Skip to content

Advertisement

  • Research
  • Open Access

Some new and explicit identities related with the Appell-type degenerate q-Changhee polynomials

Advances in Difference Equations20162016:180

https://doi.org/10.1186/s13662-016-0912-5

Received: 11 June 2016

Accepted: 26 June 2016

Published: 7 July 2016

Abstract

Recently, Kim, Kwon, and Seo (J. Nonlinear Sci. Appl. 9:2380-2392, 2016) studied the degenerate q-Changhee polynomials and numbers. In this paper, we consider the Appell-type degenerate q-Changhee polynomials and give some new and explicit identities related to these polynomials

Keywords

  • Appell-type sequence
  • degenerate q-Changhee polynomials

MSC

  • 11B68
  • 11S80

1 Introduction

Let p be a fixed odd prime number. In this paper, we denote the ring of p-adic integers and the field of p-adic numbers by \(\mathbb{Z}_{p}\) and \(\mathbb{Q}_{p}\), respectively. The p-adic norm \(|\cdot|_{p}\) is normalized as \(|p|_{p} = \frac{1}{p}\). Let q be an indeterminate with \(|1-q|_{p} < p^{-\frac{1}{p-1}}\). We recall that \(\operatorname{UD}(\mathbb{Z}_{p})\) is the set of uniformly differentiable functions on \(\mathbb{Z}_{p}\). For each \(f \in \operatorname{UD}(\mathbb{Z}_{p})\), the p-adic q-Volkenborn integral on \(\mathbb{Z}_{p}\) is defined by Kim to be
$$ I_{-q}(f) = \int_{\mathbb{Z}_{p}} f(x)\, d\mu_{-q}(x) = \lim _{N \rightarrow \infty} \frac{1}{[p^{N}]_{-q}}\sum_{x=0}^{p^{N}-1}f(x) q^{x} (-1)^{x}, $$
(1.1)
where \([x]_{q} = \frac{1-q^{x}}{1-q}\) (see [14]). From (1.1), we have
$$ q^{n} I_{-q}(f_{n}) + (-1)^{n-1}I_{-q}(f) = [2]_{q} \sum _{i=0}^{n-1} (-1)^{n-1-i} q^{i} f(i) $$
(1.2)
(see [57]). Kwon-Kim-Seo [8] derived some identities of the degenerate Changhee polynomials which are given by the generating function
$$ \frac{2\lambda}{2\lambda+\log(1+\lambda t)} \bigl(1+\log(1+\lambda t)^{\frac{1}{\lambda}} \bigr)^{x} = \sum_{n=0}^{\infty}\operatorname{Ch}_{n,\lambda}(x) \frac{t^{n}}{n!} $$
(1.3)
(see [1, 3, 4, 714]). We note that if \(x=0\), then \(\operatorname{Ch}_{n,\lambda }=\operatorname{Ch}_{n,\lambda}(0)\) are called the degenerate Changhee numbers. From (1.3), we note that
$$ \lim_{\lambda \rightarrow0} \operatorname{Ch}_{n,\lambda}(x) = \operatorname{Ch}_{n}(x)\quad (n \geq0). $$
We recall that the gamma and beta functions are defined by the following definite integrals: for \(\alpha>0 \), \(\beta>0\),
$$ \Gamma(\alpha) = \int_{0}^{\infty}e^{-t}t^{\alpha-1}\,dt $$
(1.4)
and
$$\begin{aligned} B(\alpha,\beta) &= \int_{0}^{1} t^{\alpha-1}(1-t)^{\beta-1} \,dt \\ &= \int_{0}^{\infty}\frac{t^{\alpha-1}}{(1+t)^{\alpha+\beta}} \,dt \end{aligned}$$
(1.5)
(see [5, 15, 16]). From (1.4) and (1.5), we show that
$$ \Gamma(\alpha+1) = \alpha\Gamma(\alpha), \qquad B(\alpha,\beta) = \frac{\Gamma (\alpha)\Gamma(\beta) }{\Gamma(\alpha+\beta)}. $$
(1.6)
The Bell polynomials are defined by the generating function
$$ e^{x(e^{t}-1)}=\sum_{n=0}^{\infty}\operatorname{Bel}_{n}(x) \frac{t^{n}}{n!} $$
(1.7)
(see [6]).
Recently, Kim, Kwon, and Seo [1] defined the degenerate q-Changhee polynomials, a q-extension of (1.3), by
$$ \frac{q \lambda+\lambda}{q \log(1+\lambda t)+q\lambda+\lambda} \bigl( 1+ \log(1+\lambda t)^{\frac{1}{\lambda}} \bigr)^{x} = \sum_{n=0}^{\infty}\operatorname{Ch}_{n,\lambda,q}(x) \frac{t^{n}}{n!}. $$
(1.8)
We note that if \(x=0\), then \(\operatorname{Ch}_{n,\lambda,q}=\operatorname{Ch}_{n,\lambda,q}(0)\) are called the degenerate q-Changhee numbers.

