Skip to main content

Theory and Modern Applications

Some new and explicit identities related with the Appell-type degenerate q-Changhee polynomials

Abstract

Recently, Kim, Kwon, and Seo (J. Nonlinear Sci. Appl. 9:2380-2392, 2016) studied the degenerate q-Changhee polynomials and numbers. In this paper, we consider the Appell-type degenerate q-Changhee polynomials and give some new and explicit identities related to these polynomials

1 Introduction

Let p be a fixed odd prime number. In this paper, we denote the ring of p-adic integers and the field of p-adic numbers by \(\mathbb{Z}_{p}\) and \(\mathbb{Q}_{p}\), respectively. The p-adic norm \(|\cdot|_{p}\) is normalized as \(|p|_{p} = \frac{1}{p}\). Let q be an indeterminate with \(|1-q|_{p} < p^{-\frac{1}{p-1}}\). We recall that \(\operatorname{UD}(\mathbb{Z}_{p})\) is the set of uniformly differentiable functions on \(\mathbb{Z}_{p}\). For each \(f \in \operatorname{UD}(\mathbb{Z}_{p})\), the p-adic q-Volkenborn integral on \(\mathbb{Z}_{p}\) is defined by Kim to be

$$ I_{-q}(f) = \int_{\mathbb{Z}_{p}} f(x)\, d\mu_{-q}(x) = \lim _{N \rightarrow \infty} \frac{1}{[p^{N}]_{-q}}\sum_{x=0}^{p^{N}-1}f(x) q^{x} (-1)^{x}, $$
(1.1)

where \([x]_{q} = \frac{1-q^{x}}{1-q}\) (see [1–4]). From (1.1), we have

$$ q^{n} I_{-q}(f_{n}) + (-1)^{n-1}I_{-q}(f) = [2]_{q} \sum _{i=0}^{n-1} (-1)^{n-1-i} q^{i} f(i) $$
(1.2)

(see [5–7]). Kwon-Kim-Seo [8] derived some identities of the degenerate Changhee polynomials which are given by the generating function

$$ \frac{2\lambda}{2\lambda+\log(1+\lambda t)} \bigl(1+\log(1+\lambda t)^{\frac{1}{\lambda}} \bigr)^{x} = \sum_{n=0}^{\infty}\operatorname{Ch}_{n,\lambda}(x) \frac{t^{n}}{n!} $$
(1.3)

(see [1, 3, 4, 7–14]). We note that if \(x=0\), then \(\operatorname{Ch}_{n,\lambda }=\operatorname{Ch}_{n,\lambda}(0)\) are called the degenerate Changhee numbers. From (1.3), we note that

$$ \lim_{\lambda \rightarrow0} \operatorname{Ch}_{n,\lambda}(x) = \operatorname{Ch}_{n}(x)\quad (n \geq0). $$

We recall that the gamma and beta functions are defined by the following definite integrals: for \(\alpha>0 \), \(\beta>0\),

$$ \Gamma(\alpha) = \int_{0}^{\infty}e^{-t}t^{\alpha-1}\,dt $$
(1.4)

and

$$\begin{aligned} B(\alpha,\beta) &= \int_{0}^{1} t^{\alpha-1}(1-t)^{\beta-1} \,dt \\ &= \int_{0}^{\infty}\frac{t^{\alpha-1}}{(1+t)^{\alpha+\beta}} \,dt \end{aligned}$$
(1.5)

(see [5, 15, 16]). From (1.4) and (1.5), we show that

$$ \Gamma(\alpha+1) = \alpha\Gamma(\alpha), \qquad B(\alpha,\beta) = \frac{\Gamma (\alpha)\Gamma(\beta) }{\Gamma(\alpha+\beta)}. $$
(1.6)

The Bell polynomials are defined by the generating function

$$ e^{x(e^{t}-1)}=\sum_{n=0}^{\infty}\operatorname{Bel}_{n}(x) \frac{t^{n}}{n!} $$
(1.7)

(see [6]).

