N+k)^{n} \frac {G^{n}}{n!} \Biggr) \Biggl( \sum_{l=0}^{\infty}\bigl(-(k+1)\bigr)^{l}\frac{K^{l}}{l!} \Biggr) \\ ={}& \Biggl( \sum_{n=0}^{\infty}(-N+k)^{n} \sum_{m=n}^{\infty}S_{1}(m,n) \frac {t^{m}}{m!} \Biggr) \\ &{} \times \Biggl( \sum_{l=0}^{\infty}(-k-1)^{l} \sum_{j=l}^{\infty}\frac{1}{2^{j}} S_{1}(j,l)\frac{t^{j}}{j!} \Biggr) \\ ={}& \sum_{m=0}^{\infty}\Biggl(\sum _{n=0}^{m}(-N+k)^{n} S_{1}(m,n) \Biggr)\frac {t^{m}}{m!} \\ &{} \times\sum_{j=0}^{\infty}\Biggl(\sum_{l=0}^{j}(-k-1)^{l} S_{1}(j,l)\frac{1}{2^{j}} \Biggr)\frac{t^{j}}{j!} \\ ={}& \sum_{s=0}^{\infty}\Biggl( \sum _{m=0}^{s}{s\choose m} \sum _{n=0}^{m}(-N+k)^{n} S_{1}(m,n) \\ &{}\times\sum_{l=0}^{s-m}(-k-1)^{l} S_{1}(s-m,l) \frac {1}{2^{s-m}} \Biggr)\frac{t^{s}}{s!}. \end{aligned}$$
(41)

From (39) we have

$$ F^{(N)}(t) = \biggl(\frac{d}{dt} \biggr)^{N} F(t) = \sum_{m=0}^{\infty}CG_{N+m} \frac{t^{m}}{m!}. $$
(42)

By comparing the coefficients of (40), (41), and (42) we have new identities on the Changhee-Genocchi numbers as follows.

Theorem 13

For any nonnegative integer s, we have

$$\begin{aligned} CG_{s+N} ={}& \sum_{m=0}^{s}{s \choose m} \Biggl\{ \Biggl( \sum_{n=0}^{m}(-N+k)^{n} S_{1}(m,n) \Biggr) \Biggl( \sum_{l=0}^{s-m}(-k-1)^{l} S_{1}(s-m, l)\frac{1}{2^{s-m}} \Biggr) \Biggr\} \\ &{} \times\sum_{k=0}^{N} {N \choose k} (-1)^{N-1} \biggl(\frac {1}{2} \biggr)^{k} k! (N-k-1)!. \end{aligned}$$

References

  1. Kim, T: On the multiple q-Genocchi and Euler numbers. Russ. J. Math. Phys. 15(4), 481-486 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Srivastava, HM, Özarslan, MA, Kaanoğlu, C: Some generalized Lagrange-based Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi polynomials. Russ. J. Math. Phys. 20(1), 110-120 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Zill, DG, Cullen, MR: Advanced Engineering Mathematics. Jones & Bartlett, Sudbury (2006)

    MATH  Google Scholar 

  4. Roman, S: The Umbral Calculus. Pure and Applied Mathematics, vol. 111, x+193 pp. Academic Press [Harcourt Brace Jovanovich, Publishers], New York (1984)

    MATH  Google Scholar 

  5. Kim, DS, Kim, T: Some identities involving Genocchi polynomials and numbers. Ars Comb. 121, 403-412 (2015)

    MathSciNet  Google Scholar 

  6. Kim, DS, Kim, T: A study on the integral of the product of several Bernoulli polynomials. Rocky Mt. J. Math. 44(4), 1251-1263 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Kim, T: Some properties on the integral of the product of several Euler polynomials. Quaest. Math. 38, 553-562 (2015)

    Article  MathSciNet  Google Scholar 

  8. Kim, T: A study on the q-Euler numbers and the fermionic q-integral of the product of several type q-Bernstein polynomials on \(\mathbb {Z}_{p}\). Adv. Stud. Contemp. Math. (Kyungshang) 23, 5-11 (2013)

    MathSciNet  MATH  Google Scholar 

  9. Kwon, HI, Kim, T, Seo, JJ: A note on degenerate Changhee numbers and polynomials. Proc. Jangjeon Math. Soc. 18(3), 295-305 (2015)

    MathSciNet  MATH  Google Scholar 

  10. Ozden, H, Cangul, IN, Simsek, Y, Kurt, V: On the higher-order w-q-Genocchi numbers. Adv. Stud. Contemp. Math. 19(1), 39-57 (2009)

    MathSciNet  MATH  Google Scholar 

  11. Jang, L-C, Ryoo, CS, Seo, JJ, Kwon, HI: Some properties of the twisted Changhee polynomials and their zeros. Appl. Math. Comput. 274, 169-177 (2016)

    MathSciNet  Google Scholar 

  12. Kim, T: p-Adic q-integrals associated with the Changhee-Barnes’ q-Bernoulli polynomials. Integral Transforms Spec. Funct. 15(5), 415-420 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kim, T, Dolgy, DV, Kim, DS, Seo, JJ: Differential equations for Changhee polynomials and their applications. J. Nonlinear Sci. Appl. 9, 2857-2864 (2016)

    MathSciNet  MATH  Google Scholar 

  14. Kim, DS, Kim, T: A note on Changhee polynomials and numbers. Adv. Stud. Theor. Phys. 7(20), 993-1003 (2013)

    Google Scholar 

  15. Kim, T, Kim, DS: A note on nonlinear Changhee differential equations. Russ. J. Math. Phys. 23(1), 88-92 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kim, DS, Kim, T, Seo, JJ, Lee, SH: Higher-order Changhee numbers and polynomials. Adv. Stud. Theor. Phys. 8(8), 365-373 (2014)

    Google Scholar 

  17. Kim, T, Rim, S-H: New Changhee q-Euler numbers and polynomials associated with p-adic q-integrals. Comput. Math. Appl. 54(4), 484-489 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Rim, S-H, Pak, HK, Jeong, J, Kang, DJ: Changhee-Genocchi numbers and their applications. Submitted for publication

  19. El-Desouky, BS, Mustafa, A: New results on higher-order Daehee and Bernoulli numbers and polynomials. Adv. Differ. Equ. 2016, 32 (2016)

    Article  MathSciNet  Google Scholar 

  20. Wang, NL, Li, H: Some identities on the higher-order Daehee and Changhee numbers. Pure Appl. Math. 4(5-1), 33-37 (2015)

    Google Scholar 

  21. Kwon, HI, Kim, T, Seo, JJ: A note on Daehee numbers arising from differential equations. Glob. J. Pure Appl. Math. 12(3), 2349-2354 (2016)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to express their sincere gratitude to the Editor, who gave us valuable comments to improve this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seog-Hoon Rim.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors contributed equally to this work. All authors read and approved the final manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, BM., Jeong, J. & Rim, SH. Some explicit identities on Changhee-Genocchi polynomials and numbers. Adv Differ Equ 2016, 202 (2016). https://doi.org/10.1186/s13662-016-0925-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13662-016-0925-0

MSC

Keywords