In this paper, we consider the Appell-type degenerate q-Changhee polynomials and give some explicit and new formulas for these polynomials.

2 The Appell-type degenerate q-Changhee polynomials

In this section, we define the Appell-type degenerate q-Changhee polynomials which are given by
$$ \frac{q \lambda+\lambda}{q \log(1+\lambda t)+q\lambda+\lambda }e^{xt} = \sum _{n=0}^{\infty}\widetilde{\operatorname{Ch}}_{n,\lambda,q }(x) \frac{t^{n}}{n!}. $$
(2.1)
If \(x=0\), then \(\widetilde{\operatorname{Ch}}_{n,\lambda,q} = \widetilde {\operatorname{Ch}}_{n,\lambda,q}(0)\) are called the Appell-type degenerate q-Changhee numbers. From (2.1), we note that
$$ \widetilde{\operatorname{Ch}}_{n,\lambda,q}(x) = \sum _{m=0}^{n} {n \choose m} \widetilde { \operatorname{Ch}}_{m,\lambda,q }\, x^{n-m} . $$
(2.2)
By (2.2), we obtain
$$ \frac{d}{dx}\widetilde{\operatorname{Ch}}_{n,\lambda,q }(x) = n \widetilde {\operatorname{Ch}}_{n-1,\lambda,q }(x)\quad (n \geq1). $$
(2.3)
From (2.3), we show that
$$\begin{aligned} \int_{0}^{1} \widetilde{\operatorname{Ch}}_{n,\lambda,q}(x) \,dx &= \frac{1}{n+1} \int_{0}^{1} \frac{d}{dx}\widetilde{ \operatorname{Ch}}_{n+1,\lambda,q} (x) \,dx \\ &= \frac{1}{n+1} \bigl( \widetilde{\operatorname{Ch}}_{n+1,\lambda,q}(1) - \widetilde {\operatorname{Ch}}_{n+1,\lambda,q} \bigr). \end{aligned}$$
(2.4)
We observe that
$$\begin{aligned} \int_{0}^{1} y^{n} \widetilde{ \operatorname{Ch}}_{n,\lambda,q}(x+y) \,dy &= \sum_{m=0}^{n} {n \choose m} \widetilde{\operatorname{Ch}}_{n-m,\lambda,q}(x) \int_{0}^{1} y^{n+m} \,dy \\ &= \sum_{m=0}^{n} {n \choose m} \frac{\widetilde{\operatorname{Ch}}_{n-m,\lambda,q}(x) }{n+m+1}. \end{aligned}$$
(2.5)
On the other hand, we derive
$$\begin{aligned}& \int_{0}^{1} y^{n} \widetilde{ \operatorname{Ch}}_{n,\lambda,q}(x+y) \,dy \\& \quad = \sum_{m=0}^{n} {n \choose m} \widetilde{\operatorname{Ch}}_{n-m,\lambda,q}(x+1) (-1)^{m} \int_{0}^{1} y^{n} (1-y)^{m} \,dy \\& \quad =\sum_{m=0}^{n} {n \choose m} (-1)^{m} \widetilde{\operatorname{Ch}}_{n-m,\lambda ,q}(x+1) \frac{\Gamma(n+1) \Gamma(m+1)}{\Gamma(n+m+2)}. \end{aligned}$$
(2.6)

Thus, by (2.5) and (2.6), we give the first result.