Recently, Kim, Kwon, and Seo [1] defined the degenerate q-Changhee polynomials, a q-extension of (1.3), by

$$ \frac{q \lambda+\lambda}{q \log(1+\lambda t)+q\lambda+\lambda} \bigl( 1+ \log(1+\lambda t)^{\frac{1}{\lambda}} \bigr)^{x} = \sum_{n=0}^{\infty}\operatorname{Ch}_{n,\lambda,q}(x) \frac{t^{n}}{n!}. $$
(1.8)

We note that if \(x=0\), then \(\operatorname{Ch}_{n,\lambda,q}=\operatorname{Ch}_{n,\lambda,q}(0)\) are called the degenerate q-Changhee numbers.

In this paper, we consider the Appell-type degenerate q-Changhee polynomials and give some explicit and new formulas for these polynomials.

2 The Appell-type degenerate q-Changhee polynomials

In this section, we define the Appell-type degenerate q-Changhee polynomials which are given by

$$ \frac{q \lambda+\lambda}{q \log(1+\lambda t)+q\lambda+\lambda }e^{xt} = \sum _{n=0}^{\infty}\widetilde{\operatorname{Ch}}_{n,\lambda,q }(x) \frac{t^{n}}{n!}. $$
(2.1)

If \(x=0\), then \(\widetilde{\operatorname{Ch}}_{n,\lambda,q} = \widetilde {\operatorname{Ch}}_{n,\lambda,q}(0)\) are called the Appell-type degenerate q-Changhee numbers. From (2.1), we note that

$$ \widetilde{\operatorname{Ch}}_{n,\lambda,q}(x) = \sum _{m=0}^{n} {n \choose m} \widetilde { \operatorname{Ch}}_{m,\lambda,q }\, x^{n-m} . $$
(2.2)

By (2.2), we obtain

$$ \frac{d}{dx}\widetilde{\operatorname{Ch}}_{n,\lambda,q }(x) = n \widetilde {\operatorname{Ch}}_{n-1,\lambda,q }(x)\quad (n \geq1). $$
(2.3)

From (2.3), we show that

$$\begin{aligned} \int_{0}^{1} \widetilde{\operatorname{Ch}}_{n,\lambda,q}(x) \,dx &= \frac{1}{n+1} \int_{0}^{1} \frac{d}{dx}\widetilde{ \operatorname{Ch}}_{n+1,\lambda,q} (x) \,dx \\ &= \frac{1}{n+1} \bigl( \widetilde{\operatorname{Ch}}_{n+1,\lambda,q}(1) - \widetilde {\operatorname{Ch}}_{n+1,\lambda,q} \bigr). \end{aligned}$$
(2.4)

We observe that

$$\begin{aligned} \int_{0}^{1} y^{n} \widetilde{ \operatorname{Ch}}_{n,\lambda,q}(x+y) \,dy &= \sum_{m=0}^{n} {n \choose m} \widetilde{\operatorname{Ch}}_{n-m,\lambda,q}(x) \int_{0}^{1} y^{n+m} \,dy \\ &= \sum_{m=0}^{n} {n \choose m} \frac{\widetilde{\operatorname{Ch}}_{n-m,\lambda,q}(x) }{n+m+1}. \end{aligned}$$
(2.5)

On the other hand, we derive

$$\begin{aligned}& \int_{0}^{1} y^{n} \widetilde{ \operatorname{Ch}}_{n,\lambda,q}(x+y) \,dy \\& \quad = \sum_{m=0}^{n} {n \choose m} \widetilde{\operatorname{Ch}}_{n-m,\lambda,q}(x+1) (-1)^{m} \int_{0}^{1} y^{n} (1-y)^{m} \,dy \\& \quad =\sum_{m=0}^{n} {n \choose m} (-1)^{m} \widetilde{\operatorname{Ch}}_{n-m,\lambda ,q}(x+1) \frac{\Gamma(n+1) \Gamma(m+1)}{\Gamma(n+m+2)}. \end{aligned}$$
(2.6)

Thus, by (2.5) and (2.6), we give the first result.