Theorem 1

For \(n \in\mathbb{N}\cup\{0\} \), we have
$$ \sum_{m=0}^{n} \frac{{n \choose m}\widetilde{\operatorname{Ch}}_{n-m,\lambda,q}(x) }{n+m+1} = \sum _{m=0}^{n} {n \choose m} (-1)^{m} \widetilde {\operatorname{Ch}}_{n-m,\lambda,q}(x+1) \frac{\Gamma(n+1) \Gamma(m+1)}{\Gamma(n+m+2)}. $$
In particular, \(x=0\);
$$ \sum_{m=0}^{n} \frac{{n \choose m}\widetilde{\operatorname{Ch}}_{n-m,\lambda,q} }{n+m+1} = \sum _{m=0}^{n} {n \choose m} (-1)^{m} \widetilde {\operatorname{Ch}}_{n-m,\lambda,q}(1) \frac{\Gamma(n+1) \Gamma(m+1)}{\Gamma(n+m+2)}. $$
We also observe that
$$\begin{aligned}& \int_{0}^{1} y^{n} \widetilde{ \operatorname{Ch}}_{n,\lambda,q}(x+y) \,dy \\& \quad = \frac{\widetilde{\operatorname{Ch}}_{n,\lambda,q} (x+1)}{n+1} - \frac{n}{n+1} \int _{0}^{1} y^{n+1} \widetilde{ \operatorname{Ch}}_{n-1,\lambda,q}(x+y) \,dy \\& \quad = \frac{\widetilde{\operatorname{Ch}}_{n,\lambda,q} (x+1)}{n+1} - \frac{\widetilde {\operatorname{Ch}}_{n-1,\lambda,q} (x+1)}{n+1} \frac{n}{n+2} \\& \qquad {} +(-1)^{2} \frac{n(n-1)}{(n+1)(n+2)} \int_{0}^{1} y^{n+2} \widetilde { \operatorname{Ch}}_{n-2,\lambda,q}(x+y) \,dy \\& \quad = \frac{\widetilde{\operatorname{Ch}}_{n,\lambda,q} (x+1)}{n+1} - \frac{n \widetilde {\operatorname{Ch}}_{n-1,\lambda,q} (x+1)}{(n+1)(n+2)} +(-1)^{2} \frac{n(n-1)\widetilde {\operatorname{Ch}}_{n-2,\lambda,q}(x+1)}{(n+1)(n+2)(n+3)} \\& \qquad {} + (-1)^{3} \frac{n(n-1)(n-2)}{(n+1)(n+2)(n+3)} \int_{0}^{1} y^{n+3} \widetilde{ \operatorname{Ch}}_{n-3,\lambda,q}(x+y) \,dy. \end{aligned}$$
(2.7)
Continuing this process consecutively yields
$$\begin{aligned}& \int_{0}^{1} y^{n} \widetilde{ \operatorname{Ch}}_{n,\lambda,q} (x+y)\,dy \\& \quad = \frac{\widetilde{\operatorname{Ch}}_{n,\lambda,q}(x+1)}{n+1} + \sum_{m=2}^{n-1} \frac{n(n-1)\cdots(n-m+2)(-1)^{m-1}}{(n+1)(n+2)\cdots(n+m)} \widetilde {\operatorname{Ch}}_{n-m+1,\lambda,q}(x+1) \\& \qquad {} + (-1)^{n-1}\frac{n(n-1)(n-2)\cdots2}{(n+1)(n+2)\cdots(2n-1)} \int_{0}^{1} y^{2n-1} \widetilde{ \operatorname{Ch}}_{1,\lambda,q}(x+y) \,dy \\& \quad = \frac{\widetilde{\operatorname{Ch}}_{n,\lambda,q}(x+1)}{n+1} + \sum_{m=2}^{n-1} \frac{n(n-1)\cdots(n-m+2)(-1)^{m-1}}{(n+1)(n+2)\cdots(n+m)} \widetilde {\operatorname{Ch}}_{n-m+1,\lambda,q}(x+1) \\& \qquad {} + (-1)^{n-1} \frac{n!}{(n+1)(n+2)\cdots(2n-1)2n} \biggl( \widetilde { \operatorname{Ch}}_{1,\lambda,q}(x+1) - \frac{1}{2n+1} \biggr) \\& \quad = \sum_{m=1}^{n+1} \frac{(n)_{m-1}}{\langle n+1\rangle_{m}}(-1)^{m-1} \widetilde {\operatorname{Ch}}_{n-m+1,\lambda,q}(x+1), \end{aligned}$$
(2.8)
where \((n)_{m-1}=n(n-1) \cdots(n-m+2)\) and \(< n+1>_{m}=(n+1)(n+2)\cdots(n+m)\).