Theorem 1

For \(n \in\mathbb{N}\cup\{0\} \), we have

$$ \sum_{m=0}^{n} \frac{{n \choose m}\widetilde{\operatorname{Ch}}_{n-m,\lambda,q}(x) }{n+m+1} = \sum _{m=0}^{n} {n \choose m} (-1)^{m} \widetilde {\operatorname{Ch}}_{n-m,\lambda,q}(x+1) \frac{\Gamma(n+1) \Gamma(m+1)}{\Gamma(n+m+2)}. $$

In particular, \(x=0\);

$$ \sum_{m=0}^{n} \frac{{n \choose m}\widetilde{\operatorname{Ch}}_{n-m,\lambda,q} }{n+m+1} = \sum _{m=0}^{n} {n \choose m} (-1)^{m} \widetilde {\operatorname{Ch}}_{n-m,\lambda,q}(1) \frac{\Gamma(n+1) \Gamma(m+1)}{\Gamma(n+m+2)}. $$

We also observe that

$$\begin{aligned}& \int_{0}^{1} y^{n} \widetilde{ \operatorname{Ch}}_{n,\lambda,q}(x+y) \,dy \\& \quad = \frac{\widetilde{\operatorname{Ch}}_{n,\lambda,q} (x+1)}{n+1} - \frac{n}{n+1} \int _{0}^{1} y^{n+1} \widetilde{ \operatorname{Ch}}_{n-1,\lambda,q}(x+y) \,dy \\& \quad = \frac{\widetilde{\operatorname{Ch}}_{n,\lambda,q} (x+1)}{n+1} - \frac{\widetilde {\operatorname{Ch}}_{n-1,\lambda,q} (x+1)}{n+1} \frac{n}{n+2} \\& \qquad {} +(-1)^{2} \frac{n(n-1)}{(n+1)(n+2)} \int_{0}^{1} y^{n+2} \widetilde { \operatorname{Ch}}_{n-2,\lambda,q}(x+y) \,dy \\& \quad = \frac{\widetilde{\operatorname{Ch}}_{n,\lambda,q} (x+1)}{n+1} - \frac{n \widetilde {\operatorname{Ch}}_{n-1,\lambda,q} (x+1)}{(n+1)(n+2)} +(-1)^{2} \frac{n(n-1)\widetilde {\operatorname{Ch}}_{n-2,\lambda,q}(x+1)}{(n+1)(n+2)(n+3)} \\& \qquad {} + (-1)^{3} \frac{n(n-1)(n-2)}{(n+1)(n+2)(n+3)} \int_{0}^{1} y^{n+3} \widetilde{ \operatorname{Ch}}_{n-3,\lambda,q}(x+y) \,dy. \end{aligned}$$
(2.7)

Continuing this process consecutively yields

$$\begin{aligned}& \int_{0}^{1} y^{n} \widetilde{ \operatorname{Ch}}_{n,\lambda,q} (x+y)\,dy \\& \quad = \frac{\widetilde{\operatorname{Ch}}_{n,\lambda,q}(x+1)}{n+1} + \sum_{m=2}^{n-1} \frac{n(n-1)\cdots(n-m+2)(-1)^{m-1}}{(n+1)(n+2)\cdots(n+m)} \widetilde {\operatorname{Ch}}_{n-m+1,\lambda,q}(x+1) \\& \qquad {} + (-1)^{n-1}\frac{n(n-1)(n-2)\cdots2}{(n+1)(n+2)\cdots(2n-1)} \int_{0}^{1} y^{2n-1} \widetilde{ \operatorname{Ch}}_{1,\lambda,q}(x+y) \,dy \\& \quad = \frac{\widetilde{\operatorname{Ch}}_{n,\lambda,q}(x+1)}{n+1} + \sum_{m=2}^{n-1} \frac{n(n-1)\cdots(n-m+2)(-1)^{m-1}}{(n+1)(n+2)\cdots(n+m)} \widetilde {\operatorname{Ch}}_{n-m+1,\lambda,q}(x+1) \\& \qquad {} + (-1)^{n-1} \frac{n!}{(n+1)(n+2)\cdots(2n-1)2n} \biggl( \widetilde { \operatorname{Ch}}_{1,\lambda,q}(x+1) - \frac{1}{2n+1} \biggr) \\& \quad = \sum_{m=1}^{n+1} \frac{(n)_{m-1}}{\langle n+1\rangle_{m}}(-1)^{m-1} \widetilde {\operatorname{Ch}}_{n-m+1,\lambda,q}(x+1), \end{aligned}$$
(2.8)

where \((n)_{m-1}=n(n-1) \cdots(n-m+2)\) and \(< n+1>_{m}=(n+1)(n+2)\cdots(n+m)\).