Thus, by (2.5) and (2.8), we give the second result.

Theorem 2

For \(n \in\mathbb{N}\) with \(n \geq3\), we have
$$ \sum_{m=0}^{n} \frac{{n \choose m}\widetilde{\operatorname{Ch}}_{n-m,\lambda,q}(x) }{n+m+1} =\sum _{m=0}^{n} \frac{(n)_{m}}{\langle n+1\rangle _{m+1}}(-1)^{m}{ \operatorname{Ch}}_{n-m,\lambda,q}(x+1). $$
For \(n \in\mathbb{N}\), we have
$$\begin{aligned}& \int_{0}^{1} y^{n} \widetilde{ \operatorname{Ch}}_{n,\lambda,q}(x+y) \,dy \\& \quad = \frac{\widetilde{\operatorname{Ch}}_{n+1,\lambda,q}(x+1)}{n+1}- \frac{n}{n+1} \int _{0}^{1} y^{n-1} \widetilde{ \operatorname{Ch}}_{n+1,\lambda,q}(x+y) \,dy \\& \quad = \frac{\widetilde{\operatorname{Ch}}_{n+1,\lambda,q}(x+1)}{n+1} - \frac{n}{n+1} \sum _{m=0}^{n+1} {n+1 \choose m} \widetilde{ \operatorname{Ch}}_{n+1-m,\lambda,q}(x+1) (-1)^{m} \int_{0}^{1} (1-y)^{m} y^{n-1} \,dy \\& \quad = \frac{\widetilde{\operatorname{Ch}}_{n+1,\lambda,q}(x+1)}{n+1} - \frac{n}{n+1} \sum _{m=0}^{n+1} {n+1 \choose m} \widetilde{ \operatorname{Ch}}_{n+1-m,\lambda,q}(x+1) (-1)^{m} B(n,m+1). \end{aligned}$$
(2.9)
Therefore, by (2.5) and (2.9), we obtain the third result.

Theorem 3

For \(n \in\mathbb{N}\), we have
$$\begin{aligned}& \sum_{m=0}^{n} \frac{{n \choose m}\widetilde{\operatorname{Ch}}_{n-m,\lambda,q}(x) }{n+m+1} \\& \quad = \frac{\widetilde{\operatorname{Ch}}_{n+1,\lambda,q}(x+1)}{n+1} - \frac{n}{n+1} \sum _{m=0}^{n+1} {n+1 \choose m} \widetilde{ \operatorname{Ch}}_{n+1-m,\lambda,q}(x+1) (-1)^{m} B(n,m+1), \end{aligned}$$
where \(B(n,m+1)\) is a beta function.
Now, we observe that, for \(n \in\mathbb{N}\cup\{0\}\), \(m \in\mathbb{N}\),
$$\begin{aligned}& \int_{0}^{1} \widetilde{\operatorname{Ch}}_{m,\lambda,q}(x) \widetilde{\operatorname{Ch}}_{n,\lambda ,q}(x) \,dx \\& \quad = \sum_{l=0}^{n} {n \choose l} \widetilde{\operatorname{Ch}}_{l,\lambda,q} \sum_{k=0}^{m} {m \choose k} \widetilde{\operatorname{Ch}}_{k,\lambda,q}(1) (-1)^{m-k} \int _{0}^{1} x^{n-l} (1-x)^{m-k} \,dx \\& \quad = \sum_{l=0}^{n} \sum _{k=0}^{m} {n \choose l} {m \choose k} (-1)^{m-k} \widetilde{\operatorname{Ch}}_{k,\lambda,q}(1) \widetilde{ \operatorname{Ch}}_{l,\lambda,q} B(n-l+1, m-k+1) \\& \quad = \sum_{l=0}^{n} \sum _{k=0}^{m} {n \choose l} {m \choose k} (-1)^{m-k} \widetilde{\operatorname{Ch}}_{k,\lambda,q}(1) \widetilde{ \operatorname{Ch}}_{l,\lambda,q} \frac{ \Gamma(n-l+1) \Gamma(m-k+1)}{\Gamma(n+m-l-k+2)} \\& \quad = \sum_{l=0}^{n} \sum _{k=0}^{m} \frac{{n \choose l} {m \choose k}}{{n+m-l-k \choose n-l}} (-1)^{m-k} \frac{\widetilde{\operatorname{Ch}}_{k,\lambda ,q}(1) \widetilde{\operatorname{Ch}}_{l,\lambda,q}}{n+m-l-k+1}. \end{aligned}$$
(2.10)
On the other hand,
$$ \int_{0}^{1} \widetilde{\operatorname{Ch}}_{m,\lambda,q}(x) \widetilde{\operatorname{Ch}}_{n,\lambda ,q}(x) \,dx = \sum _{l=0}^{n} \sum_{k=0}^{m} {n \choose l} {m \choose k} \frac {\widetilde{\operatorname{Ch}}_{m-k,\lambda,q}\widetilde{\operatorname{Ch}}_{n-l,\lambda,q}}{k+l+1}. $$
(2.11)
Thus, by (2.10) and (2.11), we give the fourth result.

Theorem 4

For \(n \in\mathbb{N} \cup\{0\}\), \(m \in\mathbb{N}\), we have
$$\begin{aligned}& \sum_{l=0}^{n} \sum _{k=0}^{m} \frac{{n \choose l} {m \choose k}}{{n+m-l-k \choose n-l}} (-1)^{m-k} \frac{\widetilde{\operatorname{Ch}}_{k,\lambda,q}(1) \widetilde{\operatorname{Ch}}_{l,\lambda,q}}{n+m-l-k+1} \\& \quad = \sum_{l=0}^{n} \sum _{k=0}^{m} {n \choose l} {m \choose k} \frac{\widetilde{\operatorname{Ch}}_{m-k,\lambda ,q}\widetilde{\operatorname{Ch}}_{n-l,\lambda,q}}{k+l+1}. \end{aligned}$$
By replacing t to \(\frac{1}{\lambda} ( e^{\lambda t}-1)\) in (2.1), we get
$$\begin{aligned} \frac{1+q}{q(1+t)+1}e^{\frac{x}{\lambda} ( e^{\lambda t}-1 )} &= \Biggl( \sum _{m=0}^{\infty}\operatorname{Ch}_{m,q} \frac{t^{m}}{m!} \Biggr) \Biggl( \sum_{l=0}^{\infty}\operatorname{Bel}_{l}\biggl(\frac{x}{\lambda}\biggr) \frac{ (\lambda t )^{l}}{l!} \Biggr) \\ &= \sum_{n=0}^{\infty}\Biggl( \sum _{m=0}^{n} {n \choose m} \operatorname{Ch}_{m,q} \operatorname{Bel}_{n-m} \biggl(\frac{x}{\lambda}\biggr) \lambda^{n-m} \Biggr) \frac{t^{n}}{n!} \end{aligned}$$
(2.12)
(see [6]). On the other hand,
$$\begin{aligned}& \sum_{m=0}^{\infty}\widetilde{ \operatorname{Ch}}_{m,\lambda,q }(x) \frac{1}{m!}\frac {1}{\lambda^{m}} \bigl( e^{\lambda t}-1 \bigr)^{m} \\& \quad = \sum_{m=0}^{\infty}\widetilde{ \operatorname{Ch}}_{m, \lambda,q }(x)\frac{1}{\lambda ^{m}} \sum _{n=m}^{\infty}S_{2}(n,m)\lambda^{n} \frac{t^{n}}{n!} \\& \quad = \sum_{n=0}^{\infty}\Biggl( \sum _{m=0}^{n} \widetilde{\operatorname{Ch}}_{m,\lambda, q }(x) S_{2}(n,m) \lambda^{n-m} \Biggr) \frac{t^{n}}{n!}, \end{aligned}$$
(2.13)
where \(S_{2}(n,m)\) is for the Stirling numbers of the second kind, given by
$$ \bigl( e^{t} -1 \bigr)^{m}=m! \sum _{n=m}^{\infty}S_{2}(n,m) \frac{t^{n}}{n!}. $$
By (2.12) and (2.13), we give the fifth result.