Thus, by (2.5) and (2.8), we give the second result.

Theorem 2

For \(n \in\mathbb{N}\) with \(n \geq3\), we have

$$ \sum_{m=0}^{n} \frac{{n \choose m}\widetilde{\operatorname{Ch}}_{n-m,\lambda,q}(x) }{n+m+1} =\sum _{m=0}^{n} \frac{(n)_{m}}{\langle n+1\rangle _{m+1}}(-1)^{m}{ \operatorname{Ch}}_{n-m,\lambda,q}(x+1). $$

For \(n \in\mathbb{N}\), we have

$$\begin{aligned}& \int_{0}^{1} y^{n} \widetilde{ \operatorname{Ch}}_{n,\lambda,q}(x+y) \,dy \\& \quad = \frac{\widetilde{\operatorname{Ch}}_{n+1,\lambda,q}(x+1)}{n+1}- \frac{n}{n+1} \int _{0}^{1} y^{n-1} \widetilde{ \operatorname{Ch}}_{n+1,\lambda,q}(x+y) \,dy \\& \quad = \frac{\widetilde{\operatorname{Ch}}_{n+1,\lambda,q}(x+1)}{n+1} - \frac{n}{n+1} \sum _{m=0}^{n+1} {n+1 \choose m} \widetilde{ \operatorname{Ch}}_{n+1-m,\lambda,q}(x+1) (-1)^{m} \int_{0}^{1} (1-y)^{m} y^{n-1} \,dy \\& \quad = \frac{\widetilde{\operatorname{Ch}}_{n+1,\lambda,q}(x+1)}{n+1} - \frac{n}{n+1} \sum _{m=0}^{n+1} {n+1 \choose m} \widetilde{ \operatorname{Ch}}_{n+1-m,\lambda,q}(x+1) (-1)^{m} B(n,m+1). \end{aligned}$$
(2.9)

Therefore, by (2.5) and (2.9), we obtain the third result.

Theorem 3

For \(n \in\mathbb{N}\), we have

$$\begin{aligned}& \sum_{m=0}^{n} \frac{{n \choose m}\widetilde{\operatorname{Ch}}_{n-m,\lambda,q}(x) }{n+m+1} \\& \quad = \frac{\widetilde{\operatorname{Ch}}_{n+1,\lambda,q}(x+1)}{n+1} - \frac{n}{n+1} \sum _{m=0}^{n+1} {n+1 \choose m} \widetilde{ \operatorname{Ch}}_{n+1-m,\lambda,q}(x+1) (-1)^{m} B(n,m+1), \end{aligned}$$

where \(B(n,m+1)\) is a beta function.

Now, we observe that, for \(n \in\mathbb{N}\cup\{0\}\), \(m \in\mathbb{N}\),

$$\begin{aligned}& \int_{0}^{1} \widetilde{\operatorname{Ch}}_{m,\lambda,q}(x) \widetilde{\operatorname{Ch}}_{n,\lambda ,q}(x) \,dx \\& \quad = \sum_{l=0}^{n} {n \choose l} \widetilde{\operatorname{Ch}}_{l,\lambda,q} \sum_{k=0}^{m} {m \choose k} \widetilde{\operatorname{Ch}}_{k,\lambda,q}(1) (-1)^{m-k} \int _{0}^{1} x^{n-l} (1-x)^{m-k} \,dx \\& \quad = \sum_{l=0}^{n} \sum _{k=0}^{m} {n \choose l} {m \choose k} (-1)^{m-k} \widetilde{\operatorname{Ch}}_{k,\lambda,q}(1) \widetilde{ \operatorname{Ch}}_{l,\lambda,q} B(n-l+1, m-k+1) \\& \quad = \sum_{l=0}^{n} \sum _{k=0}^{m} {n \choose l} {m \choose k} (-1)^{m-k} \widetilde{\operatorname{Ch}}_{k,\lambda,q}(1) \widetilde{ \operatorname{Ch}}_{l,\lambda,q} \frac{ \Gamma(n-l+1) \Gamma(m-k+1)}{\Gamma(n+m-l-k+2)} \\& \quad = \sum_{l=0}^{n} \sum _{k=0}^{m} \frac{{n \choose l} {m \choose k}}{{n+m-l-k \choose n-l}} (-1)^{m-k} \frac{\widetilde{\operatorname{Ch}}_{k,\lambda ,q}(1) \widetilde{\operatorname{Ch}}_{l,\lambda,q}}{n+m-l-k+1}. \end{aligned}$$
(2.10)