Theorem 5

For \(n \in\mathbb{N} \cup\{0\}\), we have
$$ \sum_{m=0}^{n} \widetilde{ \operatorname{Ch}}_{m,\lambda,q }(x) S_{2}(n,m) \lambda^{-m} = \sum_{m=0}^{n} {n \choose m} \operatorname{Ch}_{m,q} \operatorname{Bel}_{l} \biggl( \frac{x}{\lambda}\biggr)\lambda^{l}. $$

3 Remarks

In this section, we derive an explicit identity related to the Appell-type degenerate q-Changhee polynomials as follows. By (1.2), we get
$$ \int_{\mathbb{Z}_{p}} e^{y \log (1+\frac{1}{\lambda}\log(1+\lambda t) )+xt} \,d\mu_{-q} (y) = \frac{q \lambda+\lambda}{q \log(1+\lambda t)+q\lambda+\lambda}e^{xt} = \sum_{n=0}^{\infty}\widetilde {\operatorname{Ch}}_{n,\lambda,q }(x) \frac{t^{n}}{n!}. $$
(3.1)
On the other hand,
$$\begin{aligned}& \int_{\mathbb{Z}_{p}} e^{y \log (1+\frac{1}{\lambda}\log(1+\lambda t) )+xt} \,d\mu_{-q} (y) \\& \quad = \int_{\mathbb{Z}_{p}} \bigl(1+\log(1+\lambda t)^{\frac{1}{\lambda}} \bigr)^{y} e^{xt} \,d\mu_{-q} (y) \\& \quad = \int_{\mathbb{Z}_{p}} \sum_{k=0}^{\infty}{y \choose k} \biggl( \frac {1}{\lambda}\log(1+\lambda t) \biggr)^{k} e^{xt} \,d\mu_{-q}(y) \\& \quad = \int_{\mathbb{Z}_{p}} \sum_{k=0}^{\infty}(y)_{k} \frac{1}{\lambda^{k}} \sum_{m=k}^{\infty}S_{1}(m,k) \frac{(\lambda t)^{m}}{m!} e^{xt} \,d\mu_{-q}(y) \\& \quad = \int_{\mathbb{Z}_{p}} \sum_{m=0}^{\infty}\sum_{k=0}^{m} (y)_{k} \lambda ^{m-k} S_{1}(m,k) \frac{t^{m}}{m!} \sum _{s=0}^{\infty}x^{s} \frac{t^{s}}{s!} \,d\mu _{-q}(y) \\& \quad = \int_{\mathbb{Z}_{p}}\sum_{n=0}^{\infty}\sum_{m=0}^{n} \sum _{k=0}^{m} {n \choose m} (y)_{k} \lambda^{m-k} S_{1}(m,k) x^{n-m} \frac{t^{n}}{n!} d \mu _{-q}(y) \\& \quad = \sum_{n=0}^{\infty}\Biggl( \sum _{m=0}^{n} \sum_{k=0}^{m} {n \choose m} \lambda^{m-k} S_{1}(m,k) x^{n-m} \int_{\mathbb{Z}_{p}} (y)_{k} \,d\mu_{-q}(y) \Biggr) \frac{t^{n}}{n!} \\& \quad = \sum_{n=0}^{\infty}\Biggl( \sum _{m=0}^{n} \sum_{k=0}^{m} {n \choose m} \lambda^{m-k} S_{1}(m,k) x^{n-m} \operatorname{Ch}_{k,q} \Biggr) \frac{t^{n}}{n!}, \end{aligned}$$
(3.2)
where \(S_{1}(m,k)\) is the Stirling numbers of the first kind which is given by
$$ \bigl( \log(1+t) \bigr)^{k} =k! \sum_{n=k}^{\infty}S_{1}(m,k) \frac{t^{m}}{m!}. $$
By (3.1) and (3.2), we give the final result.

Theorem 6

For \(n \geq0\), we have
$$ \widetilde{\operatorname{Ch}}_{n,\lambda,q }(x) = \sum _{m=0}^{n} \sum_{k=0}^{m} {n \choose m} \lambda^{m-k} S_{1}(m,k) x^{n-m} \operatorname{Ch}_{k,q} . $$

4 Conclusions

We consider special numbers and polynomials such as Appell polynomials over the years: Bernoulli, Euler, Genocchi polynomials, and also Changhee polynomials and numbers have many applications in all most all branches of the mathematics and mathematical physics.