On the other hand,

$$ \int_{0}^{1} \widetilde{\operatorname{Ch}}_{m,\lambda,q}(x) \widetilde{\operatorname{Ch}}_{n,\lambda ,q}(x) \,dx = \sum _{l=0}^{n} \sum_{k=0}^{m} {n \choose l} {m \choose k} \frac {\widetilde{\operatorname{Ch}}_{m-k,\lambda,q}\widetilde{\operatorname{Ch}}_{n-l,\lambda,q}}{k+l+1}. $$
(2.11)

Thus, by (2.10) and (2.11), we give the fourth result.

Theorem 4

For \(n \in\mathbb{N} \cup\{0\}\), \(m \in\mathbb{N}\), we have

$$\begin{aligned}& \sum_{l=0}^{n} \sum _{k=0}^{m} \frac{{n \choose l} {m \choose k}}{{n+m-l-k \choose n-l}} (-1)^{m-k} \frac{\widetilde{\operatorname{Ch}}_{k,\lambda,q}(1) \widetilde{\operatorname{Ch}}_{l,\lambda,q}}{n+m-l-k+1} \\& \quad = \sum_{l=0}^{n} \sum _{k=0}^{m} {n \choose l} {m \choose k} \frac{\widetilde{\operatorname{Ch}}_{m-k,\lambda ,q}\widetilde{\operatorname{Ch}}_{n-l,\lambda,q}}{k+l+1}. \end{aligned}$$

By replacing t to \(\frac{1}{\lambda} ( e^{\lambda t}-1)\) in (2.1), we get

$$\begin{aligned} \frac{1+q}{q(1+t)+1}e^{\frac{x}{\lambda} ( e^{\lambda t}-1 )} &= \Biggl( \sum _{m=0}^{\infty}\operatorname{Ch}_{m,q} \frac{t^{m}}{m!} \Biggr) \Biggl( \sum_{l=0}^{\infty}\operatorname{Bel}_{l}\biggl(\frac{x}{\lambda}\biggr) \frac{ (\lambda t )^{l}}{l!} \Biggr) \\ &= \sum_{n=0}^{\infty}\Biggl( \sum _{m=0}^{n} {n \choose m} \operatorname{Ch}_{m,q} \operatorname{Bel}_{n-m} \biggl(\frac{x}{\lambda}\biggr) \lambda^{n-m} \Biggr) \frac{t^{n}}{n!} \end{aligned}$$
(2.12)

(see [6]). On the other hand,

$$\begin{aligned}& \sum_{m=0}^{\infty}\widetilde{ \operatorname{Ch}}_{m,\lambda,q }(x) \frac{1}{m!}\frac {1}{\lambda^{m}} \bigl( e^{\lambda t}-1 \bigr)^{m} \\& \quad = \sum_{m=0}^{\infty}\widetilde{ \operatorname{Ch}}_{m, \lambda,q }(x)\frac{1}{\lambda ^{m}} \sum _{n=m}^{\infty}S_{2}(n,m)\lambda^{n} \frac{t^{n}}{n!} \\& \quad = \sum_{n=0}^{\infty}\Biggl( \sum _{m=0}^{n} \widetilde{\operatorname{Ch}}_{m,\lambda, q }(x) S_{2}(n,m) \lambda^{n-m} \Biggr) \frac{t^{n}}{n!}, \end{aligned}$$
(2.13)

where \(S_{2}(n,m)\) is for the Stirling numbers of the second kind, given by

$$ \bigl( e^{t} -1 \bigr)^{m}=m! \sum _{n=m}^{\infty}S_{2}(n,m) \frac{t^{n}}{n!}. $$

By (2.12) and (2.13), we give the fifth result.