In Theorems 1, 2, 3, and 4, by using p-adic q-Volkenborn integral and generating functions, we derived many new and novel identities and relations related to the Appell-type degenerate q-Changhee polynomials and also q-Changhee numbers. In Theorem 5, we also gave some relations between q-Changhee type polynomials and the Stirling numbers of the first kind and Changhee numbers.

Declarations

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors’ Affiliations

(1)
Department of Mathematics, College of Science, Tianjin Polytechnic University, Tianjin, China
(2)
College of Mathematics, Inner Mongolia University for Nationalities, Tongliao City, China
(3)
Graduate School of Education, Konkuk University, Seoul, South Korea
(4)
Department of Mathematics, Kwangwoon University, Seoul, South Korea

References

  1. Kim, T, Kwon, H-I, Seo, JJ: Degenerate q-Changhee polynomials. J. Nonlinear Sci. Appl. 9, 2380-2392 (2016) MathSciNetMATHGoogle Scholar
  2. El-Desouky, BS, Mustafa, A: New results on higher-order Daehee and Bernoulli numbers and polynomials. Adv. Differ. Equ. 2016, 32 (2016) MathSciNetView ArticleGoogle Scholar
  3. Kwon, J, Park, J-W: A note on \((h,q)\)-Boole polynomials. Adv. Differ. Equ. 2015, 198 (2015) MathSciNetView ArticleGoogle Scholar
  4. Park, J-W: On the q-analogue of λ-Daehee polynomials. J. Comput. Anal. Appl. 19(6), 966-974 (2015) MathSciNetMATHGoogle Scholar
  5. Kim, DS, Kim, T: Some identities involving Genocchi polynomials and numbers. Ars Comb. 121, 403-412 (2015) MathSciNetGoogle Scholar
  6. Kim, DS, Kim, T: On degenerate Bell numbers and polynomials. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 2016, 1-12 (2016). doi:10.1007/s13398-016-0304-4 Google Scholar
  7. Kwon, H-I, Kim, T, Seo, JJ: A note on Daehee numbers arising from differential equations. Glob. J. Pure Appl. Math. 12(3), 2349-2354 (2016) MathSciNetGoogle Scholar
  8. Kwon, H-I, Kim, T, Seo, JJ: A note on degenerate Changhee numbers and polynomials. Proc. Jangjeon Math. Soc. 18(3), 295-305 (2015) MathSciNetMATHGoogle Scholar
  9. Jang, L-C, Ryoo, CS, Seo, JJ, Kwon, H-I: Some properties of the twisted Changhee polynomials and their zeros. Appl. Math. Comput. 274, 169-177 (2016) MathSciNetView ArticleGoogle Scholar
  10. Kim, T, Kim, DS: A note on nonlinear Changhee differential equations. Russ. J. Math. Phys. 23(1), 88-92 (2016) MathSciNetView ArticleMATHGoogle Scholar
  11. Kim, T: Some properties on the integral of the product of several Euler polynomials. Quaest. Math. 38(4), 553-562 (2015) MathSciNetView ArticleGoogle Scholar
  12. Kim, T, Kim, DS, Seo, J-J, Kwon, H-I: Differential equations associated with λ-Changhee polynomials. J. Nonlinear Sci. Appl. 9, 3098-3111 (2016) MATHGoogle Scholar
  13. Lim, D, Qi, F: On the Appell type λ-Changhee polynomials. J. Nonlinear Sci. Appl. 9(4), 1872-1876 (2016) MathSciNetMATHGoogle Scholar
  14. Rim, S-H, Park, JJ, Pyo, S-S, Kwon, J: The n-th twisted Changhee polynomials and numbers. Bull. Korean Math. Soc. 52(3), 741-749 (2015) MathSciNetView ArticleMATHGoogle Scholar
  15. Kim, DS, Kim, T, Seo, JJ: Higher-order Daehee polynomials of the first kind with umbral calculus. Adv. Stud. Contemp. Math. (Kyungshang) 24(1), 5-18 (2014) MathSciNetMATHGoogle Scholar
  16. Kim, T: A study on the q-Euler numbers and the fermionic q-integral of the product of several type q-Bernstein polynomials on \(\mathbb{Z}_{p} \). Adv. Stud. Contemp. Math. (Kyungshang) 23(1), 5-11 (2013) MathSciNetMATHGoogle Scholar

Copyright

© Qi et al. 2016

Advertisement