Theorem 5

For \(n \in\mathbb{N} \cup\{0\}\), we have

$$ \sum_{m=0}^{n} \widetilde{ \operatorname{Ch}}_{m,\lambda,q }(x) S_{2}(n,m) \lambda^{-m} = \sum_{m=0}^{n} {n \choose m} \operatorname{Ch}_{m,q} \operatorname{Bel}_{l} \biggl( \frac{x}{\lambda}\biggr)\lambda^{l}. $$

3 Remarks

In this section, we derive an explicit identity related to the Appell-type degenerate q-Changhee polynomials as follows. By (1.2), we get

$$ \int_{\mathbb{Z}_{p}} e^{y \log (1+\frac{1}{\lambda}\log(1+\lambda t) )+xt} \,d\mu_{-q} (y) = \frac{q \lambda+\lambda}{q \log(1+\lambda t)+q\lambda+\lambda}e^{xt} = \sum_{n=0}^{\infty}\widetilde {\operatorname{Ch}}_{n,\lambda,q }(x) \frac{t^{n}}{n!}. $$
(3.1)

On the other hand,

$$\begin{aligned}& \int_{\mathbb{Z}_{p}} e^{y \log (1+\frac{1}{\lambda}\log(1+\lambda t) )+xt} \,d\mu_{-q} (y) \\& \quad = \int_{\mathbb{Z}_{p}} \bigl(1+\log(1+\lambda t)^{\frac{1}{\lambda}} \bigr)^{y} e^{xt} \,d\mu_{-q} (y) \\& \quad = \int_{\mathbb{Z}_{p}} \sum_{k=0}^{\infty}{y \choose k} \biggl( \frac {1}{\lambda}\log(1+\lambda t) \biggr)^{k} e^{xt} \,d\mu_{-q}(y) \\& \quad = \int_{\mathbb{Z}_{p}} \sum_{k=0}^{\infty}(y)_{k} \frac{1}{\lambda^{k}} \sum_{m=k}^{\infty}S_{1}(m,k) \frac{(\lambda t)^{m}}{m!} e^{xt} \,d\mu_{-q}(y) \\& \quad = \int_{\mathbb{Z}_{p}} \sum_{m=0}^{\infty}\sum_{k=0}^{m} (y)_{k} \lambda ^{m-k} S_{1}(m,k) \frac{t^{m}}{m!} \sum _{s=0}^{\infty}x^{s} \frac{t^{s}}{s!} \,d\mu _{-q}(y) \\& \quad = \int_{\mathbb{Z}_{p}}\sum_{n=0}^{\infty}\sum_{m=0}^{n} \sum _{k=0}^{m} {n \choose m} (y)_{k} \lambda^{m-k} S_{1}(m,k) x^{n-m} \frac{t^{n}}{n!} d \mu _{-q}(y) \\& \quad = \sum_{n=0}^{\infty}\Biggl( \sum _{m=0}^{n} \sum_{k=0}^{m} {n \choose m} \lambda^{m-k} S_{1}(m,k) x^{n-m} \int_{\mathbb{Z}_{p}} (y)_{k} \,d\mu_{-q}(y) \Biggr) \frac{t^{n}}{n!} \\& \quad = \sum_{n=0}^{\infty}\Biggl( \sum _{m=0}^{n} \sum_{k=0}^{m} {n \choose m} \lambda^{m-k} S_{1}(m,k) x^{n-m} \operatorname{Ch}_{k,q} \Biggr) \frac{t^{n}}{n!}, \end{aligned}$$
(3.2)

where \(S_{1}(m,k)\) is the Stirling numbers of the first kind which is given by

$$ \bigl( \log(1+t) \bigr)^{k} =k! \sum_{n=k}^{\infty}S_{1}(m,k) \frac{t^{m}}{m!}. $$

By (3.1) and (3.2), we give the final result.

Theorem 6

For \(n \geq0\), we have

$$ \widetilde{\operatorname{Ch}}_{n,\lambda,q }(x) = \sum _{m=0}^{n} \sum_{k=0}^{m} {n \choose m} \lambda^{m-k} S_{1}(m,k) x^{n-m} \operatorname{Ch}_{k,q} . $$

4 Conclusions

We consider special numbers and polynomials such as Appell polynomials over the years: Bernoulli, Euler, Genocchi polynomials, and also Changhee polynomials and numbers have many applications in all most all branches of the mathematics and mathematical physics.

In Theorems 1, 2, 3, and 4, by using p-adic q-Volkenborn integral and generating functions, we derived many new and novel identities and relations related to the Appell-type degenerate q-Changhee polynomials and also q-Changhee numbers. In Theorem 5, we also gave some relations between q-Changhee type polynomials and the Stirling numbers of the first kind and Changhee numbers.

References

  1. Kim, T, Kwon, H-I, Seo, JJ: Degenerate q-Changhee polynomials. J. Nonlinear Sci. Appl. 9, 2380-2392 (2016)

    MathSciNet  MATH  Google Scholar 

  2. El-Desouky, BS, Mustafa, A: New results on higher-order Daehee and Bernoulli numbers and polynomials. Adv. Differ. Equ. 2016, 32 (2016)

    Article  MathSciNet  Google Scholar 

  3. Kwon, J, Park, J-W: A note on \((h,q)\)-Boole polynomials. Adv. Differ. Equ. 2015, 198 (2015)

    Article  MathSciNet  Google Scholar 

  4. Park, J-W: On the q-analogue of λ-Daehee polynomials. J. Comput. Anal. Appl. 19(6), 966-974 (2015)

    MathSciNet  MATH  Google Scholar 

  5. Kim, DS, Kim, T: Some identities involving Genocchi polynomials and numbers. Ars Comb. 121, 403-412 (2015)

    MathSciNet  Google Scholar 

  6. Kim, DS, Kim, T: On degenerate Bell numbers and polynomials. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 2016, 1-12 (2016). doi:10.1007/s13398-016-0304-4

    Google Scholar 

  7. Kwon, H-I, Kim, T, Seo, JJ: A note on Daehee numbers arising from differential equations. Glob. J. Pure Appl. Math. 12(3), 2349-2354 (2016)

    MathSciNet  Google Scholar 

  8. Kwon, H-I, Kim, T, Seo, JJ: A note on degenerate Changhee numbers and polynomials. Proc. Jangjeon Math. Soc. 18(3), 295-305 (2015)

    MathSciNet  MATH  Google Scholar 

  9. Jang, L-C, Ryoo, CS, Seo, JJ, Kwon, H-I: Some properties of the twisted Changhee polynomials and their zeros. Appl. Math. Comput. 274, 169-177 (2016)

    Article  MathSciNet  Google Scholar 

  10. Kim, T, Kim, DS: A note on nonlinear Changhee differential equations. Russ. J. Math. Phys. 23(1), 88-92 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kim, T: Some properties on the integral of the product of several Euler polynomials. Quaest. Math. 38(4), 553-562 (2015)

    Article  MathSciNet  Google Scholar 

  12. Kim, T, Kim, DS, Seo, J-J, Kwon, H-I: Differential equations associated with λ-Changhee polynomials. J. Nonlinear Sci. Appl. 9, 3098-3111 (2016)

    MATH  Google Scholar 

  13. Lim, D, Qi, F: On the Appell type λ-Changhee polynomials. J. Nonlinear Sci. Appl. 9(4), 1872-1876 (2016)

    MathSciNet  MATH  Google Scholar 

  14. Rim, S-H, Park, JJ, Pyo, S-S, Kwon, J: The n-th twisted Changhee polynomials and numbers. Bull. Korean Math. Soc. 52(3), 741-749 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kim, DS, Kim, T, Seo, JJ: Higher-order Daehee polynomials of the first kind with umbral calculus. Adv. Stud. Contemp. Math. (Kyungshang) 24(1), 5-18 (2014)

    MathSciNet  MATH  Google Scholar 

  16. Kim, T: A study on the q-Euler numbers and the fermionic q-integral of the product of several type q-Bernstein polynomials on \(\mathbb{Z}_{p} \). Adv. Stud. Contemp. Math. (Kyungshang) 23(1), 5-11 (2013)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lee-Chae Jang.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors contributed equally to this work. All authors read and approved the final manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, F., Jang, LC. & Kwon, HI. Some new and explicit identities related with the Appell-type degenerate q-Changhee polynomials. Adv Differ Equ 2016, 180 (2016). https://doi.org/10.1186/s13662-016-0912-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13662-016-0912-5

MSC

Keywords